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Abstract. We show that in any graph G on n vertices with d(x) +
d(y) ≥ n for any two nonadjacent vertices x and y, we can fix the

order of k vertices on a given cycle and find a hamiltonian cycle
encountering these vertices in the same order, as long as k < n/12

and G is d(k + 1)/2e-connected. Further we show that every b3k/2c-
connected graph on n vertices with d(x) + d(y) ≥ n for any two
nonadjacent vertices x and y is k-ordered hamiltonian, i.e. for every

ordered set of k vertices we can find a hamiltonian cycle encountering

these vertices in the given order. Both connectivity bounds are best
possible.

1. Introduction

One of the most widely studied classes of graphs are hamiltonian graphs.
In this paper we are interested in the following question: When can we
guarantee a certain set S of vertices to appear on a hamiltonian cycle in
a given order? In [?], Ng and Schultz first explored the following related
concept introduced by Chartrand. A graph is called k-ordered hamiltonian,
if for every vertex set S of size k there is a hamiltonian cycle encountering
the vertices in S in a given order. Clearly, every hamiltonian graph is 3-
ordered hamiltonian. Ng and Schultz [?] showed that k-ordered hamiltonian
graphs must be (k − 1)-connected. Further, they showed the following
theorem.

Theorem 1. [?] Let G be a graph of order n and let k be an integer with
3 ≤ k ≤ n. If d(u) + d(v) ≥ n+ 2k − 6 for every pair u, v of nonadjacent
vertices of G, then G is k-ordered hamiltonian.

This bound was later improved in [?] and [?] by Faudree et al. for small
values of k.
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Theorem 2. [?] Let G be a graph of order n and let k be an integer with
3 ≤ k ≤ n/2. If d(u) + d(v) ≥ n + (3k − 9)/2 for every pair u, v of
nonadjacent vertices of G, then G is k-ordered hamiltonian.

Instead of increasing the bound on the degree sum from the Ore-bound
for hamiltonicity as in these papers, we choose to ask for a higher con-
nectivity with the resultant effect of being able to lower the degree sum
condition. We will first prove the following theorem.

Theorem 3. Let G be a graph on n vertices with d(x) + d(y) ≥ n for any
two nonadjacent vertices x and y. Let k < n/12 be an integer, and let C be
a cycle encountering a vertex sequence S = {x1, . . . , xk} in the given order.
If G is d(k+ 1)/2e-connected, then G has a hamiltonian cycle encountering
S in the given order.

Corollary 4. Let G be a graph on n vertices with minimum degree δ(G) ≥
n/2. Let k < n/12 be an integer, and let C be a cycle encountering a vertex
sequence S = {x1, . . . , xk} in the given order. If G is d(k+1)/2e-connected,
then G has a hamiltonian cycle encountering S in the given order.

The connectivity bound is best possible, as illustrated by the following
graph G1. Let L, K, R be complete graphs with |R| = d(2n − k)/4e,
|K| = bk/2c, |L| = n− |K| − |R|. Let G1 be the union of the three graphs,
adding all possible edges containing vertices of K. Clearly, δ(G1) > n/2,
and G1 is bk/2c-connected. Let S = {x1, . . . , xk} with xi ∈ K if i is even
and xi ∈ R otherwise. The cycle C = x1x2 . . . xkx1 contains S in the right
order, but no cycle containing S in the right order can contain any vertices
of L.

A graph is called k-ordered, if for every vertex sequence S of size k there
is a cycle encountering the vertices in S in the given order. Now observe
that every k-ordered graph is (k−1)-connected. Thus, we get the following
corollaries (these are very similar to theorems used in [?] and [?]).

Corollary 5. Let G be a graph on n vertices with d(x) + d(y) ≥ n for any
two nonadjacent vertices x and y. Let k < n/12 be an integer, and suppose
that G is k-ordered. Then G is k-ordered hamiltonian.

Corollary 6. Let G be a graph on n vertices with minimum degree δ(G) ≥
n/2. Let k < n/12 be an integer, and suppose that G is k-ordered. Then G
is k-ordered hamiltonian.

We further prove the following theorem.

