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A new eight-dimensional conformal gauging solves the auxiliary field problem and
eliminates unphysical size change from Weyl's electromagnetic theory. We derive
the Maurer—Cartan structure equations and find the zero curvature solutions for the
conformal connection. By showing that every one-particle Hamiltonian generates
the structure equations we establish a correspondence between phase space and the
eight-dimensional base space, and between the action and the integral of the Weyl
vector. Applying the correspondence to generic flat solutions yields the Lorentz
force law, the form and gauge dependence of the electromagnetic vector potential
and minimal coupling. The dynamics found for these flat solutions applies locally
in generic spaces. We then provide necessary and sufficient curvature constraints
for general curved eight-dimensional geometries to be in 1-1 correspondence with
four-dimensional Einstein—Maxwell space—times, based on a vector space isomor-
phism between the extra four dimensions and the Riemannian tangent space. De-
spite part of the Weyl vector serving as the electromagnetic vector potential, the
entire class of geometries has vanishing dilation, thereby providing a consistent
unified geometric theory of gravitation and electromagnetism. In concluding, we
give a concise discussion of observability of the extra dimensions19@8 Ameri-

can Institute of Physic§S0022-24888)02601-3

I. INTRODUCTION

In 1918, following immediately on the heels of Einstein’s introduction of general relativity,
Weyl proposed a generalization of Riemanian space—time stréictuadiow for local changes in
the standard of length. When the gauge field required to insure this symmetry has nonvanishing
curl, the lengths of vectors change as they undergo parallel transport. This nicely completes the
picture of Riemann in which vectors are rotated but not changed in length. In Weyl geometry, all
properties of transported vectors—magnitwidal direction—are subject to the transport law.

Weyl identified the gauge field of local dilations with the electromagnetic potential, thereby
explaining the gauge freedom of that potential and giving a geometric interpretation of electro-
magnetic forces. Unfortunately, the theory is inconsistent with experience because it predicts
changes in the sizes of objects depending on their paths. Applied, for example, to the case of
atoms moving in a background electromagnetic field, the predicted size changes would produce
substantial unobserved broadening of atomic spectral lines.

The simplicity and naturalness of Weyl geometry together with the promise of a geometric
understanding of electromagnetism makes the failure of Weyl's physical theory puzzling. Indeed,
Weyl'=2 and many other physicié?? included proposed alternative versions of the physical
interpretation in attempts to make the theory consistent. Ultimately, the work led to the current
U(1) gauge theory of electromagnetism, which maintains much of the beauty of the original
proposal without inconsistent predictions such as changes in atomic spectra.

In the present work, we show that a new conformal gauging avoids the standard oBjextion
this 80-year-old theory of Weyl. Since the conformal group contains the Weyl group, the spaces
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300 James T. Wheeler: Conformal gauging and phase space

resulting from its gauging share certain properties with Weyl's original gauge theory of electro-
magnetism. However, the eight-dimensional character of the new gauging and its interpretation as
a generalization of phase space eliminate the problem of unphysical size change. Before discuss-
ing these new conformal spaces, which we t#dlonformal geometrieave review some results

from previous studies of the conformal group.

The conformal group is the most general set of transformations preserving ratios of infinitesi-
mal lengths. On four-dimensional space—time the conformal group is 15 dimensional, including
Lorentz transformations, translations, inverse translations, and dilations. The Lorentz transforma-
tions and translations are well known, while the dilations are simple rescalings. The inverse
translations have alternatively been called special conformal transformations, conformal boosts,
accelerations, or elations. We choose the term inverse translations because these transformations
are pure translations at infinity. This is easily seen by translating the inverse coorgthate
= —x*/x?>—y*+a* and then inverting again.

We will also make use of several subgroups of the conformal group. The Lorentz transfor-
mations and translations together form the Poinggicaip, while the Lorentz transformations and
the dilations form the homogeneous Weyl group. Adding the translations to the Weyl group gives
the inhomogeneous Weyl group. The Lorentz transformations, dilations, and inverse translations
also form an inhomogeneous Weyl group with the only difference being that the translations and
inverse translations have opposite behavior under dilations.

Considerable attentiéf?” has been given to four-dimensional space—times which result from
gauging the conformal group. In addition to the usual metric and local Lorentz structures of
space—time, these models are expectedpgori, to possess five gauge vectors—one for dilations
and four for the inverse translations. However, it was long thought that the inverse translations
could not be gauged, because the corresponding current is position dependent. From a slightly
different perspective, Mansoueit al?>?* argue that making the inverse translations local is re-
dundant with general coordinate transformations so that the corresponding gauge fields have no
new effect. Nonetheless, Crispim RomaFerber, and Freurfd;?® and independently Kaku,
Townsend, and Van NieuwenhuiZérshow how to gauge the inverse translations, but find them
algebraically removable from the problem. This problem is in fact generic: in any four-
dimensional scale-invariant torsion-free field theory with action built quadratically from the cur-
vatures of the conformal group these four inverse translational gauge fields may be algebraically
removed from the problerf The local inhomogeneous Weyl symmetry of such theories always
has an effective field theory equivalent to one based on the homogeneous Weyl group, and
therefore sheds no light on Weyl's theory.

By contrast, consideration of the fixed points of the various conformal transformations sug-
gests the use of an eight-dimensional base space instead of a four-dimensional base space, corre-
sponding to the existence of eight distinct translational generators in the Lie algebra. Requiring an
eight-dimensional base space makes the gauge fields of the inverse translations act as part of the
solder form on the base space, so these fiettessarilyremain independent. Even in the case of
a fully flat biconformal space this solder form contains nontrivial physical information.

Our present investigation of this new conformal gauging focuses principally on the study of
flat biconformal spaces, because this is where the connection with well-known systems should be
most evident and because the dynamics of flat spaces will also apply locally in generic spaces.
Unlike Riemannian geometry, there is an entire nontrivial class of flat solutions. We first derive
this class of solutions. Next, we show that the flat spaces possess a symplectic structure which
allows their interpretation as one-particle phase spaces and provides a concise description of the
corresponding Hamiltonian dynamics. Applying this Hamiltonian correspondence to the most
general flat solution gives a geometric derivation of the Lorentz force law, in strong contrast to the
original Weyl theory. After indicating briefly how the biconformal electromagnetic theory con-
nects satisfactorily to (1) gauge theory, we show how to introduce Einstein gravitation, arbitrary
additional fields, and electromagnetic sources into the biconformal structure.
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The layout of the paper is as follows. In Sec. Il we develop biconformal structure as a
conformal fiber bundle. We give particular attention to the general procedure for building connec-
tions on manifolds based on an underlying symmetry gidtipbecause it is this procedure which
motivates our use of an eight-dimensional base manifold. The construction consists of two steps.
First, an elementary geometry is found by taking the quotient of a given symmetry group by a
subgroup containing no normal subgroup of the full group. Then, the connection of the resulting
principal fiber bundle is generalized by including curvature. As an example we review the con-
struction of general space—times by gauging the Poingerep33~3¢ We then implement these
techniques to gauge the conformal group in a new way. First, we construct an elementary geom-
etry as the quotient;7 %, of the conformal group?’, by its isotropy subgroug; ;. This gives
a conformal Cartan connection on an eight-dimensional manifold. Next, we generalize the con-
nection to that of a curved eight-dimensional manifold with the seven-dimensional homogeneous
Weyl group as fiber by the addition of horizontal curvature two-forms to the group structure
equations. The resulting eight-dimensional base manifold is calleidanformal spacend the
full fiber bundle is called the biconformal bundle.

Our first principal result is presented in Sec. Il where we derive the flat solution for a frame
field satisfying the zero-curvature Maurer—Cartan structure equations of biconformal space.

In Secs. IV and V we establish our next claim: the classical Hamiltonian dynamics of a
single-point particle is equivalent to the specification of a seven-dimensional surface in flat bicon-
formal space. As a consequence of the form of the structure equations, there necessarily exists a
set of preferred curves satisfying the Hamiltonian equations of motion. This claim is established in
two steps. First, in Sec. IV, we show that the classical Hamiltonian description of a point particle
defines a class of eight-dimensional differential geometries with structure equations of manifestly
biconformal type. Then in Sec. V we show that there is an embedding, unique up to local
symplectic changes of basis, of the Hamiltonian system irtat&diconformal geometry. We also
demonstrate the necessary existence of a preferred set of curves in the biconformal space satisfy-
ing the Hamiltonian equations of motion. The unique local equivalence between hypersurfaces in
flat biconformal geometry and Hamiltonian systems provides a clear physical interpretation of the
geometric variables of biconformal space.

The central importance of this second result is in definitively establishing the physical inter-
pretation of the new conformal gauging. Our main goal is not to provide an alternate formulation
of classical mechanics, but rather to use this embedding as a guide to subsequent physical inter-
pretation of the elementary biconformal variables. Given the result of Sec. 1V, that a classical
single-particle Hamiltonian system generates a class of biconformal space—times, and its converse
in Sec. V, we can conclude that for an isolated test particle in a general biconformal space the four
new coordinates may be interpreted locally as the corresponding generalized particle momentum.
Our identification therefore provides a physical correspondence principle for biconformal spaces.
While in general spaces the extra dimensions will not necessarily represent momentum globally,
we can always take the limit of a tightly confined field in a local Lorentz frame, for which the
extra dimensions will permit the momentum interpretation. Indeed, when nonflat biconformal
spaces are investigated in Sec. VII, we will see that the “momentumlike” co-solder form contains
the stress-energy tensor of any gravitational sources. This generalization from momentum to the
stress-energy tensor is exactly what one would anticipate in moving from a particle interpretation
to a field interpretation.

For our third result, in Sec. VI, we apply the Hamiltonian correspondence of the previous
sections to the general solution for flat biconformal space, to show how that flat solution predicts
the following properties of the electromagnetic vector potential:

(1) The four-vector form of the potential. This is nontrivial, since it involves the reduction of the
eight-dimensional one-fornwg= wg,(x,y)dx*+ wg*(x,y)dy, to a four-dimensional one-
form, «,(x)dx* on space-time.

