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We use the Dorfmeister–Pedit–Wu construction to present three

new classes of immersed CMC cylinders, each of which includes

surfaces with umbilics. The first class consists of cylinders with

one end asymptotic to a Delaunay surface. The second class

presents surfaces with a closed planar geodesic. In the third

class each surface has a closed curve of points with a com-

mon tangent plane. An appendix, by the third author, describes

the DPW potentials that appear to give CMC punctured spheres

with k Delaunay ends (k-noids): the evidence is experimental at

present. These can have both unduloidal and nodoidal ends.

1. INTRODUCTIONDorfmeister, Pedit and Wu presented in [Dorfmeis-ter et al. 1998] a method by which all immersedCMC surfaces can, in principle, be constructed. Theconstruction is based on the observation that theGauss map of every CMC surface is harmonic andevery harmonic map from a surface D to S2 is theprojection of a horizontal holomorphic map from itsuniversal cover ~D into a certain loop group. Thusthe data for the DPW method is a holomorphic 1-form with values in a certain loop algebra: this iscalled a holomorphic potential. One of the di�cul-ties in using this method to construct new surfacesis that if the potential actually lives on D it neednot follow that it produces an immersion of D. Weusually only obtain an immersion of ~D: this is theclosing (or monodromy) problem. Therefore part ofthe purpose here is to present some examples of solv-ing the closing problem in the simplest case, whereD = C �.The simplest known examples of CMC cylindersare the Delaunay surfaces, which are characterizedby being cylinders of revolution (this includes thestandard cylinder). From [Korevaar et al. 1989] oneknows that if a CMC cylinder is complete and prop-erly embedded then it must be a Delaunay surface.Also, every properly embedded annular end must be
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a Delaunay end (i.e., asymptotic to a Delaunay sur-face) even if the surface is not embedded [Korevaaret al. 1989]. For example, the `bubbletons' studiedin [Sterling and Wente 1993] are immersed cylinderswith no umbilics and both ends asymptotic to thestandard cylinder. The examples we will present in-clude cylinders which have one Delaunay end andany number of umbilics.In fact we present three new classes of CMC cylin-ders. The �rst class includes surfaces which arebest thought of as a Smyth surface [Smyth 1993;Dorfmeister et al. 1998] with the head replaced by aDelaunay end. Given the results of [Timmreck et al.1994] on Smyth surfaces we conjecture that thesenew examples are complete and proper immersions.Indeed these surfaces come in one-parameter fami-lies each of which includes a Smyth surface (with theumbilic removed) as a degenerate limit, in the sameway that the Delaunay surfaces are a one-parameterfamily containing the sphere (with two points re-moved) as a degenerate limit. The next class con-sists of CMC cylinders which contain a closed planargeodesic. The third class presents cylinders each ofwhich admits a closed curve of points with commontangent plane.Although it is very easy to read o� the Hopf dif-ferential from the potential, it is usually unclear howthe geometry of the surface is encoded in the poten-tial. For example, there is as yet no understand-ing of the conditions on a potential which ensurethat the surface is either proper, complete or embed-ded. The main obstacle in understanding the pas-sage from the potential to the surface is a loop groupfactorization (the Iwasawa decomposition). This ledus to build a numerical package that would com-pute this factorization and produce images of thesurface: the approach is described below. The re-sult is a computer laboratory, called dpwlab, writ-ten by the third author. Other attempts have beenmade to implement the DPW method numerically(see [Lerner and Sterling 1995], for example), butthey �nd the Iwasawa decomposition by �rst turningit into a Riemann{Hilbert problem (Birkho� factor-ization). The dpwlab directly computes the Iwasawadecomposition according to the theory described in[Pressley and Segal 1986].An appendix, by the third author, introduces aclass of DPW potentials that appear to give the tri-