Theorem 7. Let G be a graph on n vertices with d(x) + d(y) ≥ n for any
two nonadjacent vertices x and y. Let k ≤ n/176 be an integer. If G is
b3k/2c-connected, then G is k-ordered hamiltonian.
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The connectivity bound is best possible, as illustrated by the following
graph G2. Let L2, K2, R2 be complete graphs with |R2| = bk/2c, |K2| =
2bk/2c−1, |L2| = n−|K2|− |R2|. Let G′2 be the union of the three graphs,
adding all possible edges containing vertices of K2. Let xi ∈ L2 if i is odd,
and let xi ∈ R2 otherwise. Add all edges xixj whenever |i−j| 6∈ {0, 1, k−1},
and the resulting graph is G2. The degree sum condition is satisfied and
G3 is (b3k/2c−1)-connected. But there is no cycle containing the xi in the
right order, since such a cycle would contain 2bk/2c paths through K2.

For the analogous theorem with a bound on the minimum degree we get
a slight improvement on the connectivity bound for odd k.

Theorem 8. Let G be a graph on n vertices with minimum degree δ(G) ≥
n/2. Let k ≤ n/176 be an integer. If G is 3bk/2c-connected, then G is
k-ordered hamiltonian.

Again, the connectivity bound is best possible, as illustrated by the
following graph G3. Let L3, K3, R3 be complete graphs with |R3| = d(n−
k)/2e, |K3| = 2bk/2c − 1, |L3| = n − |K3| − |R3|. Let G′3 be the union
of the three graphs, adding all possible edges containing vertices of K3.
Let xi ∈ L3 if i is odd, and let xi ∈ R3 otherwise. Add all edges xixj

whenever |i− j| 6∈ {0, 1, k − 1}, and the resulting graph is G3. The degree
condition is satisfied, and G3 is (3bk/2c − 1)-connected. But there is no
cycle containing the xi in the right order, since such a cycle would contain
2bk/2c paths through K3.

2. Proof of Theorem ??

Assume that C is a maximal cycle encountering S in the given order.
If C is hamiltonian, we are done. So, assume |C| < n, and let H be a
component of G−C, say |H| = r. The sequence S splits C into k segments
[x1Cx2], . . . , [xkCx1].

Claim 1. There is at most one adjacency of H in each segment [xiCxi+1].

Suppose the contrary. Let x, y be two adjacencies of H inside [xiCxi+1]
with no other adjacencies of H in (xCy). Let v ∈ H ∩N(x). Let |(xCy)| =
s. Since v is not insertible in C we get

d(v) ≤ r − 1 +
n− r − s+ 1

2
.

Insert the vertices of (xCy) one by one into [yCx]. If all of them can be
inserted, we can extend C through v, so there is a vertex w that can not
be inserted. We get

d(w) ≤ s− 1 +
n− r − s+ 1

2
,
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so
d(v) + d(w) ≤ n− 1,

a contradiction. This proves the claim. �
By claim ??, C has at most k adjacencies to H. Let v ∈ H, and w ∈ C

be a vertex not adjacent to H. Then

n ≤ d(v) + d(w) ≤ (r − 1 + k) + (n− r − 1) = n+ k − 2.

Thus, w is adjacent to all but at most k − 2 vertices of G − H. Further,
v is adjacent to all but at most k − 2 vertices in H. We claim that H is
hamiltonian connected as follows: Either H is complete and we are done, or
two vertices v, u ∈ H are not adjacent. Then |H| ≥ d(v)+d(u)

2 − k ≥ n
2 − k,

using Claim ?? and the degree sum condition. Now δH(H) ≥ |H|−k+ 2 >
|H|/2 + 1, which implies hamiltonian connectedness.

Claim 2. G− C has at most one component.

Suppose the contrary, let H ′ be another component with |H ′| = r′. Let
v ∈ H, v′ ∈ H ′. Since G is d(k + 1)/2e-connected, H can be adjacent to at
most b(k − 1)/2c vertices from S, else there is a contradiction with Claim
??. The same is true for H ′. Thus, for some i, xi 6∈ N(H) ∪ N(H ′). But
now,

3n ≤ 2(d(xi) + d(v) + d(v′)) ≤
2((n− r − r′ − 1) + (r − 1 + k) + (r′ − 1 + k)) =

2n+ 4k − 6,

a contradiction that proves the claim. �
Since G is d(k+ 1)/2e-connected, there is a segment [xjCxj+2) with two

adjacencies y, z of H. By claim ??, we may assume that y ∈ [xjCxj+1),
and z ∈ (xj+1Cxj+2). If |H| ≥ k we can even guarantee that |(N(y) ∪
N(z)) ∩H| ≥ 2.

