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New conformal gauging and the electromagnetic theory
of Weyl
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Department of Physics, Utah State University, Logan, Utah 84322
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A new eight-dimensional conformal gauging solves the auxiliary field problem and
eliminates unphysical size change from Weyl’s electromagnetic theory. We derive
the Maurer–Cartan structure equations and find the zero curvature solutions for the
conformal connection. By showing that every one-particle Hamiltonian generates
the structure equations we establish a correspondence between phase space and th
eight-dimensional base space, and between the action and the integral of the Weyl
vector. Applying the correspondence to generic flat solutions yields the Lorentz
force law, the form and gauge dependence of the electromagnetic vector potential
and minimal coupling. The dynamics found for these flat solutions applies locally
in generic spaces. We then provide necessary and sufficient curvature constraints
for general curved eight-dimensional geometries to be in 1–1 correspondence with
four-dimensional Einstein–Maxwell space–times, based on a vector space isomor-
phism between the extra four dimensions and the Riemannian tangent space. De-
spite part of the Weyl vector serving as the electromagnetic vector potential, the
entire class of geometries has vanishing dilation, thereby providing a consistent
unified geometric theory of gravitation and electromagnetism. In concluding, we
give a concise discussion of observability of the extra dimensions. ©1998 Ameri-
can Institute of Physics.@S0022-2488~98!02601-2#

I. INTRODUCTION

In 1918, following immediately on the heels of Einstein’s introduction of general relativ
Weyl proposed a generalization of Riemanian space–time structure1 to allow for local changes in
the standard of length. When the gauge field required to insure this symmetry has nonvan
curl, the lengths of vectors change as they undergo parallel transport. This nicely comple
picture of Riemann in which vectors are rotated but not changed in length. In Weyl geomet
properties of transported vectors—magnitudeand direction—are subject to the transport law.

Weyl identified the gauge field of local dilations with the electromagnetic potential, the
explaining the gauge freedom of that potential and giving a geometric interpretation of el
magnetic forces. Unfortunately, the theory is inconsistent with experience because it pr
changes in the sizes of objects depending on their paths. Applied, for example, to the c
atoms moving in a background electromagnetic field, the predicted size changes would p
substantial unobserved broadening of atomic spectral lines.

The simplicity and naturalness of Weyl geometry together with the promise of a geom
understanding of electromagnetism makes the failure of Weyl’s physical theory puzzling. In
Weyl1–3 and many other physicists4–22 included proposed alternative versions of the physi
interpretation in attempts to make the theory consistent. Ultimately, the work led to the cu
U~1! gauge theory of electromagnetism, which maintains much of the beauty of the or
proposal without inconsistent predictions such as changes in atomic spectra.

In the present work, we show that a new conformal gauging avoids the standard object5 to
this 80-year-old theory of Weyl. Since the conformal group contains the Weyl group, the s

a!Electronic-mail: jwheeler@cc.usu.edu
0022-2488/98/39(1)/299/30/$15.00
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resulting from its gauging share certain properties with Weyl’s original gauge theory of ele
magnetism. However, the eight-dimensional character of the new gauging and its interpreta
a generalization of phase space eliminate the problem of unphysical size change. Before d
ing these new conformal spaces, which we callbiconformal geometries, we review some results
from previous studies of the conformal group.

The conformal group is the most general set of transformations preserving ratios of infin
mal lengths. On four-dimensional space–time the conformal group is 15 dimensional, incl
Lorentz transformations, translations, inverse translations, and dilations. The Lorentz trans
tions and translations are well known, while the dilations are simple rescalings. The in
translations have alternatively been called special conformal transformations, conformal b
accelerations, or elations. We choose the term inverse translations because these transfo
are pure translations at infinity. This is easily seen by translating the inverse coordinaym

52xm/x2→ym1am and then inverting again.
We will also make use of several subgroups of the conformal group. The Lorentz tran

mations and translations together form the Poincare´ group, while the Lorentz transformations an
the dilations form the homogeneous Weyl group. Adding the translations to the Weyl group
the inhomogeneous Weyl group. The Lorentz transformations, dilations, and inverse trans
also form an inhomogeneous Weyl group with the only difference being that the translation
inverse translations have opposite behavior under dilations.

Considerable attention23–27has been given to four-dimensional space–times which result f
gauging the conformal group. In addition to the usual metric and local Lorentz structur
space–time, these models are expected, aa priori, to possess five gauge vectors—one for dilatio
and four for the inverse translations. However, it was long thought that the inverse transl
could not be gauged, because the corresponding current is position dependent. From a
different perspective, Mansouriet al.23,24 argue that making the inverse translations local is
dundant with general coordinate transformations so that the corresponding gauge fields h
new effect. Nonetheless, Crispim Roma˜o, Ferber, and Freund,25,26 and independently Kaku
Townsend, and Van Nieuwenhuizen27 show how to gauge the inverse translations, but find th
algebraically removable from the problem. This problem is in fact generic: in any f
dimensional scale-invariant torsion-free field theory with action built quadratically from the
vatures of the conformal group these four inverse translational gauge fields may be algebr
removed from the problem.28 The local inhomogeneous Weyl symmetry of such theories alw
has an effective field theory equivalent to one based on the homogeneous Weyl grou
therefore sheds no light on Weyl’s theory.

By contrast, consideration of the fixed points of the various conformal transformations
gests the use of an eight-dimensional base space instead of a four-dimensional base spac
sponding to the existence of eight distinct translational generators in the Lie algebra. Requir
eight-dimensional base space makes the gauge fields of the inverse translations act as pa
solder form on the base space, so these fieldsnecessarilyremain independent. Even in the case
a fully flat biconformal space this solder form contains nontrivial physical information.

Our present investigation of this new conformal gauging focuses principally on the stu
flat biconformal spaces, because this is where the connection with well-known systems sho
most evident and because the dynamics of flat spaces will also apply locally in generic s
Unlike Riemannian geometry, there is an entire nontrivial class of flat solutions. We first d
this class of solutions. Next, we show that the flat spaces possess a symplectic structure
allows their interpretation as one-particle phase spaces and provides a concise descriptio
corresponding Hamiltonian dynamics. Applying this Hamiltonian correspondence to the
general flat solution gives a geometric derivation of the Lorentz force law, in strong contrast
original Weyl theory. After indicating briefly how the biconformal electromagnetic theory c
nects satisfactorily to U~1! gauge theory, we show how to introduce Einstein gravitation, arbit
additional fields, and electromagnetic sources into the biconformal structure.
J. Math. Phys., Vol. 39, No. 1, January 1998
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The layout of the paper is as follows. In Sec. II we develop biconformal structure
conformal fiber bundle. We give particular attention to the general procedure for building co
tions on manifolds based on an underlying symmetry group29–32because it is this procedure whic
motivates our use of an eight-dimensional base manifold. The construction consists of two
First, an elementary geometry is found by taking the quotient of a given symmetry group
subgroup containing no normal subgroup of the full group. Then, the connection of the res
principal fiber bundle is generalized by including curvature. As an example we review the
struction of general space–times by gauging the Poincare´ group.33–36 We then implement these
techniques to gauge the conformal group in a new way. First, we construct an elementary
etry as the quotient,C /C 0 , of the conformal group,C , by its isotropy subgroup,C 0 . This gives
a conformal Cartan connection on an eight-dimensional manifold. Next, we generalize the
nection to that of a curved eight-dimensional manifold with the seven-dimensional homoge
Weyl group as fiber by the addition of horizontal curvature two-forms to the group stru
equations. The resulting eight-dimensional base manifold is called abiconformal spaceand the
full fiber bundle is called the biconformal bundle.

Our first principal result is presented in Sec. III where we derive the flat solution for a fr
field satisfying the zero-curvature Maurer–Cartan structure equations of biconformal space

In Secs. IV and V we establish our next claim: the classical Hamiltonian dynamics
single-point particle is equivalent to the specification of a seven-dimensional surface in flat b
formal space. As a consequence of the form of the structure equations, there necessarily
set of preferred curves satisfying the Hamiltonian equations of motion. This claim is establis
two steps. First, in Sec. IV, we show that the classical Hamiltonian description of a point pa
defines a class of eight-dimensional differential geometries with structure equations of man
biconformal type. Then in Sec. V we show that there is an embedding, unique up to
symplectic changes of basis, of the Hamiltonian system into aflat biconformal geometry. We also
demonstrate the necessary existence of a preferred set of curves in the biconformal space
ing the Hamiltonian equations of motion. The unique local equivalence between hypersurfa
flat biconformal geometry and Hamiltonian systems provides a clear physical interpretation
geometric variables of biconformal space.

The central importance of this second result is in definitively establishing the physical
pretation of the new conformal gauging. Our main goal is not to provide an alternate formu
of classical mechanics, but rather to use this embedding as a guide to subsequent physic
pretation of the elementary biconformal variables. Given the result of Sec. IV, that a cla
single-particle Hamiltonian system generates a class of biconformal space–times, and its co
in Sec. V, we can conclude that for an isolated test particle in a general biconformal space th
new coordinates may be interpreted locally as the corresponding generalized particle mom
Our identification therefore provides a physical correspondence principle for biconformal sp
While in general spaces the extra dimensions will not necessarily represent momentum gl
we can always take the limit of a tightly confined field in a local Lorentz frame, for which
extra dimensions will permit the momentum interpretation. Indeed, when nonflat biconfo
spaces are investigated in Sec. VII, we will see that the ‘‘momentumlike’’ co-solder form con
the stress-energy tensor of any gravitational sources. This generalization from momentum
stress-energy tensor is exactly what one would anticipate in moving from a particle interpre
to a field interpretation.

For our third result, in Sec. VI, we apply the Hamiltonian correspondence of the pre
sections to the general solution for flat biconformal space, to show how that flat solution pr
the following properties of the electromagnetic vector potential:

~1! The four-vector form of the potential. This is nontrivial, since it involves the reduction of
eight-dimensional one-formv0

05v0m
0 (x,y)dxm1v0

0m(x,y)dym to a four-dimensional one
form, am(x)dxm on space–time.

~2! Its usual gauge dependencea8(x)5a(x)1df.
J. Math. Phys., Vol. 39, No. 1, January 1998
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~3! Minimal couplingpa→pa2laa .
~4! The correct equation of motion for a charged particle moving under its influence.

This section therefore provides a consistent realization of Weyl’s goal1 of expressing electro-
dynamics in terms of the dilational gauge field. Upon moving to more general biconformal spac
the remarks of the preceding paragraph imply that in a local Lorentz frame an isolated, ch
test particle will move according to the Lorentz force law.