unduloid surfaces classi�ed in [Gro�e-Brauckmannet al. 1999]. In fact the experiments predict thatthere is another family of 3-punctured spheres, withtwo unduloidal ends and one nodoidal end. A gen-eralization of the balancing formulae [Kusner 1991]applies to these latter surfaces even though they areno longer almost embedded. Moreover, these ideasare extended to produce a family of DPW potentialswhich will, it is conjectured, produce symmetric k-punctured spheres with equal asymptotic necksizes:the so-called equilateral k-noids. The experimentssupport this conjecture.
2. THE DPW CONSTRUCTIONBefore stating the DPW recipe, we introduce theingredients. For G � gl(2; C ), denote the analyticmaps of the unit circle S1 with values in G by �Gand de�ne the twisted loops by��G = �g 2 �G : g(��) = �g(�)��1	;where � = � 10 0�1�. Furthermore, de�ne
��+ = �g 2 �� SL(2; C ) : g(�) =Pk�0 gk�k;g0 = � a b0 a�1 � for a 2 R +�:The principal tool in the DPW method is the loopgroup Iwasawa decomposition: any � 2 �� SL(2; C )factorizes uniquely into a product � = Fb whereF 2 �� SU(2) and b 2 ��+.Now let us recall the DPW construction. LetD bea Riemann surface and ~D its universal cover. Denoteby 
1;0D the holomorphic 1-forms on D. Also de�ne���1;1 sl(2; C )= �g 2 �� sl(2; C ) : g(�) =P1k=�1 gk�k	 :The following steps (see [Dorfmeister et al. 1998])give an S1 family, called the associated family, ofimmersions (possibly with branch points) f� : ~D !R 3 �= su(2) with constant mean curvature H .
1. Let �� = P1k=�1 �k(z)�k 2 
1;0D 
 ���1;1 sl(2; C )and solve the initial value problemd�� = ����; ��(w0) = g; (2–1)where w0 2 ~D and g 2 �� SL(2; C ). Then �� isde�ned on ~D.
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2. Apply the Iwasawa decomposition to �� point-wise on ~D to obtain �� = F�b�.
3. The Sym{Bobenko formula yieldsf� = � 1H �i�@F�@� F�1� + 12F�e1F�1� �;where e1 = i�.We call the 1-form �� the holomorphic potential and�� the extended holomorphic frame. The unitaryfactor F� is called the extended unitary frame. Ourprincipal interest in this paper is to construct exam-ples where D = C � and provide su�cient conditionsto ensure that the resultant map f� is also de�nedon C � for � = 1.
2A. PropertiesWe list here a number of properties of the construc-tion which will be relevant for our surfaces.
Group actions. Notice that the surface depends onthe data ��; g; w0. It is clear from the construc-tion that the in�nite dimensional group G of holo-morphic maps  : ~D ! ��+ with (w0) = I actsby gauge transformation on the �bers of the map(��; g; w0) 7! f�, since the map �� ! �� leavesthe surface unchanged. In fact one can always gaugeaway the diagonal terms of ��. Another group ac-tion is the left action of �� SL(2; C ) on the initialcondition, g 7! hg for h 2 �� SL(2; C ), which iscalled the dressing action; compare [Burstall andPedit 1995; Dorfmeister and Wu 1993]. It is nothard to see from the Sym{Bobenko formula that thedressing action of the subgroup �� SU(2) can onlyresult in Euclidean motions of the surface, thereforeit is more usual to think of the dressing action asbeing by ��+.
Metric and Hopf differential [Dorfmeister et al. 1998].We may writeF�1� dF� = �(1;0)1 ��1 + �0 + �(0;1)1 �;where �0; �1 are 1-forms on the CMC surface. Asimple calculation shows that�(1;0)1 = b0��1b�10 :Further, if we write��1 = � 0 a1a2 0 � and b0 = � r 00 r�1�

for a1; a2 2 
1;0D and r : ~D ! R +, then it can beshown that f1 has metric 4r4ja1j2 and Hopf di�er-ential Q = � 12a1a2. It follows that f1 has branchpoints at the zeroes of a1 and umbilics at the ze-roes of a2. When f1 is unbranched (and away fromumbilics) the metric can be written as eujdwj2 for alocal conformal coordinate w on ~D and we haveF�1� @F�@w = � � 14uw �12Heu=2��1Qe�u=2��1 14uw � :
Symmetries. We cannot usually expect the symme-tries of the potential to be passed on to the CMCimmersion because they might not survive the com-bination of integration and factorization. However,there are two situations which occur in our exampleswhere symmetries will appear in the CMC surface.
A. Suppose � 2 Aut( ~D) is an automorphism withw0 as a �xed point and ��� = �(�) where � 2Aut(sl(2; C )) preserves the subalgebra su(2). Sincethe base point w0 is �xed, the solution to (2{1) willsatisfy ���� = �(��). Now, since � (or rather, itslift to the group) preserves SU(2), we have ��F� =�(F�) by uniqueness of the Iwasawa decomposition.Thus, by the Sym{Bobenko formula, ��f� = �(f�).We will produce examples of this below, where � isa real involution on C and � is either the identity or�(�) = ��t. These produce reection symmetries ofthe immersion.
B. Suppose that � 2 Aut( ~D) induces a �nite orderautomorphism on D, of order n, and that these con-ditions hold:
(a) ���� = ��.
(b) h = ��(�(w0))��(w0)�1 belongs to �� SU(2).
(c) f1 is an immersion of D itself.Then we may conclude that f1 has an n-fold rota-tional symmetry by the following argument. By (b)���� = h��, so by uniqueness of the Iwasawa de-composition ��F� = hF�. Therefore ��f1 = R(f1)where R is a Euclidean motion. But R must haveorder n, therefore it is a rotation. In the examplesbelow we will have D = C � and � will induce arotation on C �.
2B. Known ExamplesTwo classes of known examples will turn out to playan important role in understanding the new surfaceswe will examine later:
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Example 1. Recall from [Dorfmeister et al. 1998] thatpotentials of the form�� = ��1� 0 1p(z) 0� dz; (2–2)where p(z) = kzm, form 2 N [f0g and any constantk, give the Smyth surfaces [1993]. These surfaces arecharacterized as CMC planes which possess an in-trinsic isometric S1-action (with a �xed point). Ifwe think of these as singly punctured (topological)spheres, they have one end with m+2 `legs' and an(m+ 2)-fold rotational symmetry. We must bewareof some degenerate cases: taking p � 0 yields theround sphere while p � �1 gives the standard cylin-der. The asymptotics of these ends have been quitethoroughly studied. In [Timmreck et al. 1994] itwas shown that these surfaces are proper immersionsand that for 'n = �n=(m + 2), n = 0; : : : ; 2m + 3,there are polar coordinate rays t 7! f(tei'n) whichare planar geodesics. The curvature of these, in thelimit as t ! 1, tends to 0 for n even and 1 forn odd. The legs develop around those lines with neven, along which the distance from the origin growsfastest. The angle between the legs depends uponthe coe�cient k. Further, it was shown in [Bobenko1991] that the surface is bounded by a cone.More general surfaces can be obtained by allow-ing p(z) to be any polynomial [Dorfmeister et al.1998]. The resultant surfaces have m+2 legs, wherem = deg(p), each of which looks like a Smyth sur-face leg. To the best of our knowledge, there has

FIGURE 1. Sector of a Smyth surface bounded by anodoidal planar geodesic.

not been any work which describes the strength ofthis resemblance. Of course, these surfaces need notpossess either intrinsic or extrinsic symmetries.
Example 2. All the Delaunay surfaces can be obtainedwith the family of potentials�Del = A�dzz ; (2–3)whereA� = A�(a; b; c) = � c a��1+�b�b��1+�a� �c � :Here z is a coordinate on C � and we use as theuniversal cover the map C ! C � taking w to z =exp(iw). The conditions ab 2 R ; c 2 R withja+�bj2 + c2 = 14ensure that the map has period 2� (here, � is evalu-ated at 1 in the Sym{Bobenko formula). The signedneck and bulge radii of Delaunay surface with thispotential (respectively r� and r+) arer� = 1�p1� 16ab2H : (2–4)The potential �Del can be normalized by conjugationby a diagonal element of su(2) so that a; b 2 R .The parameter c, although not strictly necessary, issometimes useful. Its geometric e�ect is to introducea phase shift along the pro�le curve of the Delaunaysurface. Unduloids and nodoids are obtained whenab > 0 and ab < 0 respectively. The limiting caseab = 0 yields a sphere with two points removed. Infact the gauge transformation�� 7! �1�� + �1d; (2–5)with  = � pz 0��pz 1=pz� ;transforms the potential (2{2) (on C �) with p � 0into the potential (2{3) with a = 1, b = 0, c = 0.This gauge transformation will be useful later on.Below we will use �Del� and FDel� to denote respec-tively the holomorphic and unitary extended framesfor the potential �Del� with �Del� (0) = I. In particu-lar, notice that �Del� = exp(iwA�).
Remark. The Delaunay potentials �t into the follow-ing more general context. By [Burstall and Pedit1994, Theorem 4.3], each CMC surface with doubly
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periodic Gauss map can be obtained from a holo-morphic potential �� on C which is constant alongthe plane and with g = I, w0 = 0 in (2{1). Recallfrom [Bobenko 1991] that each such surface is par-tially characterized by its spectral curve, which is aRiemann surface with equation of the form�2 = � gYj=1(� � cj)(� � �c�1j );
with 0 � jcj j � 1. There is a (g�2)-parameter fam-ily of CMC surfaces with the same spectral curve:for g = 1 there is one surface for each spectral curveand this surface is a Delaunay surface. It can beshown (we omit the proof here) that one of the sur-faces with the spectral curve above can be obtainedby taking
�� = �2g�1