Claim 3. |C| ≥ n/2.

Suppose |C| < n/2. Then |H| ≥ n/2, and y, z could be picked such that
uy, vz ∈ E(G) for two vertices u, v ∈ H. Find a hamiltonian path P in H
from u to v. Observe that N(xj+1) ∪N(xj+2) ⊆ C. If xj+1xj+2 ∈ E(G),
then the cycle uPvzC−xj+1xj+2Cxju is longer than C, a contradiction.
Thus, xj+1xj+2 6∈ E(G). But now

|C| ≥ d(xj+1) + d(xj+2)
2

+ 2 >
n

2
,

the contradiction proving the claim. �
For the final contradiction we differentiate two cases.

Case 1. There exists a vertex w ∈ (yCxj+1) ∪ (zCxj+2).
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LetN = N(xj+1)∩N(xj+2)∩N(w). Since none of the vertices xj+1, xj+2, w
is adjacent to H, each is adjacent to all but at most k − 2 vertices of the
cycle. Thus, |N | ≥ |C| − 3k + 6.

Claim 4. For some i, |N ∩ [xiCxi+1]| ≥ 4.

Suppose not, then

n/2 ≤ |C| ≤ 3k + |C| − |N | ≤ 6k − 6,

a contradiction for n ≥ 12k. �
Let i be as in the last claim, and let v1, v2, v3, v4 ∈ N ∩ [xiCxi+1] be the

first four of these vertices in that order.
If v4 ∈ (yCxj+1], define a new cycle as follows:C ′ = zC−v4xj+2CyuPvz
(see Figure ??).

.42k4.eps

Figure 1. a possible C ′

If v4 ∈ (zCxj+2], let C ′ = zC−xj+2v4CyuPvz.
Otherwise observe that by claim ??, there is at most one adjacency x of H
in [v1Cv4].
For i 6= j + 1, define the new cycle C ′ as follows:
If x ∈ [v1Cv2], let C ′ = zC−xj+1v3xj+2Cv2wv4CyuPvz (see Figure ??).

.42k3

Figure 2. a possible C ′

If x ∈ [v3Cv4], let C ′ = zC−xj+1v2xj+2Cv1wv3CyuPvz.
Otherwise, let C ′ = zC−xj+1v2Cv3xj+2Cv1wv4CyuPvz.
For i = j + 1, a very similar construction works:
let C ′ = zC−v4wv1C

−xj+1v2Cv3xj+2CyuPvz.
In any case, no vertex in C −C ′ is adjacent to H, so all of them have high
degree to C and thus high degree to C ∩C ′. Therefore, we can insert them
one by one into C ′ creating a longer cycle, a contradiction.
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Case 2. Suppose (yCxj+1) ∪ (zCxj+2) = ∅.

Let N ′ = N(xj+1) ∩N(xj+2). Then |N ′| ≥ |C| − 2k + 4.

Claim 5. For some l, |N ′ ∩ [xlCxl+1]| ≥ 5.

Suppose not. Then

n/2 ≤ |C| ≤ 4k + |C| − |N ′| ≤ 6k − 4,

a contradiction for n ≥ 12k. �
Let l be as in the last claim, and let z1, z2, z3, z4, z5 ∈ N ′ ∩ [xlCxl+1]

be the first five of these vertices in that order. At most one of them
is adjacent to H, say z2. Now a very similar argument as in the last
case gives the desired contradiction, just replace xj+1 by z1, xj+2 by z5,
and w by z4. One possible cycle would then be (for l < i < j): C ′ =
zC−xj+1z2Cz3xj+2Cz1v2Cv3z5Cv1z4v4CyuPvz (see Figure ??). �

.5kord2.eps

Figure 3. a possible C ′

3. Proof of Theorems ?? and ??

By Corollary ??, all we need to show is that G is k-ordered. For this
purpose, we will use a slightly stronger concept.