These predictions of electromagnetic effects in biconformal space follow directly from
relationship of biconformal space to phase space and Hamiltonian dynamics, developed in
IV and V. No further assumption is necessary to derive the Lorentz force law. At the same
the biconformal theory predicts constancy of size. There is an entire class offlat biconformal
spaces which includes sufficient freedom in the gauge fields to account for the classical e
dynamics of a charged point particle in an arbitrarily specified background electromagnetic
The flatness condition includes vanishing dilational curvature, so none of these geometries l
size change of any kind. In sharp contrast to Weyl geometry in which vanishing dilation im
vanishing gauge vector, the dilational gauge vector in flat biconformal space isrequired to be
nonzero.

Section VI ends with a brief comparison of the biconformal model with Weyl’s original ga
theory and with the standard U~1! model of electromagnetism.

In Sec. VII, we show how to introduce arbitrary gravitational and electromagnetic sourc
that the results of Sec. VI remain valid in the resulting class of curved biconformal spaces
entire class has vanishing dilation, and the electromagnetic and gravitational fields satis
Maxwell and Einstein equations, respectively.This section therefore provides a consistent re
ization of Weyl’s goal of a unified geometric theory of gravitation and electromagnetism. While
other fundamental interactions have been discovered since Weyl’s time, the inclusion of b
the large scale forces in a geometric theory must be considered a step in the right dir
moreover, biconformal spaces contain additional fields which are not studied here. These
tional fields might have an interpretation as the additional interactions. In any case, there is
the possibility of adding internal symmetries beyond the conformal symmetry.

The final section consists of a detailed discussion of possible consequences of reg
energy and momentum variables as four of the coordinates in an eight-dimensional spac
consider the necessary isomorphism of mathematical structure, transformation propertie
dynamical laws that must hold between momentum space variables and the biconformal co
variables. Collisions and interactions are discussed with attention given to continuity an
proper proximity of colliding particles. Finally, we point to some experimental results w
suggest a coordinatelike behavior of momentum variables.

II. THE CONSTRUCTION OF SPACE–TIMES WITH LOCAL SYMMETRIES

Before defining and interpreting biconformal spaces at the end of this section, we re
some background motivating their construction. While it is customary to begin the discussio
differential geometry with the specification of a manifold and metric pair, (M,g), our present
interest lies in developing a space–time model beginning with locally determined symm
considerations. This allows us to construct geometries whicha priori possess specified loca
symmetries. It is in part the elements of this construction which motivate our choice o
eight-dimensional base manifold for conformal gauging instead of the usual four-dimens
picture. This in turn requires us to interpret the extra four dimensions. The interpretation
extra coordinates in the zero curvature limit is accomplished in Secs. IV–VI.

We consider symmetry groups which include the local Lorentz symmetry of space–
seeking a procedure for developing a connection on a space–time (M,g) from a knowledge of an
experimentally determined~i.e., ‘‘global’’ ! symmetry group. We use the well-known techniqu
of Cartan and Klein,29–32,37–39proceeding as follows. We begin with a Lie group,G , and a
J. Math. Phys., Vol. 39, No. 1, January 1998
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subgroupG 0 called the isotropy subgroup. The isotropy subgroup should contain no no
subgroup ofG if the full group is to act effectively and transitively on the base space. Definin
projection onto the base space as the quotientG /G 0 , the group manifold becomes a fiber bund
called by Klein anelementary geometry. The full group will act effectively and transitively on th
base space of the elementary geometry. The base space will be a manifold if and only
fibration is regular, i.e., there exists a neighborhood of each point of any fiber which that
intersects only once. This regularity condition holds for the groups we consider. This base
of the elementary geometry therefore provides a manifold upon which we now generaliz
connection to a Cartan connection by introducing curvature.

The generalization to a Cartan connection occurs by only requiring the action of the full g
to be detectable on curves instead of globally. Specifically, we may introduce into the stru
equations any curvature two-forms consistent with the resulting Bianchi identities and the fo
ing requirement. LetP ~l! be any curve in the bundle, letv j

i be a connection on the bundle, an
let f :G→VN2

be a linear representation ofG by N3N matrices. Then integrating

df j
i 5v j

kf k
i

alongP ~l! yields a group transformationf j
i (l0) at each pointP (l0). The connectionv j

i will be
a Cartan connection if the transformationf j

i (l) depends only on the projection of the curveP ~l!
into the base space. This condition holds if and only if the curvatures arehorizontal, i.e., bilinear
in those connection forms which vanish on the fibers. The generalization to a curved conn
occurs because different curves in the base space between the same pair of points c
different group elements.

If the connection is linear, we can express this condition in terms of mappings of orthon
frames. Consider again a curveP ~l!, an initial pointP ~0! on the curve, and a frameEa(0) at the
point. We then can demand that there shall exist a transformation from the full groupG mapping
the initial pair „P (0),Ea(0)… to a corresponding pair„P (l),Ea(l)… for any pointP ~l! on the
curve.

A. Gauging the Poincare ´ group

We illustrate the method using the Poincare´ group. The group may be described locally by
structure equations~equivalent to its Lie algebra!, which take the form

dvb
a5vb

c∧vc
a , dva5vb∧vb

a , ~2.1!

where the one-formsvb
a ,va (a,b51,2,3,4) span the ten-dimensional group manifold. The o

subgroupG 0 containing no normal subgroup ofG but which does include the Lorentz group is th
Lorentz group itself, since the translations form a normal subgroup. The quotientG /G 0 leads to a
four-dimensional base space with Lorentz fibers. It is easy to see that the base space is Min
space, and therefore the elementary geometry is the bundle of orthonormal frames
Minkowski space–time.

Continuing with the Lorentz bundle, we alter the connection to that of a curved base spa
adding curvature two-forms,Vb

a andVa, to the structure equations. Clearly there is one curva
two-form for each generator of the original Lie group. Furthermore, each curvature compon
horizontal, depending only on the formsva which vanish on the fibers. Functionally, the curvatu
components depend only on the quotient space,G /G 0 . Thus,

dvb
a5vb

c∧vc
a1Vb

a , dva5vb∧vb
a1Va, ~2.2!

or, in more familiar notation,
J. Math. Phys., Vol. 39, No. 1, January 1998
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Ra
b5dva

b1va
c∧vc

b Ta5dea1va
b∧eb, ~2.28!

whereva
b is the spin connection,ea5va is the vierbein,Ra

b is the curvature two-form, andTa is
the torsion. Notice that we will always write the metric explicitly, so we need not offset upper
lower indices. The horizontality condition, thatRa

b5Ra
bcde

c∧ed with no terms such as
Ra

bcd
eec∧ve

d or Ra
bcd

e fve
c∧v f

d , guarantees that the generator of a Poincare´ transformation found
by integrating the connection one-forms along any curveP ~l! will depend only on the projection
of the curve into the base manifold,p„P ~l!…. Specifically, define

d1P 5vaEa , d1Ea5va
b
Eb , ~2.3!

as the change in the pointP and the vector frameEb along any curve in the bundle, whered1 is
the one-dimensional exterior derivative on the curve. It is convenient to introduce a full
dimensional frame (Ea ,F a

b) at the initial point, with the frameEa being the horizontal part. We
choose (Ea ,F a

b) to be dual to (va,vb
a):

va~Eb!5db
a , va~F c

b!50,
~2.4!

vb
a~Ec!50, vb

a~F d
c!5dd

adb
c .

When Eqs.~2.3! are integrated along a curveP ~l! we find a new point-frame pair at each valu
of l. Now let P ~l! be the closed perimeter of an arbitrary infinitesimal plaquette with a
elementS. Then explicit evaluation of the integral ofd1P around the plaquette gives

R
P

d1P 'Va~S!Ea~0!. ~2.5!

A general infinitesimal surface elementS may be expanded in terms of the full frame at the init
point as

S5SabEa∧Eb1Sc
ab

F a
c∧Eb1Scd

ab
F a

c∧F b
d . ~2.6!

Now takingVa horizontal,Va5Vbc
a vb∧vc, we use Eqs.~2.4! to evaluate

Va~S!5Vbc
a @Sdevb~Ed!vc~Ee!1Sf

devb~F d
f !vc~Ee!1Sf g

devb~F d
f !vc~F e

g!#

5Vbc
a Sdedd

bde
c5Va

„p~S!…, ~2.7!

so that the path dependence of the pointP ~l! depends only on the projection of the loop into t
base manifold. A completely analogous argument holds for the integral ofEa and the horizontality
of Vb

a .
Equations~2.2! or (2.28) now describe a curved four-dimensional space–time with lo

Lorentz symmetry. The second curvature,Va5Ta, allows the inclusion of torsion. Because th
remaining Lorentz symmetry of the fibers does not mix the components of the torsion wit
components of the Riemann curvature, the usual specification of general relativity,Va50, is
consistent. General relativity also requires identification of the cotangent spaceT* with the space
spanned by the solder formea. This identification is automatic here becauseea is requireda priori
to span the base spaceG /G 0 . As we have carried out the construction here, the topology of
manifold is that of the quotient,R4, but nontrivial base spaces are easily achieved by specif
J. Math. Phys., Vol. 39, No. 1, January 1998
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an arbitrary manifoldM having the same~Minkowski! cotangent space and structure equatio
~2.2!. This substitution ofM for G /G 0 is allowed because it alters only topological properti
while all of the structures of interest described above are local.

B. Biconformal gauging

Understanding a symmetry-based approach has significant advantages as we now tur
examination of the conformal group. The essential point is that, in contrast to the Poinca´ ex-
ample, the presence of inverse translations means that there are no normal subgroups, ma
choice of isotropy subgroupC 0 nontrivial. While biconformal space is based on the choice of
homogeneous Weyl group asC 0 , it is instructive to first consider what happens if we use
inhomogeneous Weyl group instead.

As described in the Introduction, considerable attention23–27 has been given to models whic
result from the choice of the 11-dimensional inhomogeneous Weyl group asC 0 . This choice is
natural enough since it gives the same base manifold as in the Poincare´ case. It would appear tha
this model simply extends the Lorentz fiber symmetry of the local Poincare´ model to include
dilations and inverse translations. However, in generic field theories based on this bundle th
components of the connection corresponding to the inverse translations are generically au
and may be algebraically removed from the problem.28 The resulting field theory, equivalent t
one based on the homogeneous Weyl group, has had at best mixed success as a field theor
case, no new symmetries or additional physical fields have been gained in passing from th
group to the full conformal group. By contrast, choosingC 0 to be thehomogeneousWeyl group
from the start, we retain the full 15 degrees of freedom of the original group and acquire
new fields, with the simplest example of a biconformal space having a natural physical int
tation in terms of Hamiltonian dynamics.