(2) Its usual gauge dependeneé&(x) = a(x)+da¢.
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302 James T. Wheeler: Conformal gauging and phase space

(3) Minimal couplingp,—pa—Aag,.
(4) The correct equation of motion for a charged particle moving under its influence.

This section therefore provides a consistent realization of Weyl's' gdaixpressing electro-
dynamics in terms of the dilational gauge fieldbon moving to more general biconformal spaces,
the remarks of the preceding paragraph imply that in a local Lorentz frame an isolated, charged
test particle will move according to the Lorentz force law.

These predictions of electromagnetic effects in biconformal space follow directly from the
relationship of biconformal space to phase space and Hamiltonian dynamics, developed in Secs.
IV and V. No further assumption is necessary to derive the Lorentz force law. At the same time,
the biconformal theory predicts constancy of size. There is an entire claat diconformal
spaces which includes sufficient freedom in the gauge fields to account for the classical electro-
dynamics of a charged point particle in an arbitrarily specified background electromagnetic field.
The flatness condition includes vanishing dilational curvature, so none of these geometries leads to
size change of any kind. In sharp contrast to Weyl geometry in which vanishing dilation implies
vanishing gauge vector, the dilational gauge vector in flat biconformal spasgusred to be
nonzero

Section VI ends with a brief comparison of the biconformal model with Wey!'s original gauge
theory and with the standard(l) model of electromagnetism.

In Sec. VII, we show how to introduce arbitrary gravitational and electromagnetic sources so
that the results of Sec. VI remain valid in the resulting class of curved biconformal spaces. The
entire class has vanishing dilation, and the electromagnetic and gravitational fields satisfy the
Maxwell and Einstein equations, respectiveliis section therefore provides a consistent real-
ization of Weyl's goal of a unified geometric theory of gravitation and electromagneétifiiite
other fundamental interactions have been discovered since Weyl's time, the inclusion of both of
the large scale forces in a geometric theory must be considered a step in the right direction;
moreover, biconformal spaces contain additional fields which are not studied here. These addi-
tional fields might have an interpretation as the additional interactions. In any case, there is always
the possibility of adding internal symmetries beyond the conformal symmetry.

The final section consists of a detailed discussion of possible consequences of regarding
energy and momentum variables as four of the coordinates in an eight-dimensional space. We
consider the necessary isomorphism of mathematical structure, transformation properties, and
dynamical laws that must hold between momentum space variables and the biconformal co-space
variables. Collisions and interactions are discussed with attention given to continuity and the
proper proximity of colliding particles. Finally, we point to some experimental results which
suggest a coordinatelike behavior of momentum variables.

II. THE CONSTRUCTION OF SPACE-TIMES WITH LOCAL SYMMETRIES

Before defining and interpreting biconformal spaces at the end of this section, we require
some background motivating their construction. While it is customary to begin the discussion of a
differential geometry with the specification of a manifold and metric pai#;,§), our present
interest lies in developing a space—time model beginning with locally determined symmetry
considerations. This allows us to construct geometries whigbriori possess specified local
symmetries. It is in part the elements of this construction which motivate our choice of an
eight-dimensional base manifold for conformal gauging instead of the usual four-dimensional
picture. This in turn requires us to interpret the extra four dimensions. The interpretation of the
extra coordinates in the zero curvature limit is accomplished in Secs. IV-VI.

We consider symmetry groups which include the local Lorentz symmetry of space—time,
seeking a procedure for developing a connection on a space-tithg) from a knowledge of an
experimentally determine@.e., “global”) symmetry group. We use the well-known techniques
of Cartan and Kleirf>=3237-39proceeding as follows. We begin with a Lie group, and a
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subgroup.%, called the isotropy subgroup. The isotropy subgroup should contain no normal
subgroup of¢ if the full group is to act effectively and transitively on the base space. Defining a
projection onto the base space as the quotitit,, the group manifold becomes a fiber bundle,
called by Klein arelementary geometryrhe full group will act effectively and transitively on the
base space of the elementary geometry. The base space will be a manifold if and only if the
fibration is regular, i.e., there exists a neighborhood of each point of any fiber which that fiber
intersects only once. This regularity condition holds for the groups we consider. This base space
of the elementary geometry therefore provides a manifold upon which we now generalize the
connection to a Cartan connection by introducing curvature.

The generalization to a Cartan connection occurs by only requiring the action of the full group
to be detectable on curves instead of globally. Specifically, we may introduce into the structure
equations any curvature two-forms consistent with the resulting Bianchi identities and the follow-
ing requirement. Let’(\) be any curve in the bundle, I@t‘j be a connection on the bundle, and

let f: %—VN’ be a linear representation 6f by NX N matrices. Then integrating
D ke
df} = o fi

alongZ’(\) yields a group transformatioij()\o) at each point”(\y). The connectionu} will be
a Cartan connection if the transformatiﬁ}r@\) depends only on the projection of the cur/é))
into the base space. This condition holds if and only if the curvaturebaieontal i.e., bilinear
in those connection forms which vanish on the fibers. The generalization to a curved connection
occurs because different curves in the base space between the same pair of points can give
different group elements.
If the connection is linear, we can express this condition in terms of mappings of orthonormal
frames. Consider again a curv&(\), an initial pointZ°(0) on the curve, and a framé&,(0) at the
point. We then can demand that there shall exist a transformation from the full gronapping
the initial pair (#°(0),#,(0)) to a corresponding pait”(\),%,(\)) for any point2’(\) on the
curve.

A. Gauging the Poincare ~ group

We illustrate the method using the Poincareup. The group may be described locally by its
structure equationgequivalent to its Lie algebjawhich take the form

dof=owglod, dw?= a)bDwﬁ, (2.1

where the one-form&$,w? (a,b=1,2,3,4) span the ten-dimensional group manifold. The only
subgroup%, containing no normal subgroup &f but which does include the Lorentz group is the
Lorentz group itself, since the translations form a normal subgroup. The quatiefy leads to a
four-dimensional base space with Lorentz fibers. It is easy to see that the base space is Minkowski
space, and therefore the elementary geometry is the bundle of orthonormal frames over
Minkowski space—time.

Continuing with the Lorentz bundle, we alter the connection to that of a curved base space by
adding curvature two-formg€)§ andQ?, to the structure equations. Clearly there is one curvature
two-form for each generator of the original Lie group. Furthermore, each curvature component is
horizontal, depending only on the forma$ which vanish on the fibers. Functionally, the curvature
components depend only on the quotient spag€s,. Thus,

dol=wi0wi+Q8, do?=e’0ud+Q3 (2.2

or, in more familiar notation,
J. Math. Phys., Vol. 39, No. 1, January 1998

Downloaded 07 Sep 2011 to 129.123.67.2. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



304 James T. Wheeler: Conformal gauging and phase space

3 =dw?+0? 0o Ti=dé*+o?, 0, (2.2)

wherew?, is the spin connectiore®= w? is the vierbeinR?, is the curvature two-form, an@® is

the torsion. Notice that we will always write the metric explicitly, so we need not offset upper and
lower indices. The horizontality condition, th&®® =R?,.£ 0" with no terms such as
R?,.*e"Ood or R?, . fwSlw!, guarantees that the generator of a Pointamesformation found

by integrating the connection one-forms along any curt&) will depend only on the projection

of the curve into the base manifole(#°(\)). Specifically, define

7= w?%,, d15=wd%,, (2.3

as the change in the poig? and the vector framé}, along any curve in the bundle, whedg is

the one-dimensional exterior derivative on the curve. It is convenient to introduce a full ten-
dimensional frame ¢, ,.7;’) at the initial point, with the frame’, being the horizontal part. We
choose ¢,,.77) to be dual to {2, wf):

W0 (Lp) =388, W(T7)=0, (2.4

wp(£e) =0,  wy(.74) =840

When Eqgs.(2.3) are integrated along a curgg(\) we find a new point-frame pair at each value
of \. Now let ?(\) be the closed perimeter of an arbitrary infinitesimal plaquette with area
elementS. Then explicit evaluation of the integral df >’ around the plaquette gives

fﬁ%dl.7>~m(5) 7.(0). (2.5

A general infinitesimal surface eleme®imay be expanded in terms of the full frame at the initial
point as

S=S0%, 04+ S 70z, + S 7snsg. (2.6
Now taking Q2 horizontal, Q=02 »°0w®, we use Eqs(2.4) to evaluate

Q%9 = QLI S0 () 0 (Ze) + S0 (T g) 0(Ze) + S0 (7 g (7 Q)]

=08 550 55=03(m(9)), (2.7

so that the path dependence of the poitih) depends only on the projection of the loop into the
base manifold. A completely analogous argument holds for the integfg| ahd the horizontality
of Q.

Equations(2.2) or (2.2) now describe a curved four-dimensional space—time with local
Lorentz symmetry. The second curvatuf¥;=T?, allows the inclusion of torsion. Because the
remaining Lorentz symmetry of the fibers does not mix the components of the torsion with the
components of the Riemann curvature, the usual specification of general reldflity0, is
consistent. General relativity also requires identification of the cotangent $paeéth the space
spanned by the solder foral. This identification is automatic here becaedés requireda priori
to span the base spatd &,. As we have carried out the construction here, the topology of the
manifold is that of the quotienR?, but nontrivial base spaces are easily achieved by specifying
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an arbitrary manifoldZ having the saméMinkowski) cotangent space and structure equations,
(2.2). This substitution of 7 for 1%, is allowed because it alters only topological properties,
while all of the structures of interest described above are local.

B. Biconformal gauging

Understanding a symmetry-based approach has significant advantages as we now turn to our
examination of the conformal group. The essential point is that, in contrast to the Poixeare
ample, the presence of inverse translations means that there are no normal subgroups, making the
choice of isotropy subgroup’, nontrivial. While biconformal space is based on the choice of the
homogeneous Weyl group &5, it is instructive to first consider what happens if we use the
inhomogeneous Weyl group instead.