0BB@ 0 k�1 gQj=1(��2��cj)k gQj=1(��2�c�1j ) 0
1CCA dw;

where k = Qg1pjcj j. For example, the spectralcurve for the Wente torus has genus 2 and this po-tential will compute that surface once the cj areknown.
2C. Implementation of the DPW Procedure in SoftwareOf the three steps in the DPW process, the secondrequires the most attention. The integration step 1is performed using a standard fourth order Runge{Kutta method. We always work with potentials ��which are Laurent polynomials in �, hence we arealways dealing with the Iwasawa decomposition ofLaurent polynomial loops. In software, an elementof �� SL(2; C ) is represented as a �nite vector, con-sisting of the coe�cients of ��K to �K for some ap-propriate value of K (typically between 20 and 100).To explicitly construct the Iwasawa factors of �� oneproceeds as follows (see [Pressley and Segal 1986]).Let H denote the Hilbert space L2(S1; C 2) and letH+ � H be the subspace of maps whose Fourier se-ries possess only non-negative powers of �. De�neW = �H+ � H. Notice that this is the span of '1,'2, �'1, �'2, . . . , where '1, '2 are the columns of�, and that �W � W has codimension two. Nowcompute the orthogonal projectionsvj = proj('j; �W ) for j = 1; 2; (2–6)