We arrive at the biconformal model if we ask what property of the Lorentz transforma
made them a suitable fiber symmetry for the Poincare´ group. The requirement that the isotrop
subgroup should have no subgroup normal in the Poincare´ group ruled out the translations, whic
form a normal subgroup of the Poincare´ group. The Lorentz symmetry is therefore the on
possible fiber symmetry. However, there is another way to see that we should use the L
group as the isotropy subgroup, based on fixed points. On Minkowski space, the class of t
tions has no fixed points, while the class of Lorentz transformations leaves the origin fixed~hence
the name, ‘‘isotropy subgroup’’!. Thus, we can distinguish the isotropy subgroup of the fiber
from the ‘‘translational’’ symmetry of the base manifold by counting fixed points.

Returning to the conformal group, we find that when we distinguish the conformal tran
mations based on their fixed points, there are simply eight translations acting oncompactified
Minkowski space.40 A special point, its null cone, and an ideal two-sphere are added at infini
accomplish the compactification. As a result, the translations are no longer characterized
absence of fixed points. Instead, the class of translations and the class of inverse translatio
has a single fixed point~the origin and the point at infinity, respectively! while the Lorentz
subgroup and the dilational subgroup leave both of these points fixed. The dilations also lea
ideal two-sphere fixed.

With these observations, we take the isotropy subgroupC 0 to be the seven-dimensiona
homogeneous Weyl group, consisting of the six Lorentz transformations together with dila
Defining a projection as the quotientC /C 0 we are led to a fiber bundle with an eight-dimension
manifold as the base space and the homogeneous Weyl group as a typical fiber. This wil
both the translational and inverse translational symmetries when the base manifold be
curved, but we nonetheless retain the full 15 guage field degrees of freedom.

We choose the O~4,2! representation of the conformal group for our notation,40 with
(A,B,...)5(0,1,...,5). Letting boldface or Greek symbols denote forms and (a,b,...)5(1,...,4),
the O~4,2! metric hAB is given byhab5diag (1,1,1,21) andh055h5051 with all other compo-
J. Math. Phys., Vol. 39, No. 1, January 1998
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nents vanishing. Introducing the connection one-formvB
A , we may express the covariant co

stancy ofhAB as

DhAB[dhAB2hCBvA
C2hACvB

C50. ~2.8!

We may break the connection form into four independent Weyl-invariant parts: thespin connec-
tion, vb

a , the solder form, v0
a , the co-solder form, va

0, and theWeyl vector, v0
0, where the spin

connection satisfies

vb
a52hbch

advd
c ~2.9a!

and the remaining components ofvB
A are given in terms of these by

v0
55v5

050, ~2.9b!

v5
552v0

0, ~2.9c!

v5
a52habvb

0, ~2.9d!

va
552habv0

b . ~2.9e!

These constraints reduce the number of independent fieldsvB
A to the required 15 and allow us t

restrict (A,B,...)5(0,1,...,4) in all subsequent equations. Now it becomes clear why we write
metric explicitly instead of raising and lowering indices. The convention avoids confusion
tween the solder and co-solder forms. Staying with the O~4,2! index positions also indicate
immediately the scaling properties of any field, since each upper index adds11 to the conformal
weight while each lower index adds21.

The structure constants of the conformal Lie algebra now lead immediately to the Ma
Cartan structure equations of the conformal group. These are simply

dvB
A5vB

C∧vC
A . ~2.10!

When broken into parts based on homogeneous Weyl transformation properties, Eq.~2.10! gives

dvb
a5vb

c∧vc
a1vb

0∧v0
a2hbch

advd
0∧v0

c ,

dv0
a5v0

0∧v0
a1v0

b∧vb
a , ~2.11!

dva
05va

0∧v0
01va

b∧vb
0, dv0

05v0
a∧va

0.

Since no finite translation can reach the point at infinity and no inverse translation can rea
origin, the spaceC /C 0 gives a copy of~noncompact! Minkowski space for each of the two sets
translations. The generalization to a curved base space is immediate. We have

dvb
a5vb

c∧vc
a1vb

0∧v0
a2hbch

advd
0∧v0

c1Vb
a , ~2.12a!

dv0
a5v0

0∧v0
a1v0

b∧vb
a1V0

a , ~2.12b!

dva
05va

0∧v0
01va

b∧vb
01Va

0, ~2.12c!

dv0
05v0

a∧va
01V0

0. ~2.12d!
J. Math. Phys., Vol. 39, No. 1, January 1998
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We will call the four types of curvatureVb
a , V0

a , Va
0, andV0

0 the Riemann curvature, torsion
co-torsion, and dilational curvature, respectively. Notice that if we setva

0, v0
0, and the correspond

ing curvatures to zero, we recover Eqs.~2.2! for a four-dimensional space–time with Riemanni
curvatureVb

a and torsionV0
a . If we set onlyva

05Va
050, the structure equations are those

four-dimensional Weyl geometry.
We are now in a position to define a biconformal space. We state the definition for an arb

number of dimensions, 2d, although our results in all subsequent sections are given usingd54
for concreteness.

Definition: A biconformal spaceis a principal fiber bundle (P,M ,G) with conformal connec-
tion form v5$vb

a ,v0
a ,va

0,v0
0% (a,b51,...,d), whereM is the 2d-dimensional base manifold,G is

the Weyl group ofd-dimensional Minkowski space, andp:v→(v0
a ,va

0), wherep is the canoni-
cal projection induced byP /G .

Thus, just as we can think of a space–time as a manifold and metric pair (M,g), we can
think of a biconformal space as a manifold and connection pair~M,v!. Note that in general
relativity, the implicit demand for metric compatibility allows us to generate a unique connec
while at present there is no such theorem for biconformal spaces. We can go the othe
however, since the existence of a biconformal metric follows by combining the horizontal
nection forms, (v0

a ,va
0), with the Killing metric of the conformal group.

For many purposes, the starting point of computation in a biconformal space is given b
structure equations, Eqs.~2.12!. Once we specify the connection, these structure equations a
us to compute the curvatures. Conversely, given horizontal curvatures satisfying the B
identities@which follow from Eqs.~2.12! by differentiation#, we can integrate to find the conne
tion. Certain combinations are also possible. For example, it is easy to see from Eqs.~2.12! that in
torsion-free biconformal spaces, the entire connection and the remaining curvatures are
mined byv0

a , va
0, andv0

0 alone.
Horizontality requires each of the curvatures to take the form

VB
A5 1

2VBcd
A v0

c∧v0
d1VBd

Acv0
d∧vc

01 1
2VB

Acdvc
0∧vd

0. ~2.13!

Based on the interpretation of biconformal space as a generalization of phase space~Secs. IV and
V below, see also Ref. 41! we will call VBcd

A the space–time term,VBd
Ac the cross term, andVB

Acd

the momentum term of each type of curvature. In sharp contrast to the four-dimensional ga
in which the fiber symmetry mixes the curvaturesVb

a , V0
a , Va

0, andV0
0 ~see Ref. 42!, our choice

of the homogeneous Weyl group as the structure group not only leaves these independent,
does not mix the space–time, cross, or momentum terms. The usefulness of this type of is
of curvature parts is evident in general relativity, where it is consistent with the bundle stru
to set the torsion to zero.

Since the base spaceM is a manifold, we can always introduce coordinates (xm,yn) so that the
connection forms may be written as

vB
A5vBm

A ~x,y!dxm1vB
Am~x,y!dym .

Here the capital Latin indices range over (0,...,4)5(0,a) while both Greek and lower case Lati
indices range from~1,...,4!. The Greek indices apply to general coordinates, while the lower
Latin indices are used for the Weyl invariant parts of the orthonormal O~4,2! frame introduced
above. Index positions indicate conformal weight, so all metrics are written explicitly. An ex
tion to these conventions is made in Secs. III and VI where, for the flat solution, the compo
of the vierbein aredm

a . In these sections we simply write, for example, (xa,yb) in place of
(dm

a xm,db
nyn).
J. Math. Phys., Vol. 39, No. 1, January 1998
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III. FLAT BICONFORMAL SPACE

Before deriving the form of the connection of a flat biconformal space, we discuss a few
properties.

Definition: The connection of a flat biconformal space is said to be in thestandard flat form
when it is written in the following way:

v0
05aa~x!dxa2yadxa[Wadxa, ~3.1a!

v0
a5dxa, ~3.1b!

va
05dya2~aa,b1WaWb2 1

2W
2hab!dxb, ~3.1c!

vb
a5~hachbd2dd

adb
c!Wcdxd. ~3.1d!

Notice that the Weyl vector,Wa5aa(x)2ya , depends on an arbitrary four-vectoraa and
also on the additional four coordinatesya . The presence ofaa gives the generality required fo
the electromagnetic vector potential, while theya keeps the dilational curvature zero. As a resu
unlike Weyl’s theory, the flat biconformal model predicts no size change. Also notice tha
standard flat form is preserved byfour-dimensionalgauge transformations,f(x), and that the
gauge transformation must be associated with the undetermined vector field,aa(x). Thus, the
desirable properties of Weyl’s original theory survive in this more general gauge theory.

The prediction of the exact form of the Weyl vector necessary for consistently mod
electromagnetism is nontrivial. In general, the dilational gauge vector of biconformal space
the form

v0
05v0m

0 ~x,y!dxm1v0
0m~x,y!dym ,

i.e., an eight-dimensional vector field depending on eight independent variables. Constrain
biconformal geometry to have vanishing curvatures forcesv0

05(am(x)2ym)dxm. This is pre-
cisely the form required to give the Lorentz force law using the independently established f
lation of Hamiltonian dynamics in biconformal space. Different field strengthsa@m,n# are in 1–1
correspondence with the possible flat biconformal spaces, so that with the interpretation ofam as
the vector potential, electromagnetic phenomena never lead to dilations.

We now turn to our first result.
Theorem: When the curvature of biconformal space vanishes,VB

A50, there exist coordinate
(xa,ya) such that the connection takes the standard flat form. When the topology is that ofR8 the
coordinates are global.