As described in the Introduction, considerable attedfioif has been given to models which
result from the choice of the 11-dimensional inhomogeneous Weyl grouf,ad his choice is
natural enough since it gives the same base manifold as in the Poaasarelt would appear that
this model simply extends the Lorentz fiber symmetry of the local Poincareel to include
dilations and inverse translations. However, in generic field theories based on this bundle the four
components of the connection corresponding to the inverse translations are generically auxiliary
and may be algebraically removed from the probf&rithe resulting field theory, equivalent to
one based on the homogeneous Weyl group, has had at best mixed success as a field theory. In any
case, no new symmetries or additional physical fields have been gained in passing from the Weyl
group to the full conformal group. By contrast, choosifig to be thehomogeneou®Veyl group
from the start, we retain the full 15 degrees of freedom of the original group and acquire many
new fields, with the simplest example of a biconformal space having a natural physical interpre-
tation in terms of Hamiltonian dynamics.

We arrive at the biconformal model if we ask what property of the Lorentz transformations
made them a suitable fiber symmetry for the Poingraup. The requirement that the isotropy
subgroup should have no subgroup normal in the Poingamep ruled out the translations, which
form a normal subgroup of the Poincageoup. The Lorentz symmetry is therefore the only
possible fiber symmetry. However, there is another way to see that we should use the Lorentz
group as the isotropy subgroup, based on fixed points. On Minkowski space, the class of transla-
tions has no fixed points, while the class of Lorentz transformations leaves the origiriHewzk
the name, “isotropy subgroup’ Thus, we can distinguish the isotropy subgroup of the fibering
from the “translational” symmetry of the base manifold by counting fixed points.

Returning to the conformal group, we find that when we distinguish the conformal transfor-
mations based on their fixed points, there are simply eight translations actiognopactified
Minkowski spacé'® A special point, its null cone, and an ideal two-sphere are added at infinity to
accomplish the compactification. As a result, the translations are no longer characterized by an
absence of fixed points. Instead, the class of translations and the class of inverse translations each
has a single fixed poinfthe origin and the point at infinity, respectivglwhile the Lorentz
subgroup and the dilational subgroup leave both of these points fixed. The dilations also leave the
ideal two-sphere fixed.

With these observations, we take the isotropy subgroypto be the seven-dimensional
homogeneous Weyl group, consisting of the six Lorentz transformations together with dilations.
Defining a projection as the quotierit ', we are led to a fiber bundle with an eight-dimensional
manifold as the base space and the homogeneous Weyl group as a typical fiber. This will break
both the translational and inverse translational symmetries when the base manifold becomes
curved, but we nonetheless retain the full 15 guage field degrees of freedom.

We choose the @,2) representation of the conformal group for our notafdryith
(A,B,...)=(0,1,...,5). Letting boldface or Greek symbols denote forms ani,(..)=(1,...,4),
the Q4,2 metric nag is given by ,,=diag (1,1,1;- 1) and 5gs= 75,=1 with all other compo-
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nents vanishing. Introducing the connection one-fasf)), we may express the covariant con-
stancy ofpag as

D7as=d7as— Ncaws— 7acwg=0. (2.9

We may break the connection form into four independent Weyl-invariant partspiheconnec-
tion, w?, the solder form w3, the co-solder form 2, and theWeyl vector w3, where the spin
connection satisfies

wp=— mpen*wf (2.9

and the remaining components ©f are given in terms of these by

wg=wl=0, (2.9b
we=— ), (2.99
wg=—7"wp, (2.99
W=~ Napw - (2.99

These constraints reduce the number of independent fa@ds the required 15 and allow us to
restrict (A,B,...)=(0,1,...,4) in all subsequent equations. Now it becomes clear why we write the
metric explicitly instead of raising and lowering indices. The convention avoids confusion be-
tween the solder and co-solder forms. Staying with tHd,2) index positions also indicates
immediately the scaling properties of any field, since each upper index-atlds the conformal
weight while each lower index adds1.

The structure constants of the conformal Lie algebra now lead immediately to the Maurer—
Cartan structure equations of the conformal group. These are simply

dw'§= wngé . (2.10
When broken into parts based on homogeneous Weyl transformation properti€3,1fqgives
dwd= 0o+ 0dlwd— 7,72 % 0wt
dwi= w8|:|w8+ wgljwta,, (2.11)
dwl=0llod+ 02led, dod=wile’.
Since no finite translation can reach the point at infinity and no inverse translation can reach the

origin, the space&’ % gives a copy ofnoncompagtMinkowski space for each of the two sets of
translations. The generalization to a curved base space is immediate. We have

dop= w00+ wpbwg — 7pen* ‘wiDus+OQF, (2.123
dwd= 0d0wi+ oi0wi+ 08, (2.12h
dwl=00wd+ o20wd+ QS (2.120
dwd=wi0wd+QJ. (2.129
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We will call the four types of curvatur@?, Q3, Q2, andQ§ the Riemann curvature, torsion,
co-torsion, and dilational curvature, respectively. Notice that if wes§ewJ, and the correspond-
ing curvatures to zero, we recover E¢®.2) for a four-dimensional space—time with Riemannian
curvatureQ? and torsionQ3. If we set onlyw?=00%=0, the structure equations are those of
four-dimensional Weyl geometry.

We are now in a position to define a biconformal space. We state the definition for an arbitrary
number of dimensions,@®, although our results in all subsequent sections are given i
for concreteness.

Definition: A biconformal spacés a principal fiber bundleR,M,G) with conformal connec-
tion form w={w?,wd,w?, 0} (a,b=1,...d), whereM is the Zl-dimensional base manifol@; is
the Weyl group ofd- dlmensmnal Minkowski space, antt w— (w§ ,wa), wheresr is the canoni-
cal projection induced by”/ <.

Thus, just as we can think of a space—time as a manifold and metric.pédjg), we can
think of a biconformal space as a manifold and connection Qaif,w). Note that in general
relativity, the implicit demand for metric compatibility allows us to generate a unique connection,
while at present there is no such theorem for biconformal spaces. We can go the other way,
however, since the existence of a biconformal metric follows by combining the horizontal con-
nection forms, @g,wg), with the Killing metric of the conformal group.

For many purposes, the starting point of computation in a biconformal space is given by the
structure equations, Eq&.12. Once we specify the connection, these structure equations allow
us to compute the curvatures. Conversely, given horizontal curvatures satisfying the Bianchi
identities[which follow from Egs.(2.12 by differentiatior], we can integrate to find the connec-
tion. Certain combinations are also possible. For example, it is easy to see frof2 E8sthat in
torsion-free biconformal spaces, the entire connection and the remaining curvatures are deter-
mined byw3, w2, andw] alone.

Horizontality requires each of the curvatures to take the form

O8=108 w500+ Q850 0wl + 305 0w, (2.13

Based on the interpretation of biconformal space as a generalization of phaséSpexdV and
V below, see also Ref. 4ive will call Q5,4 the space—time tern)5S the cross term, anf5°¢
the momentum term of each type of curvature. In sharp contrast to the four-dimensional gauging,
in which the fiber symmetry mixes the curvatuf@g, Q3, Q2, andQJ (see Ref. 42 our choice
of the homogeneous Weyl group as the structure group not only Ieaves these independent, but also
does not mix the space—time, cross, or momentum terms. The usefulness of this type of isolation
of curvature parts is evident in general relativity, where it is consistent with the bundle structure
to set the torsion to zero.

Since the base spab is a manifold, we can always introduce coordinate§y,) so that the
connection forms may be written as

wp=wh,(X,Y)dx+ wh#(x,y)dy, .

Here the capital Latin indices range over (0,..54p,a) while both Greek and lower case Latin
indices range frontl,...,4. The Greek indices apply to general coordinates, while the lower case
Latin indices are used for the Weyl invariant parts of the orthonornid|2pframe introduced
above. Index positions indicate conformal weight, so all metrics are written explicitly. An excep-
tion to these conventions is made in Secs. Il and VI where, for the flat solution, the components
of the vierbein areé‘z. In these sections we simply write, for example?,§,) in place of
(55X, 3Ly.).
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308 James T. Wheeler: Conformal gauging and phase space

lll. FLAT BICONFORMAL SPACE

Before deriving the form of the connection of a flat biconformal space, we discuss a few of its
properties.

Definition: The connection of a flat biconformal space is said to be insthadard flat form
when it is written in the following way:

9= ay(X)dx®—y,dx3=W,dx?, (3.1a
wi=dx?, (3.10
w3=dy,— (aap+ WaWy— 3W27,,)dX°, (3.19
wp= (7" g 8355) Wcdx“. (3.19

Notice that the Weyl vectoW,= a,(X) —Y,, depends on an arbitrary four-vectay, and
alsoon the additional four coordinateg,. The presence o&, gives the generality required for
the electromagnetic vector potential, while thekeeps the dilational curvature zero. As a result,
unlike Weyl's theory, the flat biconformal model predicts no size change. Also notice that the
standard flat form is preserved Bgur-dimensionalgauge transformationss(x), and that the
gauge transformation must be associated with the undetermined vectordfi¢ld, Thus, the
desirable properties of Weyl's original theory survive in this more general gauge theory.

The prediction of the exact form of the Weyl vector necessary for consistently modeling
electromagnetism is nontrivial. In general, the dilational gauge vector of biconformal space is of
the form

wg=wg,(X%,Y)dX*+ wg#(x,y)dy,,

i.e., an eight-dimensional vector field depending on eight independent variables. Constraining the
biconformal geometry to have vanishing curvatures for@ég(aﬂ(x)—yﬂ)dx“. This is pre-

cisely the form required to give the Lorentz force law using the independently established formu-
lation of Hamiltonian dynamics in biconformal space. Different field strengifis,; are in 1-1
correspondence with the possible flat biconformal spaces, so that with the interpretatiprasf

the vector potential, electromagnetic phenomena never lead to dilations.