and de�ne '̂j = 'j � vj : these two span the spaceV = W \ (�W )?. Finally, let F1; F2 be the Gram{Schmidt orthonormalization of the pair '̂1; '̂2, thenF = (F1; F2). It is worth recalling from [Pressleyand Segal 1986, p. 126] that on V the L2-inner prod-uct and the C 2-inner product coincide, hence F isunitary on S1.The most time-expensive part of the software ver-sion of the DPW procedure arises from computingthe projections (2{6). Although they can be founddirectly (say by Gram{Schmidt orthonormalizationof the basis '1, '2, �'1, �'2, . . . ), they are com-puted more e�ciently and stably with the followinglinear method. If V is a �nite-dimensional innerproduct space, U a subspace with basis u1; : : : ; un,and v 2 V , then proj(v; U) =Pxjuj where x1, . . . ,xn solve the linear system
v �Pxiui; uj� = 0; for j = 1; : : : ; n: (2–7)Since this system is Hermitian it can be solved byCholesky decomposition. Notice that if HK � Hdenotes the Laurent polynomials with zero coe�-cient of �k for k > K then �jHK ? HK for j > 2K,therefore all our calculations take place on �nite di-mensional subspaces of H.A further speedup is achieved when the twistedstructure of the loop group is exploited. Two ele-ments ofH with opposite polarity are L2-orthogonal.In this case, the linear system (2{7) decouples intotwo simpler Hermitian systems. This also meansthat the columns of b� = (b'1; b'2) are already or-thogonal, that is, b� is unitary. Hence the map f�can be obtained by using b� in place of F in the Sym{Bobenko formula and taking the trace-free part ofthe result.
3. CMC CYLINDERSIn this section we will present some new classesof CMC cylinders f� : C � ! R 3 for which �� 2
1;0C � 
 ���1;1 sl(2; C ). First let us describe someconditions under which the map f� will be peri-odic on C (see also [Dorfmeister and Haak � 2000]for similar results). For any holomorphic potential�� 2 
1;0C �
���1;1 sl(2; C ) the extended holomorphicframe �� has monodromyM�(�) = ��(2�)��1� (0);
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where we recall we have chosen to identify C � withC =(2�Z ). We would like to de�ne a similar notionfor the unitary extended frame F� but a priori wedo not know that the quantityMF (w; �) = F�(w + 2�)F�1� (w)is independent of w. However, we can prove thefollowing crucial lemma.
Lemma 3.1. Suppose M� 2 �� SU(2). Then MF isindependent of w 2 C and equals M�.
Proof. Since ��(w+2�) = F�(w+2�)b�(w+2�) wehave M���(w) = MFF�(w)b�(w + 2�) which im-plies M�F�(w)b�(w) = MFF�(w)b�(w + 2�). Theresult now follows by uniqueness of the Iwasawa de-composition. �Therefore, under the conditions of the lemma, wecan sensibly call MF the monodromy of F� (and infact this implies F�1� dF� is periodic). Notice thatif one knows that the surface is a cylinder then F�necessarily has well-de�ned monodromy. These ob-servations allow us to formulate an elementary char-acterization of the conditions under which a periodicpotential produces a periodic immersion.
Proposition 3.2. Let �� 2 
1;0C � 
 ���1;1 sl(2; C ) and�� be a solution of (2{1). Suppose M� 2 �� SU(2),then, for a given �0 2 S1, the monodromy of F�satis�es MF (�0) = �Iand dd�MF (�)����=�0 = 0if and only if the associated family member f�0 :C � ! R 3 obtained by the DPW construction is aCMC immersion of a cylinder .We will usually work with �0 = 1. Let us nowconsider some classes of potentials which satisfy theconditions of this proposition.
3A. Cylinders with One End Asymptotic to a Delaunay

SurfaceAn interesting class of surfaces is obtained by per-turbing the Delaunay potential (2{3) by a poten-tial on C � which extends holomorphically into z =0. The key to this construction is that �Del� hasmonodromy MDel� = exp(2�iA�), which belongs to�� SU(2).

Proposition 3.3. Let
� = 1Xk=0 �kzkdz 2 
1;0C � 
 ���1;1 sl(2; C )

extend holomorphically to z = 0 with [�Del; �0] = 0.Then using the potential � = �Del + � in (2{1), withan appropriate initial condition, produces a cylin-der with one end asymptotic to the Delaunay surfacewith potential �Del.
Proof. Consider the system (2{1) as a �rst order sys-tem of ODE with a regular singular point at z = 0.We will show below that a solution �� can be writ-ten in the form��(w) = �Del� (w)P�(eiw); (3–1)where P� extends holomorphically to z = 0, withP�(0) = I. Given this, we have M� = MDel� sinceP� has trivial monodromy about z = 0, so M� 2�� SU(2). By lemma 3.1 we have bothMDel� =MDelFand M� =MF hence MF =MDelF . Since the Delau-nay surface satis�es proposition 3.2 for �0 = 1, sodoes the perturbed surface.Now let us verify (3{1). For P� to exist, theremust be a solution to the di�erential equationdP� = P��� + [P; �Del� ]; P�(0) = I: (3–2)When we examine the expansion

P�(z) = I + 1Xk=1 Pkzk;we discover we must have(kI + adA�)Pk = Xr+s=k�1Pr�s:Therefore the coe�cients Pk can be recursively de-termined provided the operator kI + adA� is in-vertible. The only di�culty occurs for k = 1, sincethe non-zero eigenvalues of adA� are �� for � =2p( 14 +(��1��)2ab) (and the reader can easily ver-ify that j�j � p3 for j�j = 1). But for k = 1 wehave (I + adA�)P1 = �0;which is solved by P1 = �0 since [A�; �0] = 0. There-fore a solution P� exists of the type required. �
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In this class of examples we have more or less com-plete freedom to specify the location of the umbilics.