Proof: Imposing vanishing curvature,VB
A50, the equations to be solved take the form

dvb
a5vb

c∧vc
a1vb

0∧v0
a2hbch

advd
0∧v0

c , ~3.2a!

dv0
a5v0

0∧v0
a1v0

b∧vb
a , ~3.2b!

dva
05va

0∧v0
01va

b∧vb
0, ~3.2c!

dv0
05v0

a∧va
0. ~3.2d!

The system may be solved by making use of the involution of Eq.~3.2b!.38 This allows us to
consistently setv0

a50 and first solve on the subspace spanned by the remaining 11 one-f
The initial conditions for these integral submanifolds provide a coordinatexa such thatva5dxa

with xa5const on each leaf. Each leaf is then a fiber bundle described by the simpler
structure equations
J. Math. Phys., Vol. 39, No. 1, January 1998
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dvb
a5vb

c∧vc
a , ~3.3a!

dva
05va

0∧v0
01va

b∧vb
0, ~3.3b!

dv0
050, ~3.3c!

which may be recognized as those of a flat Weyl geometry. Equation~3.3c! implies a pure-gauge
form for the Weyl vector. Choosing the gauge so that the Weyl vector vanishes~on thev0

a50
subspace!, we are left with the structure equations for a flat Riemannian geometry. Clearly
have the solution

vb
a50, va

05dya , v0
050. ~3.4!

Next, we reintroduce the remaining four independent one-forms,

v0
a5dxa, ~3.5!

so that (xa,ya) provide a set of eight independent coordinates. From the linearity of the conne
one-forms in the coordinate differentials,vb

a , va
0, andv0

0 will change only by terms proportiona
to dxa. We therefore may write

vb
a5Ca

bcdxc, ~3.6a!

v0
a5dxa, ~3.6b!

va
05dya1Babdxb, ~3.6c!

v0
05Wadxa, ~3.6d!

where the coefficientsWa , Bab , andCa
bc are functions ofxa andya to be found by substitution

into the full structure equations, Eqs.~3.2!. First we determine the form of the Weyl vector,Wa ,
from Eq. ~3.2d!. Substitution of Eqs.~3.6b!–~3.6d! yields

dv0
05Wd

,bdyb∧dxa1Wa,bdxb∧dxa5dxa∧~dya1Babdxb!. ~3.7!

Here a lowered comma denotes a partial derivative with respect toxb while a raised comma
denotes a partial with respect toyb . Equating like components gives

Wa
,b52da

b , ~3.8a!

B@ab#5W@b,a# . ~3.8b!

The first of these is immediately integrated to give

Wa52ya1aa~x!. ~3.9!

Next we substitute Eqs.~3.6a! ~3.6b!, and~3.6d! into Eq. ~3.2b! to find Ca
bc in terms ofWa :

dv0
a505Wbdxb∧dxa1dxb∧Ca

bcdxc ~3.10!

or

Ca
@bc#1W[bdc]

a 50. ~3.11!
J. Math. Phys., Vol. 39, No. 1, January 1998
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Lowering the upper index in Eq.~3.11! and noting thatCabc[hadC
d

bc52Cbac , we add two
even permutations and subtract the third to find

Ca
bc52~dc

adb
d2hadhbc!Wd . ~3.12!

Finally, Bab is found from Eq.~3.2a!. The substitution leads to two independent equations,
from dxa∧dyb cross-terms and the other from terms quadratic indxa. The first is

~dc
adb

d2hadhbc!Wd
,e5~haehbc2dc

adb
e!,

which is identically satisfied by the form of Eq.~3.9! for Wa . Writing Wa[habWb and W2

[WaWa , the second equation becomes

dd
aBbc2dc

aBbd2Bd
ahbc1Bc

ahbd5~Wa
,c1WaWc!hbd2~Wa

,d1WaWd!hbc2~Wb,c1WbWc!dd
a

1~Wb,d1WbWd!dc
a2W2~dc

ahbd2dd
ahbc!. ~3.13!

Contraction on thea and c indices gives an expression containingBab and its traceB
5habBab . A second trace yieldsB5W22W,a

a . Bab is then found to be

Bab52~Wa,b1WaWb2 1
2W

2hab!.

The antisymmetric part of this expression agrees with Eq.~3.8b!. The form forBab above is now
found to solve both Eq.~3.13! and the remaining structure equation, Eq.~3.2c!, identically.

We conclude that in flat biconformal space there locally exist coordinatesxa andya such that

v0
05aa~x!dxa2yadxa, ~3.1a!

v0
a5dxa, ~3.1b!

va
05dya2~aa,b1WaWb2 1

2W
2hab!dxb, ~3.1c!

vb
a52~dd

adb
c2hachbd!Wcdxd. ~3.1d!

That the coordinates (xa,ya) are global follows immediately from theR8 topology of the base
manifold, completing the proof.

We are now in a position to see in more detail how the biconformal structure corrects W
theory. If we hold they-coordinate constant in Eqs.~3.1!, we find that Eqs.~3.1a!, ~3.1b!, and
~3.1d! are the connection forms for a four-dimensional Weyl space–time with conformally
metrichab . The remaining expression, Eq.~3.1c!, is then simply a one-form constructed from th
Weyl–Ricci tensor. However, the dilational curvature of a four-dimensional Weyl geomet
given by the curl of the Weyl vector, equivalent here to the arbitrary curl ofaa . Thus, when
viewed from Weyl’s four-dimensional perspective the solution gives unphysical size change
only with the inclusion of the additional momentum variables proportional toya that the dilational
curvature can be seen to vanish.

With the interpretation of the additional four dimensions of biconformal space as mome
variables it is clear that the actual motion of a particle is eight-dimensional. Now consid
experiment designed to detect a change in the relative size of two physical objects, for exam
pair of identical atoms. In order to see a change, a comparison must be made before an
moving the two atoms around some closed space–time loop. However, such motion nece
involves changes in momentum as well so there is necessarily a change inya as well asxa,
inducing a corresponding loop in flat biconformal space. However, no loop in flat biconfo
space ever encloses nonzero dilational flux, or ever results in a measurable size change. T
J. Math. Phys., Vol. 39, No. 1, January 1998
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change computed in the four-dimensional Weyl geometry is seen to be in error because it in
forcing a closed path while holding the momentum variables constant. Equivalently, the
occurs because the expression for the dilational curvature is incomplete.

We show in the next two sections that there is a direct correspondence between the ge
variables of biconformal geometry and the physical phase space variables of Hamiltonian d
ics. Then, in Sec. VI we apply the Hamiltonian correspondence to the general flat biconf
solution. This leads without further assumption to the Lorentz law of force and the identific
of aa with the electromagnetic vector potential.

IV. HAMILTONIAN DYNAMICS IN FLAT BICONFORMAL SPACE

Leaving biconformal geometry for the moment, we turn to a geometric approach to cla
Hamiltonian dynamics. We first show that the action of a classical one-particle system m
used to generate biconformal spaces. Then, in Sec. V, we give a unique prescription for gen
a flat biconformal space. Begin with eight-dimensional extended phase space with can
coordinates (xi ,t;pi ,p4) where (i , j 51,2,3). We assume we are given a super-Hamilton
H5H(xa,pa).43 Imposing the constraintH50 then givesp4 as a function of the remaining
seven variables,p452H(pi ,xi ,t), with H the usual Hamiltonian. This constraint insures th
time appears as a parameter rather than an independent dynamical variable. Now cons
Hilbert form

v5Hdt2pidxi . ~4.1!

The integral ofv is the action functional. The exterior derivative ofv may always be factored:

dv5
]H

]xi dxi∧dt1
]H

]pi
dpi∧dt1dxi∧dpi5S dxi2

]H

]pi
dt D∧S dpi1

]H

]xi dt D . ~4.2!

Therefore, if we define

v i[S dxi2
]H

]pi
dt D , v i[S dpi1

]H

]xi dt D ,
~4.3!

v4[dt, v4[dH50,

then we can write

dv5va∧va5v i∧v i . ~4.4!

This factoring is clearly preserved by local symplectic transformations of the six-basis (v i ,v i), as
well as reparametrizations of the time. Obviously these transformations include the usual c
cal transformations of coordinates as a special case. One class of such allowed transforma
basis is achieved by the addition ofcabv

b to va , wherecab5cba . For the moment we take
cab50, but below we show the existence of a unique choice ofcab that leads to a flat biconforma
space.

We may also define a connection one-form,vb
a . This choice is uniquely determined b

requiring the resulting biconformal space to be flat, but first we show that every possible c
leads to some biconformal space. Without imposing flatness any choice is possible. For thi
general case, letvb

a be any linear combination ofv0
a andva

0, and define the~necessarily horizon-
tal! curvatures to be

Vb
a[dvb

a2vb
c∧vc

a2vb
0∧v0

a2hbch
adv0

c∧vd
0, ~4.5a!
J. Math. Phys., Vol. 39, No. 1, January 1998
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V0
a[dv0

a2v∧v0
a2v0

b∧vb
a , ~4.5b!

Va
0[dva

02va
0∧v2va

b∧vb
0, ~4.5c!

V0
0[dv2v0

a∧va
0[0. ~4.5d!

The necessary presence and form of Eq.~4.4! for dv, and the dependence of the curvatures
bothva andva clearly show this to be a dilationally flat~i.e., V0

050! biconformal space. There
fore, extended phase space together with a Hamiltonian symplectic structure may be view
certain kind of biconformal space. Turning this around,we can interpret biconformal space, an
therefore conformal gauge theory, as a generalization of one-particle phase space.

It is worth pointing out that biconformal spaces, while including Hamiltonian extended p
spaces as special cases, also contain all four-dimensional pseudo-Riemannian geometries
special cases. We therefore have a differential geometry rich enough to describe both g
relativity and Hamiltonian particle dynamics. Furthermore, as we show in Sec. VII, biconfo
spaces include the even larger class of all four-dimensional Weyl geometries, and this class
the consistent geometric unification of gravity and electromagnetism.

The presence of both Hamiltonian and Riemannian structures is reassuring, since it is o
of the study of biconformal spaces to place relativity theory and quantum theory in a com
mathematical framework. While the developments here suggest only the possibility of desc
perhaps, a quantum particle in a curved background, the full picture is actually somewhat
because the symplectic two-form of the Hamiltonian structure gives a complex structure
tangent/cotangent space and an almost complex structure to the biconformal space itse
biconformal structure therefore gives a natural complexification of space–time in such a wa
the usual real structure is immediately evident. One might hope, for example, to see some
significance for the Ashtekar connection when biconformal space is expressed in terms
SU~2,2! conformal covering group instead of O~4,2!. Whether these hopes are realized or no
the subject of current study.