We now turn to our first result.

Theorem: When the curvature of biconformal space vanisi¥$= 0, there exist coordinates
(x3,y,) such that the connection takes the standard flat form. When the topology is Réttaf
coordinates are global.

Proof: Imposing vanishing curvaturé)’§=0, the equations to be solved take the form

dof= of0t+ 03008~ mper*edTos, (3.23
dof= o308+ 3ot (320
dwg=w0wg+ wglwp, (3.29
dwd= w3lw?. (3.20

The system may be solved by making use of the involution of (B2b.*® This allows us to
consistently seto=0 and first solve on the subspace spanned by the remaining 11 one-forms.
The initial conditions for these integral submanifolds provide a coordik@sich thatw?=dx?

with x®=const on each leaf. Each leaf is then a fiber bundle described by the simpler set of
structure equations
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doj=wglod, (3.39
dwd=00wd+ 020w, (3.3b
dw$=0, (3.30

which may be recognized as those of a flat Weyl geometry. Equédi@a) implies a pure-gauge
form for the Weyl vector. Choosing the gauge so that the Weyl vector vanishethe w=0
subspacg we are left with the structure equations for a flat Riemannian geometry. Clearly, we
have the solution

wp=0, wd=dy,, wg=0. (3.9
Next, we reintroduce the remaining four independent one-forms,
w§=dx?, (3.5

so that &?,y,) provide a set of eight independent coordinates. From the linearity of the connection
one-forms in the coordinate differentials?, 2, andw will change only by terms proportional
to dx®. We therefore may write

wi=C3,dx", (3.63
w§=dx?, (3.6b
w0=dy,+ Bapdx®, (3.69
03=W,dx?, (3.60

where the coefficient®V,, B,,, andC?,. are functions ok? andy, to be found by substitution
into the full structure equations, Eg&.2). First we determine the form of the Weyl vectyy,,
from Eq. (3.2d. Substitution of Eqs(3.6b—(3.6d yields

dwd=WgPdy,0dx®+ W, ,dxOdx®= dx30(dy,+ B,,dx®). (3.7

Here a lowered comma denotes a partial derivative with respeg? while a raised comma
denotes a partial with respect yg. Equating like components gives

W, P=— 62, (3.8a
Bran)=Wib,a - (3.8b
The first of these is immediately integrated to give
Wa=—VYat @a(X). (3.9
Next we substitute Eq$3.63 (3.6b), and(3.69 into Eq. (3.2b to find C&,. in terms of W,
dwd=0=W,dx°0dx?+ dx°00C?,dx® (3.10
or

Ca[bc]‘f‘W[bé(?]:O. (31])
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Lowering the upper index in Eq3.11) and noting thaiC,p= 7,4C%c= — Cpac, We add two
even permutations and subtract the third to find

Cohe=— (8285 — 7* 1) Wy. (3.12

Finally, B,, is found from Eq.(3.29. The substitution leads to two independent equations, one
from dx?0dy,, cross-terms and the other from terms quadratidxp. The first is

(8280 — 729700 Wy®= (72— 5255),

which is identically satisfied by the form of E¢3.9) for W,. Writing W2= 72w, and W?
=W?2W,, the second equation becomes

8§Bbe— 0Bpa— Bimpet BE 7pa= (W2 ¢+ WAW,) 74— (W2 4+ WAWy) 75— (Wi o+ WpW,) 8§
+(Wp g+ WpWq) 58— WA( 58 14— 8§ 7c)- (3.13

Contraction on thea and ¢ indices gives an expression containifdy, and its traceB
=7?°B,,. A second trace yieIdB=W2—Wf‘a. B.p is then found to be

Bab=— (Wa,b+ W Wy — %WZ Nab)-

The antisymmetric part of this expression agrees with(B&®b. The form forB,, above is now
found to solve both Eq(3.13 and the remaining structure equation, E820, identically.
We conclude that in flat biconformal space there locally exist coordindtasdy, such that

9= ay(X)dx2—y,dx3, (3.1a
wd=dx?, (3.1b
w3 =dy,— (aap+ WaWy— W2 75,)dX°, (3.19
wp=— (8385 — 72 Npg) Wcdx?. (3.19

That the coordinatesxf,y,) are global follows immediately from thR® topology of the base
manifold, completing the proof.

We are now in a position to see in more detail how the biconformal structure corrects Weyl's
theory. If we hold they-coordinate constant in Eq§3.1), we find that Eqs(3.13, (3.1b), and
(3.10 are the connection forms for a four-dimensional Weyl space—time with conformally flat
metric 7, . The remaining expression, E®.19, is then simply a one-form constructed from the
Weyl-Ricci tensor. However, the dilational curvature of a four-dimensional Weyl geometry is
given by the curl of the Weyl vector, equivalent here to the arbitrary curpf Thus, when
viewed from Weyl's four-dimensional perspective the solution gives unphysical size change. It is
only with the inclusion of the additional momentum variables proportiong), tihat the dilational
curvature can be seen to vanish.

With the interpretation of the additional four dimensions of biconformal space as momentum
variables it is clear that the actual motion of a particle is eight-dimensional. Now consider an
experiment designed to detect a change in the relative size of two physical objects, for example, a
pair of identical atoms. In order to see a change, a comparison must be made before and after
moving the two atoms around some closed space—time loop. However, such motion necessarily
involves changes in momentum as well so there is necessarily a changeais well asx?,
inducing a corresponding loop in flat biconformal space. However, no loop in flat biconformal
space ever encloses nonzero dilational flux, or ever results in a measurable size change. The size
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change computed in the four-dimensional Weyl geometry is seen to be in error because it involves
forcing a closed path while holding the momentum variables constant. Equivalently, the error
occurs because the expression for the dilational curvature is incomplete.

We show in the next two sections that there is a direct correspondence between the geometric
variables of biconformal geometry and the physical phase space variables of Hamiltonian dynam-
ics. Then, in Sec. VI we apply the Hamiltonian correspondence to the general flat biconformal
solution. This leads without further assumption to the Lorentz law of force and the identification
of «, with the electromagnetic vector potential.

IV. HAMILTONIAN DYNAMICS IN FLAT BICONFORMAL SPACE

Leaving biconformal geometry for the moment, we turn to a geometric approach to classical
Hamiltonian dynamics. We first show that the action of a classical one-particle system may be
used to generate biconformal spaces. Then, in Sec. V, we give a unique prescription for generating
a flat biconformal space. Begin with eight-dimensional extended phase space with canonical
coordinates X',t;p;,ps) where (,j=1,2,3). We assume we are given a super-Hamiltonian,
= (x3,p,).*® Imposing the constrain?Z=0 then givesp, as a function of the remaining
seven variablesp,= —H(p;,x',t), with H the usual Hamiltonian. This constraint insures that
time appears as a parameter rather than an independent dynamical variable. Now consider the
Hilbert form

w=Hdt—p;dx'. 4.1

The integral ofw is the action functional. The exterior derivative @fmay always be factored:

d—aHd‘Dd &Hd Odt+ dx'Odp; = | dx aHd Ol d &Hd 4.2
w_ﬁ_Xr X t+(7—pi p;Ldt + dx pi=|dx r9_p. t pi+(9_Xr t). ()

Therefore, if we define

=[x — gt ~(dp+ gt
w=|ax—— - dt], o= dpit+ o7 dt,

J
P 4.3
(1)4Edt, w45d%= 0,
then we can write
do=0?low,= o' Do; . (4.4

This factoring is clearly preserved by local symplectic transformations of the six-halsis, ], as

well as reparametrizations of the time. Obviously these transformations include the usual canoni-
cal transformations of coordinates as a special case. One class of such allowed transformations of
basis is achieved by the addition of,w® to w,, wherec,,=c,,. For the moment we take
Cap= "0, but below we show the existence of a unique choice,gthat leads to a flat biconformal
space.

We may also define a connection one-foraf,. This choice is uniquely determined by
requiring the resulting biconformal space to be flat, but first we show that every possible choice
leads to some biconformal space. Without imposing flathess any choice is possible. For this most
general case, leb? be any linear combination @é3 andw?, and define thénecessarily horizon-
tal) curvatures to be

Qi=dw)— wplwi— wngS— nbcﬂadwgﬂwg, (4.59
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QSEde—waS—wBDwE, (4.5b
ngdwg— wng—wngg, (4.50
Q5=dw— wilwl=0. (4.50

The necessary presence and form of @) for dw, and the dependence of the curvatures on
both ? and w, clearly show this to be a dilationally fléite., Qg=0) biconformal space. There-
fore, extended phase space together with a Hamiltonian symplectic structure may be viewed as a
certain kind of biconformal space. Turning this aroung, can interpret biconformal space, and
therefore conformal gauge theory, as a generalization of one-particle phase. space

It is worth pointing out that biconformal spaces, while including Hamiltonian extended phase
spaces as special cases, also contain all four-dimensional pseudo-Riemannian geometries as other
special cases. We therefore have a differential geometry rich enough to describe both general
relativity and Hamiltonian particle dynamics. Furthermore, as we show in Sec. VII, biconformal
spaces include the even larger class of all four-dimensional Weyl geometries, and this class allows
the consistent geometric unification of gravity and electromagnetism.

The presence of both Hamiltonian and Riemannian structures is reassuring, since it is one aim
of the study of biconformal spaces to place relativity theory and quantum theory in a common
mathematical framework. While the developments here suggest only the possibility of describing,
perhaps, a quantum particle in a curved background, the full picture is actually somewhat better
because the symplectic two-form of the Hamiltonian structure gives a complex structure to the
tangent/cotangent space and an almost complex structure to the biconformal space itself. The
biconformal structure therefore gives a natural complexification of space—time in such a way that
the usual real structure is immediately evident. One might hope, for example, to see some special
significance for the Ashtekar connection when biconformal space is expressed in terms of the
SU(2,2) conformal covering group instead of(4Q2). Whether these hopes are realized or not is
the subject of current study.