FIGURE 2. CMC cylinder with two umbilics, onemarked with a dot. Asymptotically, one end is aDelaunay nodoid with a thin neck and the other isa two-legged Smyth surface. Figure 3 shows a largerpiece of this surface.
Example 3. First consider the simplest class of per-turbations which produce unbranched surfaces withumbilics. Here we take�� = � c a��1+b�(b� q(z))��1+a� �c � dzz ; (3–3)where q(z) = kzm for m � 2 and k some constant.By the previous proof, to obtain a cylinder we mustuse the initial condition ��(w = 0) = P�(z = 1) in(2{1): this means �rst computing the solution P�(z)to (3{2). It is quite remarkable to see that the sur-faces obtained appear to be the result of attachinga Delaunay end to the head of a Smyth surface. Wehave observed that the end opposite to the Delau-nay end hasm legs which have all the visible charac-teristics of the Smyth surface legs described above,and possesses an m-fold symmetry. It appears thatthere are 2m planar coordinate lines, one for eachangle n�=2m and the legs develop around those forn even. The umbilics, which lie at the m-th rootsof b=k, lie on these lines just before the �rst self-intersections (as we move away from the Delaunay

end). Indeed, each Smyth surface lies in a one realparameter family of surfaces with potential (3{3).To see this, observe that the gauge transformation(2{5) transforms the Smyth surface potential as��1� 0 1p(z) 0� dz 7! � 0 ��1z2p(z)��1+� 0 � dzz ;which is (3{3) with a = 1, b; c = 0 and q(z) =�z2p(z). Therefore it makes sense to think of thesurfaces we see as deformations of the Smyth sur-faces, where the intrinsic S1-symmetry has been bro-ken by the bifurcation of the multiple umbilic atz = 0 into m umbilics at equal distance from theorigin and at equal angles. Because of this, we con-jecture that these cylinders are complete and properimmersions for which the end for z !1 is boundedby a cone.The m-fold rotational symmetry is explained byreference to the earlier discussion at the end of Sec-tion 2A. Let � 2 Aut(C ) denote translation by2�=m. This induces on C � a rotation through thisangle. Then ��� = �, so the same is true for ��. Acareful examination of the series expansion of (3{2)shows that this implies ��P� = P�. It follows that��(�(w0))��(w0)�1 2 �� SU(2)for w0 = 0; therefore we have all the conditions forthis symmetry to exhibit itself on the surface.More general types of perturbations than (3{3)do not seem to alter the end behavior a great deal.Certainly taking q(z) to be any polynomial has thee�ect one expects from knowledge of the generalizedSmyth surfaces: the number of legs is deg(q) andtheir direction depends in some way upon the rootsof q(z) � b. If we consider perturbations at higherpowers of � we can obtain surfaces with no umbilicsbut they still appear to have the same end behavior.
Example 4. The form of the potential (3{3) made usthink that to some extent we may be able to treatholomorphic potentials like building blocks to patchtwo types of end behavior together. Therefore weconsidered potentials of the form �� � ���̂� where�(z) = 1=z and ��; �̂� have the same Delaunay end.The rationale here is that this might attach the sur-faces for �� and ���̂� together along a Delaunay tubecentered at the image of jzj = 1 (we can always makethis lie on the Delaunay end by suitable scaling). For
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FIGURE 3. Two-legged Smyth surfaces with Delaunay heads. The Smyth surface (middle) has a sphere-like headand is a singular boundary between the unduloidal and nodoidal examples.
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FIGURE 4. The double Mr. Bubble is two two-legged Smyth surfaces joined by an unduloidal neck.��; �̂� of the type (3{3) this amounts to examiningpotentials of the form (3{3) where nowq(z) = z2r(z) + z�2s(1=z)and r(z); s(z) are entire functions. Although wedo not claim that the resultant surfaces close intocylinders, the experiments show that they are veryclose to closing and are quite stable to perturbationsof the coe�cients of r and s. As one would hope,each end has the expected number of legs: deg(r)for the end near z = 0 and deg(s) for the end nearin�nity. We believe that cylinders of this type existwith the correct choice of initial condition for (2{1).
3B. CMC Cylinders with a Closed Planar GeodesicProposition 3.2 gives conditions on the monodromyof the extended unitary frame F� which are in gen-eral hard to verify, since both integration of (2{1)and the subsequent Iwasawa decomposition cannotusually be performed explicitly. Here we will workwith a class of potentials for which (2{1) can be in-tegrated explicitly at least over the unit circle. Wewill choose �� to be �� su(2)-valued on the unit cir-cle jzj = 1 in C �. It follows that the solution ��to (2{1) (with g = I, w0 = 0) will take values in�� SU(2), whence �� = F� along R � C and byLemma 3.1 the monodromy MF is well-de�ned. Itis not hard to see that � is �� su(2)-valued on theunit circle if and only if ��� = ��t where �(z) = 1=�z.Since it is always possible to gauge away the diago-nal terms of a potential which is �� su(2)-valued on