We will say that a graph G on at least 2k vertices is k-linked, if for every
vertex set T = {x1, x2, . . . , xk, y1, y2, . . . , yk} of 2k vertices, there are k dis-
joint xiyi-paths. The property remains the same if we allow repetition in T ,
and ask for k internally disjoint xiyi-paths. Thus, as an easy consequence,
every k-linked graph is k-ordered.

An important theorem about k-linked graphs is the following theorem
of Bollobás and Thomason:

Theorem 9. [?] Every 22k-connected graph is k-linked.

The following lemmas will be used later.

Lemma 10. If a 2k-connected graph G has a k-linked subgraph H, then G
is k-linked.

Proof: Let T = {x1, x2, . . . , xk, y1, y2, . . . , yk} be a set of 2k vertices in
V (G). Since G is 2k-connected, there are 2k disjoint paths from T to V (H)
(trivial paths for vertices in T ∩ H). Now we can connect these paths in
the desired way inside H, since H is k-linked. �

Lemma 11. If G is a graph, v ∈ V (G) with d(v) ≥ 2k− 1, and if G− v is
k-linked, then G is k-linked.
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Proof: Let T = {x1, x2, . . . , xk, y1, y2, . . . , yk} be a set of 2k vertices in
V (G). If v 6∈ T , we can find disjoint xiyi-paths inside G− v. Thus assume
that v ∈ T , without loss of generality we may assume that v = x1. If
y1 ∈ N(v), we can find disjoint xiyi-paths for all i ≥ 2 in G− v − y1, since
G− v− y1 is (k− 1)-linked. Adding the path vy1 completes the desired set
of paths in G. If y1 6∈ N(v), then there exists a vertex x′1 ∈ N(v)−T , since
d(v) ≥ 2k− 1. We can find disjoint xiyi-paths for i ≥ 2 and a x′1y1-path in
G− v, which we can then extend to an x1y1-path in G. �

Further, we will use a theorem of Mader about dense graphs:

Theorem 12. [?] Every graph G with |V (G)| = n ≥ 2k− 1, and |E(G)| ≥
(2k − 3)(n− k + 1) + 1 has a k-connected subgraph.

Corollary 13. [?] Every graph G with |V (G)| = n ≥ 2k−1, and |E(G)| ≥
2kn has a k-connected subgraph.

Proof of Theorem ??. Let G be a graph fulfilling the stated conditions.
Let S = {x1, . . . , xk} be a set of k vertices. To show that G is k-ordered
we need to find a cycle C including the vertices of S in the given order.
Corollary ?? will then provide Theorem ??. Let K be a minimal cutset of
G. Let L and R be two components of G−K with |L| ≤ |R|.

Case 1. Suppose |K| ≥ 2k.

The degree sum condition forces |E(G)| ≥ n2/4 ≥ 44kn. By Corol-
lary ??, G has a 22k-connected subgraph H, which is k-linked by Theo-
rem ??. By Lemma ??, G is k-linked and thus k-ordered.

Case 2. Suppose 3bk/2c ≤ |K| ≤ 2k − 1.

First note that L and R are the only components of G−K. Otherwise,
let x ∈ L, y ∈ R, z ∈ G− (K ∪ L ∪R), then

3n ≤ 2d(x) + 2d(y) + 2d(z)

≤ 2|L|+ 2|K|+ 2|R|+ 2|K|+ 2(n− |L| − |R|)
≤ 2n+ 4|K| < 2n+ 8k,

a contradiction.

Claim 1. R is k-linked, and L is k-linked or complete.

Let v ∈ L,w ∈ R. Then

n ≤ d(v) + d(w) ≤ |L| − 1 + |K|+ |R| − 1 + |K| ≤ n+ 2k − 3.

Thus w is connected to all but at most 2k − 3 vertices in R. Therefore, R
is 2k-connected. Again,

|E(R)| ≥ |R|(|R| − 2k + 2) ≥ |R|(n/2− 3k + 2) ≥ 44k|R|.
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Thus, R has a 22k-connected and therefore k-linked subgraph, and so R is
k-linked by Corollary ??, Theorem ?? and Lemma ??.