We also note here that the idea of a quantum interpretation of conformal geometry agrees in
some ways with earlier propos&is*’relating phase space, Weyl geometry, and quantum physics.
These proposals, however, lack the full geometric structure of conformal gauge theory, do not
demonstrate the intrinsically biconformal structure of Hamiltonian systems, and use a different
inner product than that proposed in Sec.(¥¢e also Ref. 41

We next show the relationship of the geometry described by Bd3.to classical mechanics.

Since the curvatures are two-forms and becaligé= 0, each of the curvature§? and(},,
is necessarily at least linear in one of the six basis formSd;). Thus, six of the structure
equations, Eqs(4.5b and (4.50, are in involution. This involution allows us to set = w;=0,
thereby singling out a fibration of the bundle by one-dimensional submanifolds, i.e., the classical
paths of motion. Examination of E@4.3) shows that these conditions simply give Hamilton's
equations of motion:

dxizﬁdt dp:—ﬂ_'-dt (4.6)
api : ox' )

The Frdbenius theorem guarantees the existence of solutions to these equations for the paths. The
remaining two structure equations then reduce to

dw}=dw=0, (4.7

which are identically satisfied on curves.
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It is of interest to further note that on the full bundle the condition thdte exact is the
Hamiltonian—Jacobi equation, since we may then wwitedS. Substituting fore and expanding

ds gives
Hdt+ d‘—&sd‘+ &Sd +‘98dt 4.8
picX' =507 dx'+ = dpat 5 dit, 4.9
so that
08_0 ﬁS_o 4.9
pi ' Ipa '
S
o Pis (4.10
and
H s . 3 aS i1
Wlxyt - E- ( . :D

Therefore, sincew is the Weyl vector of the generated biconformal space, the Hamilton—Jacobi
equation holds if and only if the Weyl vector is pure gauges dS. A gauge transformation
reduces the Weyl vector to zero. Since the dilational curvature is always zero for the geometry
built from a Hamiltonian system, wheathw=0 we also have

o' Dw;=0, (4.12

implying three linear dependences between these six solder forms. Together with the vanishing of
d.7z, the Hamilton—Jacobi equation therefore specifies a four-dimensional subspace of the full
biconformal space.

V. FLAT BICONFORMAL SPACE AND THE HAMILTONIAN GEOMETRY

In this section, we show how to specify a unidfleg biconformal space for a given Hamil-
tonian system. This is achieved by making a judicious choice of the solder and co-solder forms.

This time we initially regard the super-Hamiltonian as an unconstrained function of all eight
coordinates. The Hamiltoniafi, is again defined as the solution ferp, when.7Z is zero. Thus,
when.7Z is unconstrainedp, is also variable and the Hilbert form generalizes to

3= — padx®=—pu(.7,H)dt—p;dx'. (5.1
Then
dwd=dx20dp,, (5.2)
where vive reserve the symbols, w;, and o' for the special case whew7=0 and p,
) _'|I'-|h(e)z( éto,lrt)jié} and co-solder fornag) andwg are now identified by comparing the expression for
dwg to the flat biconformal solution, Eq€3.1). To make Eq(3.1a agree with Eq(5.1) we must

havea,(x)=0 andy,=p,. We can set,=0 with a gauge change as long @g, ,;=0. Then,
with y,=p,, the remainder of the connection is fully determined to be

0d=—padx?,  wi=dx?,
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©3=dpa— (PaPp— 3P 7ap) dX®, (5.3

wf;‘= - (535613_ 7% Mpq) pcdxd-

Note that canonical changes of variables do not chan@;by more than a scale changbp, so
this form of the connection is correct for any canonical variabiegp() —(q', ;).

We now restrict to the hypersurfac&=0 so thatp,= —H(p; ,x',t). The symmetric coeffi-
cient

Cab= PaPb— %pznab (5.9

provides a symplectic change of basis with respect to the manifestly closed and nondegenerate
two-form, dw3= wjlwl=dx?0dp,. The differential ofw) is still seen to factor as in Eq4.2)
either directly by differentiation or by substitution pf=—H(p; ,x,t) into wSDwg, with »§ and
wg given by Egs(5.3). The involution of Eqs(4.5b and(4.50 for w; ande' still holds, with the
classical curves given byw,=w'=0. We therefore recover the Hamiltonian system, and have
shown it to lie in a unique flat biconformal space.

The resulting curves in the biconformal space are easily found by first writing the frame field
in terms ofw' and w; :

0 JH i | i
wo= H_pi&_p dt—piwIL(X,X,t)dt—piw,
I

e dt
wp=w'+ — dt,

0 Ip;
w?,:dt,

. oH 1 dH
“’io:wi_(pipj+%(Hz_pz)éij)w]+(piH_a_XT_E (H?=p?) &y o?_p-)dt'
: (5.5
G H) (L OH )

Wy Pi— i (7_pipi 5( p) X ap; t,

. . ! dH
0} == (85~ 8" pi w|+(9_p|dt)'

TN ij IH
w;=Ho'—| 6'p;—H (9_p. dt,

4_ .
(Of —_5”(1)2.

The simple example of a free particle is instructive. Setiing w;=0 andH?=p?+m?+0, Egs.
(5.5 reduce to

2 ab
a7 Po

w8=W dt=mdr, wg= w8=uad7=dxa,

m2

0_1 0_1 a_
0,= 3Pawo=3Mpdr,  wp=0,
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where use ofwg or proper timedr in place ofdt simplifies the expressions. The solder and
co-solder forms are proportional to the displacement and momentum, respectively.

Also, we see again that the involution required to specify the classical paths necessarily exists.
Since the biconformal base space is spanned by the eight fixianddp,, the only way the
involution could fail is if there was an independetttidp, term in the torsion or co-torsion of the
p,= —H hypersurface. However, sindd is givena priori in terms of the other seven forms, this
cannot happen. We conclude that the Hamiltonian dynamics of a point particle is equivalent to the
specification of a hypersurfacg,=y,(y;,x?), in a flat biconformal space, and the consequent
necessary existence of a preferred congruence of curves in the hypersurface.

The principal significance of this result the unambiguous identification of the geometric
guantities which arise in the gauging of the 15-dimensional conformal group with corresponding
physical quantities in phase space. In particular, the extra four coordinates are identified with
momenta and the integral of the Weyl vector is identified with the acfibis insight should not
be construed as a replacement for the phase space description of particle mechanics. Rather, the
interpretation presented here is to be regarded as the one-particle limit of a full biconformal field
theory, and is intended to provide guidance for and a check on that field theory. We shall see in
Sec. VII that for curved biconformal spaces, the “momentumlike” basis fomfiscontain the
stress-energy source for the Einstein equation, further strengthening the present interpretation.

Notice that for multiparticle systems this interpretation of the variables of flat biconformal
space in terms of phase space variables differs from the uspalticle phase space of more
complicated systems. In the case of multiple particles in a small regitreafly) flat biconformal
space, the particles shaveththe momentum and configuration space. Thus, while a single point
of a multiparticle phase space characterizes the entire multiparticle system, the many particle
biconformal model will be described by many points in the same eight-dimensional space. None-
theless, the physical interpretation of the extra four coordinates as momenta remains valid, and
each particle treated separately withcally) obey its own set of Hamilton’s equations.

The same conclusion holds for the fields in biconformal spaces—the extra dimensions will
give the local field momentum. This may be seen in either of two ways. First, fields are the
continuum limits of multiparticle systems and their local momentum will therefore be the limit of
the particle momenta. Second, whenever a single field quantum is confined to an isolated region
which is small relative to the curvature, it will have an interpretation as a single particle. The
biconformal co-space must then give the momentum of that particle.

While accomplishing an interpretation of the biconformal variables, we have also circum-
vented problems with previous treatments of conformal gauge theory. Unlike four-dimensional
conformal gaugings which always reduce to a four-dimensional Weyl geometry in which the
inverse translations are auxiliary, the current approach retains the full conformal degrees of free-
dom. The extra four degrees of freedom are now seen to correspond to the inclusion of momentum
variables in the physical description.

VI. WEYL'S THEORY IN BICONFORMAL SPACE

Now consider how the dynamics of the Hamiltonian correspondence of Secs. IV and V is
modified by the presence of the vector fiedd, The Weyl vector is now given by

9= — padx®+ a,dx?= — 7,dx? (6.9
so that
dwd=dx?0dm,. (6.2
Specifying 7,= m4( ,x?) and settingw' = w;=0 again leads to Hamilton’s equations, in the
form

J. Math. Phys., Vol. 39, No. 1, January 1998

Downloaded 07 Sep 2011 to 129.123.67.2. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



316 James T. Wheeler: Conformal gauging and phase space

. 197T4
dx'=— —dt, (6.39
(9’7Ti
(9774
dp;=—- dt. (6.3b

Maintaining our previous identificatiop,= —H= —(m?+ p?)'? we find
4= — (M2 +p?) 2= ay= — (MP+ (7' + a') (i + &)~ ay. (6.9
Hamilton’s equations become
SR i

i _
dx T2t (rt )2 dt= (m2+p?) 12 dt

or

X= 6.
(m?+p?)T? (6.5
for the position variables and
dm = S0t o i dt=— 2% Gt—x g d 6.6
- ' (M?+ (7 + a)?)? a; dt= o t—x a; ;dt (6.6)

for the momentum. The left-hand side of E§.6) expands to
(9ai .
dWi:dpi_ 7 dt_a’i'jdXJ,

which finally leads to

dpi _ day, Jdaj
dt ot

W'ﬁ‘ It +5(j(ai’j—aj’t). (6.79

For the time component we have

dp4_d _d 2 A2\U
gt gt (mataa)= g (=(m*+p9) %
1 . dp| . dp, L. (96!4 &ai
_ (el SRS Bl IR | et S |
ST P gy TN Tt X(ax' at)' (6.70

Equations(6.7) give the Lorentz force law if we identify

a;=q(d,—A))=—0qA;.
Thus, the existence and form of the electromagnetic force on a charged particle is correctly
predicted by the general solution for flat biconformal space. The presence of the vectar,field

its gauge dependence, and its proper coupling to matter are direct consequences of the local gauge
theory of scalings and of our identification of Hamiltonian dynamics as the specification of a
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hypersurface in flat biconformal space. Nor does this formulation suffer the objection made to the
original Weyl theory. Since we are studying precisely the flat biconformal spaces, there is no
dilational curvature and no measurable size change.