We also note here that the idea of a quantum interpretation of conformal geometry agr
some ways with earlier proposals44–47relating phase space, Weyl geometry, and quantum phy
These proposals, however, lack the full geometric structure of conformal gauge theory, d
demonstrate the intrinsically biconformal structure of Hamiltonian systems, and use a dif
inner product than that proposed in Sec. VI~see also Ref. 41!.

We next show the relationship of the geometry described by Eqs.~4.5! to classical mechanics
Since the curvatures are two-forms and becausedH50, each of the curvatures,Va andVa ,

is necessarily at least linear in one of the six basis forms (v i ,v i). Thus, six of the structure
equations, Eqs.~4.5b! and ~4.5c!, are in involution. This involution allows us to setv i5v i50,
thereby singling out a fibration of the bundle by one-dimensional submanifolds, i.e., the cla
paths of motion. Examination of Eq.~4.3! shows that these conditions simply give Hamilton
equations of motion:

dxi5
]H

]pi
dt, dpi52

]H

]xi dt. ~4.6!

The Fröbenius theorem guarantees the existence of solutions to these equations for the pat
remaining two structure equations then reduce to

dv j
i 5dv50, ~4.7!

which are identically satisfied on curves.
J. Math. Phys., Vol. 39, No. 1, January 1998
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It is of interest to further note that on the full bundle the condition thatv be exact is the
Hamiltonian–Jacobi equation, since we may then writev5dS. Substituting forv and expanding
dS gives

2Hdt1pidxi5
]S

]xi dxi1
]S

]pa
dpa1

]S

]t
dt, ~4.8!

so that

]S

]pi
50,

]S

]p4
50 ~4.9!

]S

]xi 5pi , ~4.10!

and

HS ]S

]xi ,xi ,t D52
]S

]t
. ~4.11!

Therefore, sincev is the Weyl vector of the generated biconformal space, the Hamilton–Ja
equation holds if and only if the Weyl vector is pure gauge,v5dS. A gauge transformation
reduces the Weyl vector to zero. Since the dilational curvature is always zero for the geo
built from a Hamiltonian system, whendv50 we also have

v i∧v i50, ~4.12!

implying three linear dependences between these six solder forms. Together with the vanis
dH, the Hamilton–Jacobi equation therefore specifies a four-dimensional subspace of th
biconformal space.

V. FLAT BICONFORMAL SPACE AND THE HAMILTONIAN GEOMETRY

In this section, we show how to specify a uniqueflat biconformal space for a given Hamil
tonian system. This is achieved by making a judicious choice of the solder and co-solder f

This time we initially regard the super-Hamiltonian as an unconstrained function of all
coordinates. The Hamiltonian,H, is again defined as the solution for2p4 whenH is zero. Thus,
whenH is unconstrained,p4 is also variable and the Hilbert form generalizes to

v0
052padxa52p4~H,H !dt2pidxi . ~5.1!

Then

dv0
05dxa∧dpa , ~5.2!

where we reserve the symbolsv, v i , and v i for the special case whenH50 and p4

52H(xi ,t,pi).
The solder and co-solder formsv0

a andva
0 are now identified by comparing the expression

dv0
0 to the flat biconformal solution, Eqs.~3.1!. To make Eq.~3.1a! agree with Eq.~5.1! we must

haveaa(x)50 andya5pa . We can setaa50 with a gauge change as long asa@a,b#50. Then,
with ya5pa , the remainder of the connection is fully determined to be

v0
052padxa, v0

a5dxa,
J. Math. Phys., Vol. 39, No. 1, January 1998
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va
05dpa2~papb2 1

2p
2hab!dxb, ~5.3!

vb
a52~dd

adb
c2hachbd!pcdxd.

Note that canonical changes of variables do not changev0
0 by more than a scale change,df, so

this form of the connection is correct for any canonical variables (xi ,pi)→(qi ,p i).
We now restrict to the hypersurfaceH50 so thatp452H(pi ,xi ,t). The symmetric coeffi-

cient

cab5papb2 1
2p

2hab ~5.4!

provides a symplectic change of basis with respect to the manifestly closed and nondeg
two-form, dv0

05v0
a∧va

05dxa∧dpa . The differential ofv0
0 is still seen to factor as in Eq.~4.2!

either directly by differentiation or by substitution ofp452H(pi ,xi ,t) into v0
a∧va

0, with v0
a and

va
0 given by Eqs.~5.3!. The involution of Eqs.~4.5b! and~4.5c! for v i andv i still holds, with the

classical curves given byv i5v i50. We therefore recover the Hamiltonian system, and h
shown it to lie in a unique flat biconformal space.

The resulting curves in the biconformal space are easily found by first writing the frame
in terms ofv i andv i :

v0
05S H2pi

]H

]pi
Ddt2piv

i5L~ ẋi ,xi ,t !dt2piv
i ,

v0
i 5v i1

]H

]pi
dt,

v0
45dt,

v i
05v i2„pipj1

1
2~H22p2!d i j …v

j1S piH2
]H

]xi 2
1

2
~H22p2!d i j

]H

]pj
Ddt,

~5.5!

v4
05S Hpi2

]H

]xi Dv i1S H
]H

]pi
pi2

1

2
~H22p2!2

]H

]xi

]H

]pi
Ddt,

v j
i 52~d l

id j
k2d ikh j l !pkS v l1

]H

]pl
dt D ,

v4
i 5Hv i2S d i j pj2H

]H

]pi
Ddt,

v i
452d i j v4

j .

The simple example of a free particle is instructive. Settingv i5v i50 andH25p21m2Þ0, Eqs.
~5.5! reduce to

v0
05

m2

H
dt5mdt, v0

a5
habpb

m2
v0

05uadt5dxa,

va
05 1

2pav0
05 1

2mpadt, vb
a50,
J. Math. Phys., Vol. 39, No. 1, January 1998
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where use ofv0
0 or proper timedt in place of dt simplifies the expressions. The solder a

co-solder forms are proportional to the displacement and momentum, respectively.
Also, we see again that the involution required to specify the classical paths necessarily

Since the biconformal base space is spanned by the eight formsdxa anddpa , the only way the
involution could fail is if there was an independentdt∧dp4 term in the torsion or co-torsion of th
p452H hypersurface. However, sincedH is givena priori in terms of the other seven forms, th
cannot happen. We conclude that the Hamiltonian dynamics of a point particle is equivalent
specification of a hypersurface,y45y4(yi ,xa), in a flat biconformal space, and the consequ
necessary existence of a preferred congruence of curves in the hypersurface.

The principal significance of this result isthe unambiguous identification of the geomet
quantities which arise in the gauging of the 15-dimensional conformal group with correspon
physical quantities in phase space. In particular, the extra four coordinates are identified
momenta and the integral of the Weyl vector is identified with the action. This insight should not
be construed as a replacement for the phase space description of particle mechanics. Ra
interpretation presented here is to be regarded as the one-particle limit of a full biconforma
theory, and is intended to provide guidance for and a check on that field theory. We shall
Sec. VII that for curved biconformal spaces, the ‘‘momentumlike’’ basis formsva

0 contain the
stress-energy source for the Einstein equation, further strengthening the present interpreta

Notice that for multiparticle systems this interpretation of the variables of flat biconfo
space in terms of phase space variables differs from the usualn-particle phase space of mor
complicated systems. In the case of multiple particles in a small region of~nearly! flat biconformal
space, the particles shareboth the momentum and configuration space. Thus, while a single p
of a multiparticle phase space characterizes the entire multiparticle system, the many p
biconformal model will be described by many points in the same eight-dimensional space.
theless, the physical interpretation of the extra four coordinates as momenta remains val
each particle treated separately will~locally! obey its own set of Hamilton’s equations.

The same conclusion holds for the fields in biconformal spaces—the extra dimension
give the local field momentum. This may be seen in either of two ways. First, fields ar
continuum limits of multiparticle systems and their local momentum will therefore be the lim
the particle momenta. Second, whenever a single field quantum is confined to an isolated
which is small relative to the curvature, it will have an interpretation as a single particle.
biconformal co-space must then give the momentum of that particle.

While accomplishing an interpretation of the biconformal variables, we have also cir
vented problems with previous treatments of conformal gauge theory. Unlike four-dimens
conformal gaugings which always reduce to a four-dimensional Weyl geometry in which
inverse translations are auxiliary, the current approach retains the full conformal degrees o
dom. The extra four degrees of freedom are now seen to correspond to the inclusion of mom
variables in the physical description.

VI. WEYL’S THEORY IN BICONFORMAL SPACE

Now consider how the dynamics of the Hamiltonian correspondence of Secs. IV and
modified by the presence of the vector field,a. The Weyl vector is now given by

v0
052padxa1aadxa[2padxa ~6.1!

so that

dv0
05dxa∧dpa . ~6.2!

Specifying p45p4(p i ,xa) and settingv i5v i50 again leads to Hamilton’s equations, in th
form
J. Math. Phys., Vol. 39, No. 1, January 1998
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dxi52
]p4

]p i
dt, ~6.3a!

dpi5
]p4

]xi dt. ~6.3b!

Maintaining our previous identificationp452H52(m21p2)1/2 we find

p452~m21p2!1/22a452„m21~p i1a i !~p i1a i !…
1/22a4 . ~6.4!

Hamilton’s equations become

dxi5
p i1a i

„m21~p1a!2
…

1/2 dt5
pi

~m21p2!1/2 dt

or

ẋi5
pi

~m21p2!1/2 ~6.5!

for the position variables and

dp i52
]a4

]xi dt2
p j1a j

„m21~p1a!2
…

1/2 a j ,idt52
]a4

]xi dt2 ẋ ja j ,idt ~6.6!

for the momentum. The left-hand side of Eq.~6.6! expands to

dp i5dpi2
]a i

]t
dt2a i , jdxj ,

which finally leads to

dpi

dt
5S 2

]a4

]xi 1
]a i

]t D1 ẋ j~a i , j2a j ,t!. ~6.7a!

For the time component we have

dp4

dt
5

d

dt
~p41a4!5

d

dt
„2~m21p2!1/2

…

52
1

~m21p2!1/2 pi
dpi

dt
52 ẋi

dpi

dt
5 ẋi S ]a4

]xi 2
]a i

]t D . ~6.7b!