If L is complete we are done. Otherwise, let x, y ∈ L with xy 6∈ E, then

|L| ≥ d(x) + d(y)
2

− |K| ≥ n

2
− 2k + 1.

Every vertex in L is connected to all but at most 2k − 3 vertices in L,
therefore L is 2k-connected. By a similar argument as before, L is k-linked,
establishing the claim. �

Claim 2. For every vertex v ∈ K, at least one of the following holds:
(1) dR(v) ≥ 2k,
(2) dL(v) ≥ 2k,
(3) dL(v) = |L|.

Suppose the claim is false for some vertex v ∈ K. Let x ∈ L − N(v),
y ∈ R−N(v). Then

2n ≤ d(x) + 2d(v) + d(y)

< |L|+ |K|+ 2(|K|+ 4k) + |R|+ |K|
≤ n+ 3|K|+ 4k < n+ 10k,

a contradiction. �
The last claim yields a partition of K as follows:

KR = {v ∈ K | dR(v) ≥ 2k},
KL1 = {v ∈ K | dL(v) ≥ 2k} −KR,

KL2 = {v ∈ K | dL(v) = |L|} − (KR ∪KL1).

Note that either KL1 = ∅ or KL2 = ∅, and that the graph induced on KL2

is complete, since all vertices in KL2 have degree less than 4k.
Now let R′ = 〈R ∪KR〉, L′ = 〈L ∪KL1 ∪KL2〉. By Claim ??, Claim ??

and Lemma ??, R′ is k-linked and L′ is k-linked or complete.

For the last part of the proof, let SL = L′ ∩ S, SR = R′ ∩ S. Create a
new graph G′ as follows: For every i with xi ∈ SL and xi−1, xi+1 ∈ SR,
add a vertex x′i with N(x′i) = N(xi) ∪ {xi}. It is easy to see that G′ is
b3k/2c-connected. Therefore, G′ − SR is (b3k/2c − |SR|)-connected. Using
this fact, we can find independent paths in G′−SR from each of the vertices
in SL∪

⋃
x′i into R′−SR, since |SL∪

⋃
x′i| ≤ min {k, 2|SL|} ≤ 3k/2−|SR|.

Denote the set of last edges of these paths by M . Now contract the edges
xix
′
i to get back to G.
The existence of the cycle C is now guaranteed, since we can pick ap-

propriate vertices in SL ∪ (M ∩L′) and in SR ∪ (M ∩R′), and then use the
fact that R′ is k-linked and L′ is k-linked or complete to find the necessary
connections. This completes the proof of Theorem ??.
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�

Proof of Theorem ??. Observe that the connectivity only played a role
in the last part of the previous proof. Let G be a graph as in Theorem ??. If
G is b3k/2c-connected, we are done by Theorem ??. Thus, we may assume
that k is odd and G has a minimal cut set of size 3bk/2c. Further, we know
that G splits in two parts L′ and R′, each of which is k-linked (observe that
the degree condition forces |L′| > 2k) by the proof of Theorem ??.

Since k is odd, there are two consecutive vertices in S on the same side,
we may assume x1 and xk is such a pair. Since G is (3(k−1)/2)-connected,
there exists a matching M = {e1, . . . , e3(k−1)/2} of edges between R′ and
L′. We can renumber the edges of M such that ei∩S ⊆ {xi} for all i ≤ k−2,
and ek−1 ∩ S ⊆ {xk−1, xk}. Let xk+1 = x1. To construct the cycle C, we
need to find xixi+1-paths for all i ≤ k. If xi ∈ L′ and xi+1 ∈ R′, or if
xi ∈ R′ and xi+1 ∈ L′, we want to find a path from xi to ei through L′(R′)
and a path from ei to xi+1 through R′(L′). Note that this case can only
occur if i ≤ k − 1. If xi, xi+1 ∈ L′(R′), we want to find a xixi+1-path in
L′(R′). The simultanuous existence of all these paths is guaranteed since
R′ and L′ are k-linked. This completes the proof of Theorem ??.

�
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