In concluding this section, we comment briefly on the relationship of these considerations to
the standard 1) model of electromagnetic field theory. Biconformal space has a natural metric
structure based on the Killing metric of the underlying conformal group. The Killing metric has
eigenvaluest 1 and zero signature, hence the local form

K, z=diag 7ap,— %), (6.8

where (7,.%)=(1,...,8). Consequently, the proportionality constant in the identification between
y, andp, is purely imaginary® Since the vector fieldr,(x) is real, we have

Ya=N(ipat+a,) (6.99
=iN(pa—iay) (6.9p

as the relationship between geometric and physical variables. Since the proportionality constant
drops out of Hamilton’s equations it is not measurable classically, but it must be included when-
ever particle paths are allowed to deviate from the classical trajectories. Thus, the real-valued
four-dimensional scale invariance that preserves the form of the standard flat biconformal connec-
tion becomes a (1) invariance when applied to the physical variables of @b).

VII. COUPLING TO GRAVITY AND OTHER FIELDS

So far, we have motivated a new eight-dimensional gauging of the conformal group, found the
class of flat solutions of the resulting biconformal spaces, and shown how to interpret the flat
solutions as a phase space for a single particle coupled to a background electromagnetic field. In
this section, we generalize these results to gravitating biconformal spaces in which the solder form
satisfies the Einstein equation with arbitrary matter as source, and the vector potential identified in
the previous sections satisfies the Maxwell field equations with arbitrary electromagnetic currents.
The results of this section therefore comprise a unified geometric theory of gravitation and elec-
tromagnetism.

Our starting point is the full set of structure equations, E@s12, which define the 15
curvature two-forms). Each of these curvatures has the three biconformally invariant terms
displayed in Eq(2.13. In addition, we note that the two-formhw$ is separately biconformally
invariant, and the solder and co-solder form$ and w? transform tensorially. As long as the
corresponding Bianchi identities are satisfied, a specification of any combination of these fields
may be used to invariantly determine subclasses of biconformal geometries.

To begin, we seek some general constraints to limit the number of independent fields. For
classical geometries it is reasonable to assume that no classical path in phase space encloses a
plaquette on which the diIatiom,g, is nonvanishing. The simple@iut by no means the onlyvay
to guarantee this is to just s@t8=0. We also expect that the space—time torsion will vanish in
typical classical models, and again make the simplest hypothesis, that the full tdrstorot the
co-torsion is zero. Thus we have the general constraints

Q9=0, (7.2

Q3=o0. (7.2)
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318 James T. Wheeler: Conformal gauging and phase space

Next, we note that the vanishing of the torsion puts the solder form in involution. Assuming the
resulting foliation to be regular, there exists a four-dimensional submanifold of the base space
spanned byw§=€?*. As a final general constraint, we require the existence of a complfgtitm

the €* basis in which the space—time curvature is traceless:

pac=0 [in the (é*f,) basig. (7.3

We shall show that these three constraints are sufficient for the resulting class of geometries to
take a recognizable form. Thereris restriction of the dependence of any of the fields on the eight
coordinates, X*,y,). Notice that we now return to the use of Greek indices for general coordi-
nates.

In addition to the general constraints above, we posit two field equations. The first provides a
source for the Weyl vector, which we take here to be in the typical form for an electromagnetic
current

*d* dwd=J=J,(x) €. (7.4a
Finally, part of the co-solder form is determined by an arbitrary stress-energy fEpsoia

Wd=T ot , (7.4b

N

where7,=— X(T.o— $7.5T)€°. The consistency of these expressions and the form of the remain-
ing part of the co-solder form are established using the general equationg,7Bgs(7.3), to-
gether with the structure equations, E(&12).

The central result of this section is that a biconformal space is in 1-1 correspondence with a
four-dimensional Einstein—Maxwell space—time if and only if EGE1D)—(7.4) hold. The 1-1
correspondence is based on an isomorphism between the biconformal co-spdcerat the
tangent space to a four-dimensional space—time at a correspondingoifib see roughly how
this isomorphism occurs, note that the biconformal base space is spanned by the differentials
(dx*,dy,). Settingx*=x} givesdx§ =0, thereby restricting to the subspace spannedyhy We
will show that the conditions above make the biconformal space flat ity theriables, giving a
four-dimensional Minkowski space with bagily,. Then, because the bagsly, transforms op-
positely under Lorentz transformations frair”, and because th#x* spans the cotangent space
of an orthogonal four-dimensional submanifold, there exists an isomorphism betweely,the
space and thtangentspace of the submanifold. A more complete presentation of the techniques
used and some related results are given in Ref. 49.

The equations to be solved are

dof= wplog+ wilug— 7pe7* ‘wdlog+ O3, (2.124)
dwi= wg[lwg-i- wg[lwg, (2.121)
da)g= wng8+ wngg+Qg, (2.12¢)
dwd=wilwl. (2.12d)

The first part of our proof follows Theorem | of Ref. 49. We begin with the Bianchi identity for
Eq. (2.120), which follows by taking the exterior derivative and usidg=0. The result is

wy003=0, (7.9

which in particular shows that the momentum term of the curvature vanishes
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Qacd=p, (7.6)
Similarly, the Bianchi identity for Eq(2.12d) requires
QPd=0 (7.7

for the co-torsion. Together with the vanishing of the dilation and the torsion,(Edgs.and(7.7)

imply that the bundle is momentum flat, i.e., the momentum term of each curvature vanishes.
Next, we use the involution of the solder form, as noted above. The involution means that the

biconformal bundle is foliated by 11-dimensional subbundles on wéafh 0. On this subbundle,

using the momentum-flatness, the structure equations reduce to

doi=wglod, (7.89
dwgzwg[lwg-i— wngg, (7.8b
dw$=0. (7.89

Equations(7.8) are just the structure equations for a flat four-dimensional Weyl geometry. Equa-
tion (7.8a shows that we can perform a Lorentz gauge transformation on the entire bundle such
thatw‘g‘|w8:0=0, while Eq.(7.89 shows the existence of a scaling such sz%ltwg:o:O. Follow-

ing these gauge changes E@.8h takes the simple form
dwg= 0
with the immediate solution

wglua=o=TFa"(Xx)dy, (7.9

where we have introduced four coordinatgs to span the four-dimensional base space of the
submanifold. Notice that the coefficient matifiy“(x) must be nondegenerate.

Now, assuming the foliation to be regular, the space of leaves of the foliation is also a
four-dimensional manifold spanned lay§. There exist coordinates* such that

wh=e,’(x,y)dx*=¢e (7.10

so that each leaf of the foliation is given by some constant vatuexs .

From the subbundle, with connectiasf)|, =0, wgly, =0, andwyl, =f,, we extend back to
the full bundle by allowingx to vary. This can change each connection form at most by a term
proportional todx* or equivalentlye?, so the full connection may always be given the local form

wp=Cp€, (7.113
wo=€X(X,y), (7.11B
wd=f#(x)dy, +Bape®=f,+B,, (7.110
wg=W,€, (7.11d

whereW,, B,,, andC} are functions of all eight coordinateg,y,). The functional depen-
dence ofe,?, while a priori unspecified, is actually restricted by E@.12b). Sincew] and wg
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depend only ore® and notf,, writing outde® in coordinates immediately shows thate,*=0,
where we writegd”=4d/dy, and d,=d/dx". Therefore, we may drop thg dependence in Eg.
(7.11b.

If we had made a different initial choice of the coordinaggs the connection would still be
of the form given by Eqs(7.11), althoughW,, B,,, andC{. would be different functions. We
can therefore assume without loss of generality that the be3if ) has been chosen as the one
in which the space—time curvature is tracefree.

Next, after dividingB,;, into symmetric and antisymmetric parts,

BabE Sab(x)+ Fab(x) (7-13

with S,p=S(ap) andF ,,=F(ap), We substitute Eq.7.119 into the dilation equation, E¢2.12d),
to find

dwd=€/\f,+F=dx*/\f ,"(x)dy,+F, (7.13
whereF=F,,¢2/\é’= F,.,dx*/\dx” andf,"=e,f,". The mixed terms of Eq.7.13 yield
W, "=—f,"(x), (7.19
which is immediately integrated to give
wg=W,dx*=(—f,"(X)y,+A,(x))dx* (7.19
up to a gauge transformation. Hekg(X) is an arbitrary integration constant for thhentegration.

We could continue to carry the field,”(x) through the remainder of the general constraints,
but it is simpler to employ the field equation to remove it now. In a more general class of models,
f,"(x) provides an additional unspecified set of fields. While it is easy to conjecture that these
extra fields may lead to a geometric electroweak thebyy(x) appears on the surface to be a
translational rather than a rotational Yang—Mills field, so that the required quadratic terms are
missing from the field strength. The proper role of these fields is under study. For our present
purpose, we simply note that the field equation

*d* dwd=J=J,(x)e? (7.3
has no source for the part of linear iny, and therefore gives

[*d+df,"(x)]y,=0 (7.16
for they-dependent part of the space—time term. This is a four-dimensional electromagnetic-type
equation for the “potential™f ,=f ,"(x)y,, which has the unique solutidf),”(x) =0 for vanish-
ing boundary conditions at infinity. To this solution we add the particular solutjér const,
sincef ,”(x) must be invertible as noted above. Finally, a constant change of tuerdinates
givesf,”"= 4, , simplifying the co-solder form to

wd=e,4(X)dy , +B,,,(X,y)dx*, (7.17
wheree,* is the inverse te,2.
With the solder form given by Eq7.17), Eq. (7.15 becomes
wg=W,dx*=(—y,+A,(x))dx". (7.18
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Thus, this entire class of geometries has the same “minimal coupling” form of the Weyl vector as
we found for the flat case. Notice also that the form of E18 is not affected by a purely
x-dependent gauge transformation, which is consistent with the interpretatiomsthe electro-
magnetic vector potential.