Equations~6.7! give the Lorentz force law if we identify

aa5q~f,2Ai !52qAa .

Thus, the existence and form of the electromagnetic force on a charged particle is co
predicted by the general solution for flat biconformal space. The presence of the vector fieaa ,
its gauge dependence, and its proper coupling to matter are direct consequences of the loc
theory of scalings and of our identification of Hamiltonian dynamics as the specification
J. Math. Phys., Vol. 39, No. 1, January 1998
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hypersurface in flat biconformal space. Nor does this formulation suffer the objection made
original Weyl theory. Since we are studying precisely the flat biconformal spaces, there
dilational curvature and no measurable size change.

In concluding this section, we comment briefly on the relationship of these consideratio
the standard U~1! model of electromagnetic field theory. Biconformal space has a natural m
structure based on the Killing metric of the underlying conformal group. The Killing metric
eigenvalues61 and zero signature, hence the local form

KAB5diag~hab ,2hab!, ~6.8!

where (A,B)5(1,...,8). Consequently, the proportionality constant in the identification betw
ya andpa is purely imaginary.48 Since the vector fieldaa(x) is real, we have

ya5l~ ipa1aa! ~6.9a!

5 il~pa2 iaa! ~6.9b!

as the relationship between geometric and physical variables. Since the proportionality co
drops out of Hamilton’s equations it is not measurable classically, but it must be included w
ever particle paths are allowed to deviate from the classical trajectories. Thus, the real-
four-dimensional scale invariance that preserves the form of the standard flat biconformal c
tion becomes a U~1! invariance when applied to the physical variables of Eq.~6.9b!.

VII. COUPLING TO GRAVITY AND OTHER FIELDS

So far, we have motivated a new eight-dimensional gauging of the conformal group, foun
class of flat solutions of the resulting biconformal spaces, and shown how to interpret th
solutions as a phase space for a single particle coupled to a background electromagnetic
this section, we generalize these results to gravitating biconformal spaces in which the solde
satisfies the Einstein equation with arbitrary matter as source, and the vector potential ident
the previous sections satisfies the Maxwell field equations with arbitrary electromagnetic cu
The results of this section therefore comprise a unified geometric theory of gravitation and
tromagnetism.

Our starting point is the full set of structure equations, Eqs.~2.12!, which define the 15
curvature two-formsVB

A . Each of these curvatures has the three biconformally invariant te
displayed in Eq.~2.13!. In addition, we note that the two-formdv0

0 is separately biconformally
invariant, and the solder and co-solder formsv0

a and va
0 transform tensorially. As long as th

corresponding Bianchi identities are satisfied, a specification of any combination of these
may be used to invariantly determine subclasses of biconformal geometries.

To begin, we seek some general constraints to limit the number of independent field
classical geometries it is reasonable to assume that no classical path in phase space en
plaquette on which the dilation,V0

0, is nonvanishing. The simplest~but by no means the only! way
to guarantee this is to just setV0

050. We also expect that the space–time torsion will vanish
typical classical models, and again make the simplest hypothesis, that the full torsion~but not the
co-torsion! is zero. Thus we have the general constraints

V0
050, ~7.1!

V0
a50. ~7.2!
J. Math. Phys., Vol. 39, No. 1, January 1998
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Next, we note that the vanishing of the torsion puts the solder form in involution. Assumin
resulting foliation to be regular, there exists a four-dimensional submanifold of the base
spanned byv0

a5ea. As a final general constraint, we require the existence of a completionfa to
the ea basis in which the space–time curvature is traceless:

Vbac
a 50 @ in the ~ea,fa! basis#. ~7.3!

We shall show that these three constraints are sufficient for the resulting class of geome
take a recognizable form. There isno restriction of the dependence of any of the fields on the e
coordinates, (xm,yn). Notice that we now return to the use of Greek indices for general coo
nates.

In addition to the general constraints above, we posit two field equations. The first prov
source for the Weyl vector, which we take here to be in the typical form for an electromag
current

* d* dv0
05J5Ja~x!ea. ~7.4a!

Finally, part of the co-solder form is determined by an arbitrary stress-energy tensorTab via

va
05T a1••• , ~7.4b!

whereT a[2 1
2(Tab2 1

3habT)eb. The consistency of these expressions and the form of the rem
ing part of the co-solder form are established using the general equations, Eqs.~7.1!–~7.3!, to-
gether with the structure equations, Eqs.~2.12!.

The central result of this section is that a biconformal space is in 1–1 correspondence
four-dimensional Einstein–Maxwell space–time if and only if Eqs.~7.1!–~7.4! hold. The 1–1
correspondence is based on an isomorphism between the biconformal co-space atx0

m and the
tangent space to a four-dimensional space–time at a corresponding pointx0

m . To see roughly how
this isomorphism occurs, note that the biconformal base space is spanned by the differ
(dxm,dyn). Settingxm5x0

m givesdx0
m50, thereby restricting to the subspace spanned bydyn . We

will show that the conditions above make the biconformal space flat in they variables, giving a
four-dimensional Minkowski space with basisdyn . Then, because the basisdyn transforms op-
positely under Lorentz transformations fromdxm, and because thedxm spans the cotangent spac
of an orthogonal four-dimensional submanifold, there exists an isomorphism between thdyn

space and thetangentspace of the submanifold. A more complete presentation of the techn
used and some related results are given in Ref. 49.

The equations to be solved are

dvb
a5vb

c∧vc
a1vb

a∧v0
a2hbch

advd
0∧v0

c1Vb
a , ~2.12a8!

dv0
a5v0

0∧v0
a1v0

b∧vb
a , ~2.12b8!

dva
05va

0∧v0
01va

b∧vb
01Va

0, ~2.12c8!

dv0
05v0

a∧va
0. ~2.12d8!

The first part of our proof follows Theorem I of Ref. 49. We begin with the Bianchi identity
Eq. ~2.12b8!, which follows by taking the exterior derivative and usingd250. The result is

v0
b∧Vb

a50, ~7.5!

which in particular shows that the momentum term of the curvature vanishes
J. Math. Phys., Vol. 39, No. 1, January 1998
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Vb
acd50. ~7.6!

Similarly, the Bianchi identity for Eq.~2.12d8! requires

Vb
0cd50 ~7.7!

for the co-torsion. Together with the vanishing of the dilation and the torsion, Eqs.~7.6! and~7.7!
imply that the bundle is momentum flat, i.e., the momentum term of each curvature vanish

Next, we use the involution of the solder form, as noted above. The involution means th
biconformal bundle is foliated by 11-dimensional subbundles on whichv0

a50. On this subbundle
using the momentum-flatness, the structure equations reduce to

dvb
a5vb

c∧vc
a , ~7.8a!

dva
05va

0∧v0
01va

b∧vb
0, ~7.8b!

dv0
050. ~7.8c!

Equations~7.8! are just the structure equations for a flat four-dimensional Weyl geometry. E
tion ~7.8a! shows that we can perform a Lorentz gauge transformation on the entire bundle
thatvb

auv
0
a5050, while Eq.~7.8c! shows the existence of a scaling such thatv0

0uv
0
a5050. Follow-

ing these gauge changes Eq.~7.8b! takes the simple form

dva
050

with the immediate solution

va
0uv

0
a505 f a

m~x!dym ~7.9!

where we have introduced four coordinatesym to span the four-dimensional base space of
submanifold. Notice that the coefficient matrixf a

m(x) must be nondegenerate.
Now, assuming the foliation to be regular, the space of leaves of the foliation is a

four-dimensional manifold spanned byv0
a . There exist coordinatesxm such that

v0
a5em

a~x,y!dxm5ea ~7.10!

so that each leaf of the foliation is given by some constant valuexm5x0
m .

From the subbundle, with connectionvb
aux0

50, v0
0ux0

50, andva
0ux0

5fa , we extend back to
the full bundle by allowingx to vary. This can change each connection form at most by a t
proportional todxm or equivalentlyea, so the full connection may always be given the local fo

vb
a5Cbc

a ec, ~7.11a!

v0
a5ea~x,y!, ~7.11b!

va
05 f a

m~x!dym1Babe
b[fa1Ba , ~7.11c!

v0
05Waea, ~7.11d!

whereWa , Bab , andCbc
a are functions of all eight coordinates (xm,yn). The functional depen-

dence ofem
a, while a priori unspecified, is actually restricted by Eq.~2.12b8!. Sincevb

a andv0
0

J. Math. Phys., Vol. 39, No. 1, January 1998
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depend only onea and notfa , writing out dea in coordinates immediately shows that]nem
a50,

where we write]n[]/]yn and ]n[]/]xn. Therefore, we may drop they dependence in Eq
~7.11b!.

If we had made a different initial choice of the coordinatesym , the connection would still be
of the form given by Eqs.~7.11!, althoughWa , Bab , andCbc

a would be different functions. We
can therefore assume without loss of generality that the basis (ea,fb) has been chosen as the o
in which the space–time curvature is tracefree.

Next, after dividingBab into symmetric and antisymmetric parts,

Bab[Sab~x!1Fab~x! ~7.12!

with Sab5S(ab) andFab5F @ab# , we substitute Eq.~7.11c! into the dilation equation, Eq.~2.12d8!,
to find

dv0
05ea`fa1F5dxm` f m

n~x!dyn1F, ~7.13!

whereF[Fabe
a`eb5Fmndxm`dxn and f m

n[em
af a

n. The mixed terms of Eq.~7.13! yield

Wm
,n52 f m

n~x!, ~7.14!

which is immediately integrated to give

v0
0[Wmdxm5„2 f m

n~x!yn1Am~x!…dxm ~7.15!

up to a gauge transformation. HereAm(x) is an arbitrary integration constant for they integration.
We could continue to carry the fieldf m

n(x) through the remainder of the general constrain
but it is simpler to employ the field equation to remove it now. In a more general class of mo
f m

n(x) provides an additional unspecified set of fields. While it is easy to conjecture that
extra fields may lead to a geometric electroweak theory,f m

n(x) appears on the surface to be
translational rather than a rotational Yang–Mills field, so that the required quadratic term
missing from the field strength. The proper role of these fields is under study. For our p
purpose, we simply note that the field equation

* d* dv0
05J5Ja~x!ea ~7.3!

has no source for the part ofv0
0 linear in y, and therefore gives

@* d* df m
n~x!#yn50 ~7.16!

for the y-dependent part of the space–time term. This is a four-dimensional electromagneti
equation for the ‘‘potential’’f m[ f m

n(x)yn , which has the unique solutionf m
n(x)50 for vanish-

ing boundary conditions at infinity. To this solution we add the particular solutionf n
n5const,

since f m
n(x) must be invertible as noted above. Finally, a constant change of they coordinates

gives f m
n5dm

n , simplifying the co-solder form to

va
05ea

m~x!dym1Bam~x,y!dxm, ~7.17!

whereea
m is the inverse toem

a.
With the solder form given by Eq.~7.17!, Eq. ~7.15! becomes

v0
0[Wmdxm5„2ym1Am~x!…dxm. ~7.18!
J. Math. Phys., Vol. 39, No. 1, January 1998
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Thus, this entire class of geometries has the same ‘‘minimal coupling’’ form of the Weyl vect
we found for the flat case. Notice also that the form of Eq.~7.18! is not affected by a purely
x-dependent gauge transformation, which is consistent with the interpretation ofA as the electro-
magnetic vector potential.