Next, we move to Eq(2.128), which becomes

de?=wi\+ PN wl. (7.19
This may be uniquely solved for the connectiof). Let
wp=ap+ B, (7.20

whereaj is the usual metric compatible spin connection satisfying

det=e’0ad (7.2
and require
0B+ w30e?=0. (7.22
Equation(7.22 is solved uniquely by
Bo=—Wpe+ 177 Wye", (7.23

so we have now satisfied two of the four structure equations.
Next, we impose the tracelessness condition for the space—time term of the curvature in the
(€2,f,) basis:

02 ,.=0. (7.24
Rearranging Eq(2.123 to solve forQ)§ we find
b=dwp— wg0wg— wplwi+ 7uen* wglng (2.123
=(dap— ap0ag) + (dBy— Bylag— apB3) — Bi0BE — wple+ pcn* wg e’
=Rp(a)+DB5— B30¢ — wplE"+ 707 wge’, (7.25

where we have writte® for the covariant exterior derivative using te&compatible connection
a%, andRi=daj— e;0a? is the usual Riemann curvature two-form. Substituting &qL7) for
w, and(7.23 for B, some algebra leads to

g: g+ 7]bc[ DW°e*— DWae" + ercea] + fbea_ ﬂbcﬂadfdec+ Bbea_ ﬂbcﬂadBdec.

(7.26
Finally, expand
DW3= — 52°Dy, + DA (7.27
While DA% is independent oy, , we must further expand
Dy,=d(ey “y,) — apea”y, = ey dy, + (dep” — agea”)y, . (7.28

The first term in Eq(7.28) is simplyf, . For the final term we use the Christoffel connectith,
and the covariant constancy ef*,
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dxPD gept = dep — ape, +ep T, zdxP =0 (7.29
to write
Dybsz_ebar’uaﬁdxﬁy’usz_FbceCEfb_Fb. (73@

Now substitution into Eq(7.26 shows that the cross and momentum terms of the curvature
vanish while the components of the space—time term become

b ed= Rbca™ (DAt Boet Bpe) 85+ (DgAp+ g+ Bpg) 85
+ Dot 7D Ag+ T get Bge) 85— 71 7° U D gAg+ gt Bga) Ot
— We(Wy 83— 71 729IWg 8) + Wy Wy 83— 75t 779Wq 8) + WA( 75085 — 75¢63).
(7.3)

Next, by setting the trace dj., to zero, we can insure that the Einstein equation holds with
arbitrary stress-energy tensor. Contracting, we find that the antisymmetri€)agt- Qg ., is
identically zero while

Q(a:cb: Rab+ Z(A(a;b) + Fab+ Sab+ WaWb) + ﬂab(AC;c'f' Fcc+ SCC_ 2W2) =0 (733

relatesB ap) = Ssp to the Ricci tensor and the vector potential. If we require
SabE'7ab_(A(a;b))+rab+WaWb_ %WabWZ)a (7.33

where.7,,=—3(Tap— 37apT) and T, is the electromagnetic stress-energy tensor constructed
from Ay plus the stress-energy tensor from whatever other phenomenological fields one wishes to
add, then Eq(7.32) reduces to the Einstein equation with soufgg. We shall see below that the
choice given by Eq(7.33 for S,,, greatly simplifies the expressions for both the curvature and the
co-torsion.

Nothing further is required in order to satisfy the final structure equation(ZtR29. Instead,
we definethe co-torsion by Eq(2.129, giving

Qg= dwg— wngg—wngg. (2.129
This is easiest to evaluate if we writeg in terms of W, wherever possible, resulting in
w00=.7,—DWa— W,W + W27, €°. (7.34

Using the tracefree conditiofii.e., the Einstein equationto replace.”7, by .72,=— 3(Rap
— t7.0R) € we find that Eq(2.129 takes the form

09=Dwl- B20wd— wdOW = Dwd+W,dW— WP 7, &0l — 020W. (7.39

Substituting Eq.(7.34 for wg and using the Ricci identitpzwa:—ngb (for an arbitrary
one-formw,) gives, after several cancellations, the surprisingly simple result

Q0=D.7,+[RE— (6585~ 1°°9aq) 7691 W, = D72, + CEW,,, (7.36
where Cg is the Weyl curvature two-form. Notice that all derivatives of the Weyl vector have

cancelled, so the resulting co-torsion also has vanishing momentum and cross terms. If we use the
contracted second Bianchi identity to wrile72, as a divergence of the Weyl curvature, we find
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0%=—-DyC2+Clw,, (7.3

so the co-torsion is simply the Weyl-covarigniot af-covariany divergence of the Weyl curva-
ture tensor, hence a direct measure of the deviation of the underlying space—time from confor-
mally flat*?

Finally, remarkable cancellations also occur if we use &3 to replaceB, in the full
curvature tensor given by E¢7.26). The result is simply

Qé=cb. (7.38

The biconformal geometry is now fully specified except for the vector poteffjal This is
fixed by the field equation

*d* dwd=*d* dA=1, (7.49

wherel is the electromagnetic current.

To complete the proof of the sufficiency of ES8.1)—(7.4) for the biconformal space to
correspond to an Einstein—Maxwell space—time we only need to show that the biconformal ge-
ometry is effectively four-dimensional. This happens because the extra dimensions of the bicon-
formal base space can be identified with the tangent space of the Riemannian space—time. Such an
identification works for two reasons. First, the co-vector begis has the same scale and Lorentz
transformation properties as the basis vectdix* for the tangent space, so we can identify the
bases. Second, since both the co-space and the tangent space may be taken as Minkowski vector
spaces(i.e., both are flgt the two complete vector spaces may be identified. Thus, while the
coordinatesy,, act as momentumlike componentsaaftangentvectorsy, dx*, their differentials
dy, from atangentbasis. As discussed further in the final section, this isomorphism guarantees
that the extra four dimensions do not lead to undesired new macroscopic effects.

Notice that, while the content of the biconformal space does not exceed that of an Einstein—
Maxwell space—time, we cannot claim that a biconformal space satisfying(Eqs—(7.4) is
homeomophic to a four-dimensional Weyl geometry because the Weyl vector of the biconformal
space retains linegr, dependence. It is this difference that leads to the vanishing dilation of the
biconformal space.

The converse, that a four-dimensional Einstein—Maxwell space—time extends to a unique
biconformal space satisfying Eq&.1)—(7.4), is immediate, since, given the stress-energy tensor
and electromagnetic current determining the space—time, we can find the solder form and the
electromagnetic vector potential and from these directly write down the connection of the associ-
ated biconformal space as

wo=(—y,+A,)dx", (7.393

wd=e¥(x), (7.39b
0

w00=73—DWa— W,W + W2 7,,.€°, (7.399

wp= ap— W+ 772 Wye, (7.399

where we invert the vector space isomorphism above to map the tangent space into the extra four
dimensions of the biconformal space. The form above for the connection leads directly to the
biconformal curvatures

Q5=0, (7.40a
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03=0, (7.40b
0%=-D,Cl+Ciw,, (7.400
02=cg, (7.400

and the field equations are unchanged. In terms of the natural conformal expreggions,, and
wd, the field equations are

Poa=T s (7.413
*d* dwd=J. (7.41b

The expressions for the curvature above make use of the tracelessness cddlitio® to
write the co-solder form in terms of the Ricci tensor instead of the stress-energy tensor. Consid-
ering the form of the curvature if we do not impose the tracelessness condition, we can interpret
the Einstein equation as being that condition that red@eandQ? to the Weyl curvature and its
divergence, respectively.

It should be pointed out that Eq&.40 are quite remarkable for biconformal curvatures in
that none of the curvatures has a cross term or momentum term. Despite the eight-dimensional
formulation of the theory, all terms containinly,, have dropped out. The space spanned by the
y coordinates is therefore flat, and plays no role in the gravitational effects of this class of models.

At this point, we can only conjecture whether or not these biconformal spaces satisfy some
action principle. There are certainly some action densities which are natural candidates. Specifi-
cally the curvature-quadratic eight-foerD*QQ is closely related to the action of the four-
dimensional theories discussed in the Introduction, and clearly has the flat biconformal spaces of
Sec. Il as particular solutions. However, even expressing the resulting field equations is compli-
cated, first because there are 12 Weyl-invariant parts to the curvature and second because the
Bianchi identities used to reduce the field equations are correspondingly lengthy. We therefore
postpone further investigation of field actions to subsequent research.

In the final section, we discuss the observability of the extra dimensions of biconformal
spaces.

VIII. DISCUSSION

By placing conformal gauging on an eight-dimensional base space instead of the usual four-
dimensional base space, we have overcome the long-standing problem of size change in physical
models based on scale invariance. In this section, we demonstrate that our interpretation of bicon-
formal gauge theory is consistent with experience. In particular, we examine the observable
consequences of the added dimensions with regard to structure and function.

Three technigues have been used for adding extra dimensions in fundamental models of the
world: (a) topological compactification of the extra dimensiofiB,construction of laws of motion
or field equations that dynamically reduce the extra dimensions to a sufficiently small scale that
they play no macroscopic rof8,or (c) identification of the extra dimensions with everyday
properties already associated with macroscopic matter. Techf&jus routinely employed in
Kaluza—Klein field theories, while techniqu®) has been used recemly? in an attempt to
associate a fifth dimension with mass. The third technigcie,was used in the development of
special relativity where time came to be seen as a coordinate in a higlkerfoun dimensional
space rather than as a parameter of an intrinsically different type on a three-dimensional space.
The local interpretation of biconformal space is of ty@® One should thereforaot think in
terms of compactification or other standard Kaluza—Klein ideas. Instead, we regard the extra four
dimensions of the biconformal co-space as familiar, routinely observable macroscopic dimensions,

J. Math. Phys., Vol. 39, No. 1, January 1998

Downloaded 07 Sep 2011 to 129.123.67.2. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



James T. Wheeler: Conformal gauging and phase space 325

and ask whether a coordinate interpretation of four-momentum is consistent with experience. We
demonstrate this consistency by focusing on the two necessary axes of correspondence:
Intrinsic structure:The biconformal co-space must have the same mathematical structure and
transformation properties as momentum space.
Dynamical function:The biconformal dynamical laws and description of collisions or inter-
actions must accord with experience.
We address each of these in turn, then conclude by citing positive evidence for a coordinate
interpretation of momentum.

A. Intrinsic structure

For either flat or curved space—times, momentum space is the tangent space at each point of
space—time. To identify the biconformal co-space with the tangent space we must check that both
the Minkowski vector space structure of the tangent space and transformation properties of the
tangent basis are reflected in the co-space.

The biconformal co-space is a Minkowski vector space if and only if it is flat. This flatness is
obvious for the flat solutions studied in Secs. IlI-VI, while it is a consequence of the vanishing
torsion and dilation in the curved models of Sec. VII. In either of these classes it is therefore
possible to set up a vector space isomorphism between the tangent space and the co-space. We
note that the same isomorphism also holds between the tangent space of a Riemannian space—time
and the co-space coordinates ofh@mal biconformal spac® Normal spaces are defined to be
torsion-free spaces in which the dilational curvature is closed, the Weyl one-form is exact, and the
space—time term of the curvature tensor is trace-free. We therefore have two large, disjoint classes
of biconformal geometries in which the biconformal co-space is isomorphic to the Riemannian
tangent space.

There are two transformation properties of momentum variables which we must also check.
First, under Lorentz transformatiorns, transforms with the inverse to tisametransformation as
x* in flat spaces odx* in curved spaces. That is, there must not be two independent Lorentz
transformations which can be applied to the space and co-space separately. This is a notable
property of the eight-dimensional gauging of the four-dimensional conformal group. Because we
began with the space—time conformal group, there is only a single set of local Lorentz transfor-
mations. Moreovery, has the proper covariant form. The second transformation property re-
quired of momentum is that its scaling weight be., since(using Planck’s constanmomentum
has geometric units of inverse length. This corresponds correctly to the inverse length ynits of

B. Dynamical function

We now consider whether Hamiltonian dynamical laws and our experience of collisions or
interactions are consistent with a coordinate interpretation of momentum. There are three essential
points concerning a coordinate interpretation which must correspond to our usual experience.

(1) Hamiltonian dynamical equations should describe the classical motion of particles and fields.

(2) While there is no continuity requirement on momenta, coordinates should not change discon-
tinuously.

(3) From our experience we know that collisions only occur between particles which are nearby
in their space—time coordinates, and i necessarily occur when their momentum separa-
tion becomes small. We must show how this observation is consistent with the single proper
biconformal separation, which depends on both position separation and on momentum sepa-
ration.

For agreement on point 1, we require a match of dynamical properties between the Hamil-
tonian dynamics of momentum space and the dynamics of biconformal spaces. In Secs. llI-VI, we
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showed that the usual Hamiltonian dynamical picture is a natural property of flat biconformal
spaces. Not only do the co-space coordinates act as momenta, but the structure equation

0

0_ a
dwy= wywy

shows thatiwg is a manifestly closed, nondegenerate two-form, hence symplectic, and we have
the usual Hamiltonian dynamical structure associated with one-particle phase space. Indeed, we
demonstrate that any Hamiltonian system generates a super-Hamiltonian hypersurface in a unique
flat biconformal space, and conversely that a hypersurface in a flat biconformal space gives a
unigue Hamiltonian system.

In the dilation-free curved geometries of Sec. VII and in normal biconformal spaces we can
expect the Hamiltonian dynamical laws of flat biconformal space to luadlly. As long as we
look at a sufficiently small neighborhood to permit a single-particle picture, the considerations of
Secs. llI-VI hold without modification. That fields on space—time also pose no problem may be
seen from three different perspectives:

(8 The observable properties of fields are characterized by tensors built on the tangent space, so
the isomorphism between the tangent space and the co-space insures that the same properties
can be measured in both models.

(b) Fields and their properties are derivable as the continuum limit of many individual particles,
so as long as interactions between particles are correctly predicted, the field limit may be
expected to hold.

(c) Fields must admit classical, single particle limits. Thus, the highly localized field of an
isolated electron moves according to a classical single particle Hamiltonian.

The net effect of these considerations is that there is no particle or field property that one
might observe in a flat, dilation-free, or normal biconformal space that could not also be described
in the tangent bundle of a four-dimensional Riemannian geometry. Moreover, biconformal spaces
automatically predict the presence and form of electromagnetic fields and the Lorentz force law,
properties which in a Riemannian space—time must be added by hand.

Now consider point 2. The nearly instantaneous change of momentum which occurs when,
say, a ball bounces off a wall, seems to violate the notion of continuous motion in the momentum
dimensions. However, the continuity of the actual dynamics underlying the bounce can be seen in
either of two ways. Most simply, we can choose the super-Hamiltonian with a phenomenological
potential representing the wall. A realistic potential will not have an actual discontinuity, so the
resulting motion predicted by Hamilton’s equatioje by the biconformal involution of Egs.
(4.5b and (4.59] will be continuous.

A more fundamental way of seeing the continuity of momentum during the collision is to use
the electrodynamic law predicted by local biconformal theory to examine the actual motion of
each constituent particle of the ball in the appropriate background field. In this view, the apparent
discontinuity arises because the region of biconformal space chosen for study is too large for the
flat approximation to be valid. Shrinking the region to one where a single-particle interpretation is
expected to hold solves the problem.

Moving to point 3, we know that in order to collide or interact strongly, the proper separation
of two particles must be small. For this fact to be consistent with our experience that collisions
occur whenever the space—time separation becomes small regardless of the momentum separation,
is nontrivial. Indeed, recent modéts?in which a fifth dimension proportional to mass is added
to space—time fail this test—in those models, two particles of vastly different mass will not
generally collide.

In the biconformal models presented here, we find that the proper distance between colliding
objects behaves according to our experience. The proper interval is given by the conformal Killing
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metric of Eq.(6.8). While Eq.(6.8) applies to the orthonormats§ ,wg) basis, we easily change to
the (€%,f,) basis, where we find that the metric takes the form

- 27/ﬂ(ab) 5mn
gab: 5nm 0 ’

Where 7 3p=-7ap+ @ap+ WaW,— 3W?7,;,. Therefore the squared intervé$® between the ball
and the wall in terms of their phase space separatidng'(Ap,) is

ds?= =27 1A XTAX"+ 2AXMA Py

which vanishes when the spacetime separatioff vanishes and does not necessarily vanish
when the momentum separatidmp,,=0. This is exactly what is required.

In parts A and B we have shown that there is no mystery to the extra four dimensions of the
biconformal co-space. Indeed, the coordinates for these extra directions are always immediately
available as the energy and momentum of the system under study. Thus, if we want to probe the
full biconformal geometry by “walking off” in the extra directions, we already know exactly how
to do it. We must vary our energy or the direction of our motion. Any change of the tangent to our
world line is a change in location in the momentum sector of biconformal space. Of course,
because we are constrained to obey the classical laws of physics, we only experience four degrees
of freedom, not eightexcept as initial dynamical conditions, when we need all g¢ightparticu-
lar, conservation of energy and momentum constrain motiomty te=0 subspaces.

The new picture would be particularly convincing if there were some direct positive evidence
that (perhaps under extreme conditipise full eight-dimensional character of the world is mani-
fest. For such evidence we must study biconformal spaces in which the fields take on a more
generaly dependence. Therefore, the following observations are necessarily conjectural, the in-
vestigation of the microscopic meaning of biconformal space lying clearly beyond the scope of the
present paper. Nonetheless, as long as the deviation from the normal or dilation-free classes are
small, we may expect the new evidence to show up as a dependence of some physical fields or
parameters on momentum as well as position. We briefly discuss two physical variables which
have this property: quantum mechanical wave functions, and running coupling constants.

The most evident dependence of fundamental physics on momentum is the phase space
duality found in quantum mechanics. It is well understood that the wave function of a particle may
be equally well represented using either momentum or position coordinates. In a very direct sense,
the momentum of the particle is used as a coordinate. Representations such as the number basis for
the harmonic oscillator, which lies midway between momentum and position variables, are also
frequently used.

The fact that we do not independently probe both position and momentum simultaneously
suggests that even at the quantum ldetlleast semi-classicaljlynatter is substantially restricted
to the neighborhood of some phase-space hypersurface. This might be understood in terms of
biconformal space as near-normal biconformal behavior, with microscopic deviations from an
involute or nearly involute subspace. The picture is consistent with the view of the path integral
approach, which says that a quantum system essentially probes all phase space paths. In the
biconformal picture, a path integral would simply be taken over all eight coordinates.

A second piece of evidence that momentum components act as independent coordinates is the
existence of running coupling constants in quantum field theory. It is found experimentally that, at
high energies, the strength of the electromagnetic and weak couplings vary with energy. Such
energy-momentum dependence is easily understood if energy and momentum are coordinates, but
is otherwise a somewhat nontransparent result of detailed field theoretic calculation.

Considerable progress has been made in establishing the connection between quantum sys-
tems and scale-invariant systefis? It remains to be seen to what degree specific biconformal
models can be developed which will make these final observations precise.
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