Next, we move to Eq.~2.12b8!, which becomes

dea5v0
0`ea1eb`vb

a . ~7.19!

This may be uniquely solved for the connectionvb
a . Let

vb
a5ab

a1bb
a , ~7.20!

whereab
a is the usual metric compatible spin connection satisfying

dea5eb∧ab
a ~7.21!

and require

eb∧bb
a1v0

0∧ea50. ~7.22!

Equation~7.22! is solved uniquely by

bb
a52Wbea1hbch

adWdec, ~7.23!

so we have now satisfied two of the four structure equations.
Next, we impose the tracelessness condition for the space–time term of the curvature

(ea,fb) basis:

Va
bac50. ~7.24!

Rearranging Eq.~2.12a! to solve forVb
a we find

Vb
a5dvb

a2vb
c∧vc

a2vb
0∧v0

a1hbch
advd

0∧v0
c ~2.12a!

5~dab
a2ab

c∧ac
a!1~dbb

a2bb
c∧ac

a2ab
c∧bc

a!2bb
c∧bc

a2vb
0∧ea1hbch

advd
0∧ec

[Rb
a~a!1Dbb

a2bb
c∧bc

a2vb
0∧ea1hbch

advd
0∧ec, ~7.25!

where we have writtenD for the covariant exterior derivative using theea-compatible connection
ab

a , andRb
a[dab

a2ab
c∧ac

a is the usual Riemann curvature two-form. Substituting Eq.~7.17! for
va

0 and ~7.23! for bb
a , some algebra leads to

Vb
a5Rb

a1hbc@DWcea2DWaec1W2ecea#1fbea2hbch
adfdec1Bbea2hbch

adBdec.
~7.26!

Finally, expand

DWa52habDyb1DAa. ~7.27!

While DAa is independent ofym , we must further expand

Dyb[d~eb
mym!2ab

aea
mym5eb

mdym1~deb
m2ab

aea
m!ym . ~7.28!

The first term in Eq.~7.28! is simply fa . For the final term we use the Christoffel connectionGm
ab

and the covariant constancy ofeb
m,
J. Math. Phys., Vol. 39, No. 1, January 1998
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dxbDbeb
m5deb

m2ab
aea

m1eb
aGm

abdxb50 ~7.29!

to write

Dyb5fb2eb
aGm

abdxbym[fb2Gbce
c[fb2Gb . ~7.30!

Now substitution into Eq.~7.26! shows that the cross and momentum terms of the curva
vanish while the components of the space–time term become

Vbcd
a 5Rbcd

a 2~DcAb1bbc1Bbc!dd
a1~DdAb1Gbd1Bbd!dc

a

1hb fh
ag~DcAg1Ggc1Bgc!dd

f 2hb fh
ag~DdAg1Ggd1Bgd!dc

f

2Wc~Wbdd
a2hb fh

agWgdd
f !1Wd~Wbdc

a2hb fh
agWgdc

f !1W2~hbcdd
a2hbddc

a!.

~7.31!

Next, by setting the trace ofVbcd
a to zero, we can insure that the Einstein equation holds w

arbitrary stress-energy tensor. Contracting, we find that the antisymmetric partVacb
c 2Vbca

c is
identically zero while

Vacb
c 5Rab12~A~a;b!1Gab1Sab1WaWb!1hab~Ac

;c1Gc
c1Sc

c22W2!50 ~7.32!

relatesB(ab)5Sab to the Ricci tensor and the vector potential. If we require

Sab[T ab2~A~a;b!)1Gab1WaWb2 1
2habW

2!, ~7.33!

where T ab[2 1
2(Tab2 1

3habT) and Tab is the electromagnetic stress-energy tensor constru
from Ab plus the stress-energy tensor from whatever other phenomenological fields one wis
add, then Eq.~7.32! reduces to the Einstein equation with sourceTab . We shall see below that th
choice given by Eq.~7.33! for Sab greatly simplifies the expressions for both the curvature and
co-torsion.

Nothing further is required in order to satisfy the final structure equation, Eq.~2.12c!. Instead,
we definethe co-torsion by Eq.~2.12c!, giving

Va
05dva

02va
b∧vb

02va
0∧v0

0. ~2.12c!

This is easiest to evaluate if we writeva
0 in terms ofWa wherever possible, resulting in

va
05T a2DWa2WaW1 1

2W
2habe

b. ~7.34!

Using the tracefree condition~i.e., the Einstein equation! to replace T a by Ra[2 1
2(Rab

2 1
6habR)eb we find that Eq.~2.12c! takes the form

Va
05Dva

02ba
b∧vb

02va
0∧W5Dva

01WadW2Wbhace
cvb

02va
0∧W. ~7.35!

Substituting Eq.~7.34! for va
0 and using the Ricci identityD2va52Ra

bvb ~for an arbitrary
one-formva! gives, after several cancellations, the surprisingly simple result

Va
05DRa1@Ra

b2~da
cdd

b2hbchad!Rce
d#Wb5DRa1Ca

bWb , ~7.36!

whereCa
b is the Weyl curvature two-form. Notice that all derivatives of the Weyl vector h

cancelled, so the resulting co-torsion also has vanishing momentum and cross terms. If we
contracted second Bianchi identity to writeDRa as a divergence of the Weyl curvature, we fi
J. Math. Phys., Vol. 39, No. 1, January 1998
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Va
052DbCa

b1Ca
bWb , ~7.37!

so the co-torsion is simply the Weyl-covariant~not ab
a-covariant! divergence of the Weyl curva

ture tensor, hence a direct measure of the deviation of the underlying space–time from c
mally flat.42

Finally, remarkable cancellations also occur if we use Eq.~7.33! to replaceBa in the full
curvature tensor given by Eq.~7.26!. The result is simply

Vb
a5Ca

b . ~7.38!

The biconformal geometry is now fully specified except for the vector potentialAm . This is
fixed by the field equation

* d* dv0
05* d* dA5J, ~7.4a!

whereJ is the electromagnetic current.
To complete the proof of the sufficiency of Eqs.~7.1!–~7.4! for the biconformal space to

correspond to an Einstein–Maxwell space–time we only need to show that the biconform
ometry is effectively four-dimensional. This happens because the extra dimensions of the
formal base space can be identified with the tangent space of the Riemannian space–time.
identification works for two reasons. First, the co-vector basisdym has the same scale and Loren
transformation properties as the basis vectors]/]xm for the tangent space, so we can identify t
bases. Second, since both the co-space and the tangent space may be taken as Minkows
spaces~i.e., both are flat!, the two complete vector spaces may be identified. Thus, while
coordinatesym act as momentumlike components ofcotangentvectorsymdxm, their differentials
dym from a tangentbasis. As discussed further in the final section, this isomorphism guara
that the extra four dimensions do not lead to undesired new macroscopic effects.

Notice that, while the content of the biconformal space does not exceed that of an Ein
Maxwell space–time, we cannot claim that a biconformal space satisfying Eqs.~7.1!–~7.4! is
homeomophic to a four-dimensional Weyl geometry because the Weyl vector of the biconf
space retains linearym dependence. It is this difference that leads to the vanishing dilation o
biconformal space.

The converse, that a four-dimensional Einstein–Maxwell space–time extends to a u
biconformal space satisfying Eqs.~7.1!–~7.4!, is immediate, since, given the stress-energy ten
and electromagnetic current determining the space–time, we can find the solder form a
electromagnetic vector potential and from these directly write down the connection of the a
ated biconformal space as

v0
05~2ym1Am!dxm, ~7.39a!

v0
a5ea~x!, ~7.39b!

va
05T a2DWa2WaW1 1

2W
2habe

b, ~7.39c!

vb
a5ab

a2Wbea1hbch
adWdec, ~7.39d!

where we invert the vector space isomorphism above to map the tangent space into the ex
dimensions of the biconformal space. The form above for the connection leads directly
biconformal curvatures

V0
050, ~7.40a!
J. Math. Phys., Vol. 39, No. 1, January 1998
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V0
a50, ~7.40b!

Va
052DbCa

b1Ca
bWb , ~7.40c!

Vb
a5Cb

a , ~7.40d!

and the field equations are unchanged. In terms of the natural conformal expressionsRa , T a , and
v0

0, the field equations are

Ra5T a , ~7.41a!

* d* dv0
05J. ~7.41b!

The expressions for the curvature above make use of the tracelessness conditionVbac
a 50 to

write the co-solder form in terms of the Ricci tensor instead of the stress-energy tensor. C
ering the form of the curvature if we do not impose the tracelessness condition, we can in
the Einstein equation as being that condition that reducesVb

a andVa
0 to the Weyl curvature and its

divergence, respectively.
It should be pointed out that Eqs.~7.40! are quite remarkable for biconformal curvatures

that none of the curvatures has a cross term or momentum term. Despite the eight-dime
formulation of the theory, all terms containingdym have dropped out. The space spanned by
y coordinates is therefore flat, and plays no role in the gravitational effects of this class of m

At this point, we can only conjecture whether or not these biconformal spaces satisfy
action principle. There are certainly some action densities which are natural candidates. S
cally the curvature-quadratic eight-formVB

A∧* VB
A is closely related to the action of the fou

dimensional theories discussed in the Introduction, and clearly has the flat biconformal spa
Sec. III as particular solutions. However, even expressing the resulting field equations is c
cated, first because there are 12 Weyl-invariant parts to the curvature and second beca
Bianchi identities used to reduce the field equations are correspondingly lengthy. We the
postpone further investigation of field actions to subsequent research.

In the final section, we discuss the observability of the extra dimensions of biconfo
spaces.

VIII. DISCUSSION

By placing conformal gauging on an eight-dimensional base space instead of the usua
dimensional base space, we have overcome the long-standing problem of size change in p
models based on scale invariance. In this section, we demonstrate that our interpretation of
formal gauge theory is consistent with experience. In particular, we examine the obse
consequences of the added dimensions with regard to structure and function.

Three techniques have been used for adding extra dimensions in fundamental models
world: ~a! topological compactification of the extra dimensions,~b! construction of laws of motion
or field equations that dynamically reduce the extra dimensions to a sufficiently small sca
they play no macroscopic role,50 or ~c! identification of the extra dimensions with everyda
properties already associated with macroscopic matter. Technique~a! is routinely employed in
Kaluza–Klein field theories, while technique~b! has been used recently51,52 in an attempt to
associate a fifth dimension with mass. The third technique,~c!, was used in the development o
special relativity where time came to be seen as a coordinate in a higher-~i.e., four! dimensional
space rather than as a parameter of an intrinsically different type on a three-dimensional
The local interpretation of biconformal space is of type~c!. One should thereforenot think in
terms of compactification or other standard Kaluza–Klein ideas. Instead, we regard the ext
dimensions of the biconformal co-space as familiar, routinely observable macroscopic dimen
J. Math. Phys., Vol. 39, No. 1, January 1998
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and ask whether a coordinate interpretation of four-momentum is consistent with experienc
demonstrate this consistency by focusing on the two necessary axes of correspondence:

Intrinsic structure:The biconformal co-space must have the same mathematical structur
transformation properties as momentum space.

Dynamical function:The biconformal dynamical laws and description of collisions or int
actions must accord with experience.
We address each of these in turn, then conclude by citing positive evidence for a coor
interpretation of momentum.

A. Intrinsic structure

For either flat or curved space–times, momentum space is the tangent space at each
space–time. To identify the biconformal co-space with the tangent space we must check th
the Minkowski vector space structure of the tangent space and transformation properties
tangent basis are reflected in the co-space.

The biconformal co-space is a Minkowski vector space if and only if it is flat. This flatne
obvious for the flat solutions studied in Secs. III–VI, while it is a consequence of the vanis
torsion and dilation in the curved models of Sec. VII. In either of these classes it is ther
possible to set up a vector space isomorphism between the tangent space and the co-sp
note that the same isomorphism also holds between the tangent space of a Riemannian spa
and the co-space coordinates of anormal biconformal space.49 Normal spaces are defined to b
torsion-free spaces in which the dilational curvature is closed, the Weyl one-form is exact, a
space–time term of the curvature tensor is trace-free. We therefore have two large, disjoint
of biconformal geometries in which the biconformal co-space is isomorphic to the Riema
tangent space.

There are two transformation properties of momentum variables which we must also c
First, under Lorentz transformations,pm transforms with the inverse to thesametransformation as
xm in flat spaces ordxm in curved spaces. That is, there must not be two independent Lo
transformations which can be applied to the space and co-space separately. This is a
property of the eight-dimensional gauging of the four-dimensional conformal group. Becau
began with the space–time conformal group, there is only a single set of local Lorentz tra
mations. Moreover,ym has the proper covariant form. The second transformation property
quired of momentum is that its scaling weight be21, since~using Planck’s constant! momentum
has geometric units of inverse length. This corresponds correctly to the inverse length unitsym .

B. Dynamical function

We now consider whether Hamiltonian dynamical laws and our experience of collisio
interactions are consistent with a coordinate interpretation of momentum. There are three e
points concerning a coordinate interpretation which must correspond to our usual experien

~1! Hamiltonian dynamical equations should describe the classical motion of particles and
~2! While there is no continuity requirement on momenta, coordinates should not change d

tinuously.
~3! From our experience we know that collisions only occur between particles which are n

in their space–time coordinates, and donot necessarily occur when their momentum sepa
tion becomes small. We must show how this observation is consistent with the single p
biconformal separation, which depends on both position separation and on momentum
ration.

For agreement on point 1, we require a match of dynamical properties between the H
tonian dynamics of momentum space and the dynamics of biconformal spaces. In Secs. III–
J. Math. Phys., Vol. 39, No. 1, January 1998
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showed that the usual Hamiltonian dynamical picture is a natural property of flat biconfo
spaces. Not only do the co-space coordinates act as momenta, but the structure equation

dv0
05v0

ava
0

shows thatdv0
0 is a manifestly closed, nondegenerate two-form, hence symplectic, and we

the usual Hamiltonian dynamical structure associated with one-particle phase space. Inde
demonstrate that any Hamiltonian system generates a super-Hamiltonian hypersurface in a
flat biconformal space, and conversely that a hypersurface in a flat biconformal space g
unique Hamiltonian system.

In the dilation-free curved geometries of Sec. VII and in normal biconformal spaces w
expect the Hamiltonian dynamical laws of flat biconformal space to holdlocally. As long as we
look at a sufficiently small neighborhood to permit a single-particle picture, the consideratio
Secs. III–VI hold without modification. That fields on space–time also pose no problem m
seen from three different perspectives:

~a! The observable properties of fields are characterized by tensors built on the tangent sp
the isomorphism between the tangent space and the co-space insures that the same p
can be measured in both models.

~b! Fields and their properties are derivable as the continuum limit of many individual part
so as long as interactions between particles are correctly predicted, the field limit m
expected to hold.

~c! Fields must admit classical, single particle limits. Thus, the highly localized field o
isolated electron moves according to a classical single particle Hamiltonian.

The net effect of these considerations is that there is no particle or field property tha
might observe in a flat, dilation-free, or normal biconformal space that could not also be des
in the tangent bundle of a four-dimensional Riemannian geometry. Moreover, biconformal s
automatically predict the presence and form of electromagnetic fields and the Lorentz forc
properties which in a Riemannian space–time must be added by hand.

Now consider point 2. The nearly instantaneous change of momentum which occurs
say, a ball bounces off a wall, seems to violate the notion of continuous motion in the mome
dimensions. However, the continuity of the actual dynamics underlying the bounce can be s
either of two ways. Most simply, we can choose the super-Hamiltonian with a phenomenol
potential representing the wall. A realistic potential will not have an actual discontinuity, s
resulting motion predicted by Hamilton’s equations@or by the biconformal involution of Eqs
~4.5b! and ~4.5c!# will be continuous.

A more fundamental way of seeing the continuity of momentum during the collision is to
the electrodynamic law predicted by local biconformal theory to examine the actual moti
each constituent particle of the ball in the appropriate background field. In this view, the app
discontinuity arises because the region of biconformal space chosen for study is too large
flat approximation to be valid. Shrinking the region to one where a single-particle interpretat
expected to hold solves the problem.

Moving to point 3, we know that in order to collide or interact strongly, the proper separa
of two particles must be small. For this fact to be consistent with our experience that coll
occur whenever the space–time separation becomes small regardless of the momentum se
is nontrivial. Indeed, recent models51,52 in which a fifth dimension proportional to mass is add
to space–time fail this test—in those models, two particles of vastly different mass wil
generally collide.

In the biconformal models presented here, we find that the proper distance between co
objects behaves according to our experience. The proper interval is given by the conformal
J. Math. Phys., Vol. 39, No. 1, January 1998
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metric of Eq.~6.8!. While Eq.~6.8! applies to the orthonormal (v0
a ,va

0) basis, we easily change t
the (ea,fa) basis, where we find that the metric takes the form

gab5S 22W ~ab! dm
n

dn
m 0 D ,

whereW ab5T ab1aa,b1WaWb2 1
2W

2hab . Therefore the squared intervalds2 between the ball
and the wall in terms of their phase space separations (Dxm,Dpn) is

ds2522W mnDxmDxn12DxmDpm

which vanishes when the spacetime separationDxm vanishes and does not necessarily van
when the momentum separationDpm50. This is exactly what is required.

In parts A and B we have shown that there is no mystery to the extra four dimensions
biconformal co-space. Indeed, the coordinates for these extra directions are always imme
available as the energy and momentum of the system under study. Thus, if we want to pro
full biconformal geometry by ‘‘walking off’’ in the extra directions, we already know exactly h
to do it. We must vary our energy or the direction of our motion. Any change of the tangent t
world line is a change in location in the momentum sector of biconformal space. Of co
because we are constrained to obey the classical laws of physics, we only experience four
of freedom, not eight~except as initial dynamical conditions, when we need all eight!. In particu-
lar, conservation of energy and momentum constrain motions todym50 subspaces.

The new picture would be particularly convincing if there were some direct positive evid
that ~perhaps under extreme conditions! the full eight-dimensional character of the world is man
fest. For such evidence we must study biconformal spaces in which the fields take on a
generaly dependence. Therefore, the following observations are necessarily conjectural, t
vestigation of the microscopic meaning of biconformal space lying clearly beyond the scope
present paper. Nonetheless, as long as the deviation from the normal or dilation-free clas
small, we may expect the new evidence to show up as a dependence of some physical fi
parameters on momentum as well as position. We briefly discuss two physical variables
have this property: quantum mechanical wave functions, and running coupling constants.

The most evident dependence of fundamental physics on momentum is the phase
duality found in quantum mechanics. It is well understood that the wave function of a particle
be equally well represented using either momentum or position coordinates. In a very direct
the momentum of the particle is used as a coordinate. Representations such as the number
the harmonic oscillator, which lies midway between momentum and position variables, ar
frequently used.

The fact that we do not independently probe both position and momentum simultane
suggests that even at the quantum level~at least semi-classically! matter is substantially restricte
to the neighborhood of some phase-space hypersurface. This might be understood in te
biconformal space as near-normal biconformal behavior, with microscopic deviations fro
involute or nearly involute subspace. The picture is consistent with the view of the path in
approach, which says that a quantum system essentially probes all phase space paths
biconformal picture, a path integral would simply be taken over all eight coordinates.

A second piece of evidence that momentum components act as independent coordinate
existence of running coupling constants in quantum field theory. It is found experimentally th
high energies, the strength of the electromagnetic and weak couplings vary with energy
energy-momentum dependence is easily understood if energy and momentum are coordina
is otherwise a somewhat nontransparent result of detailed field theoretic calculation.

Considerable progress has been made in establishing the connection between quant
tems and scale-invariant systems.53,54 It remains to be seen to what degree specific biconfor
models can be developed which will make these final observations precise.
J. Math. Phys., Vol. 39, No. 1, January 1998
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