S1, we may assume without loss of generality that�� is of the form
�� = � 0 ���1+��������1����� 0 �

with �; � 2 
1;0C � .In the �rst class of potentials of this type we willalso insist that �; � both satisfy ��� = ��. Inthis case, under the conditions of the next proposi-tion, the image of the unit circle is a planar geodesicwhich contains the umbilics: we exhibit some ex-amples in Figure 7. For the purposes of the nextproposition, let z(t) denote the contour t 7! eit inC �.
Proposition 3.4. Let �; � 2 
1;0C � satisfy
1. ��� = ��, ��� = ��,
2.
RS1(�+ �) 2 �iZ and

3.
RS1(�� �) exp(2 R z(t)1 (�+ �)) = 0.Then �� = � 0 ���1+�����1+�� 0 �

(3–4)

is the potential for a CMC cylinder with umbilicsat the zeroes of �. Further , the plane containingthe image of the unit circle is a plane of reectivesymmetry .
Proof. For � = 1, the solution ofd�1 = �1�1; �1(0) = I
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along t 2 R � C is given by �1(t) = exp R z(t)1 �1.ThereforeM�(1) = exp�ZS1(�+ �)� 0 11 0�� :Since �� = F� along R the �rst monodromy condi-tion from proposition 3.2 becomes M� = �I, whichis equivalent toZS1(�+ �) = k�i; where k 2 Z :Similarly, it is straightforward to check that the sec-ond monodromy condition of proposition 3.2 is im-plied by ZS1 �� @�@���1� �����=1 = 0:A computation yieldsZS1�� @�@���1� �����=1= ZS1(���)� sinh! � cosh!cosh! � sinh! � ;where ! = 2 R z(t)1 (� + �). Using the reality condi-tions on �; �, this integral vanishes precisely whenRS1(�� �) exp! = 0: �
Example 5. The simplest example is obtained withthe forms� = �dz2z ; � = � 12 + �(z�1 + z)�dzz :Here the constant � must satisfy J0(4�) = 0 whereJ0 is the Bessel function of order zero. To see thisobserve that if we parametrize the unit circle byz(t) = eit we haveZS1(�� �) exp�2Z z1 (�+ �)�

= �Z 2�0 (1 + 2� cos t) exp(4i� sin t) dt= �2J0(4�):It follows that we have a discrete family of immersedCMC cylinders indexed by the zeroes of J0(4�). Fur-ther, �(1=�z) = ��(z)t and �(�z) = �(z). Thereforeeach cylinder in this family has two planar symme-tries: one plane containing the image of the unitcircle and the other containing the image of the realaxis. From the graphics we observe that, near theplanar geodesic, the image of the the positive realaxis resembles a pro�le curve of a nodoid while theimage of the negative real axis resembles the pro�le

FIGURE 5. This CMC cylinder has the appearanceof an unduloid conjoined with a nodoid. The �g-ure-eight in the transparent image is the planar geo-desic across which the surface has reective symme-try. As it evolves toward an end, one of its loopssweeps out half of the unduloid, the other traces theopposite half-nodoid.curve of an unduloid. Figure 5 displays aspects ofthe surface for the �rst positive root of J0(4�).More examples can be obtained using the followingmethod. The �rst monodromy condition is simplyres0 (�+�) 2 12Z , where we consider �; � as 1-formson C with an isolated singularity at z = 0. For thesecond condition, set ! = (� � �) exp(2 R � + �),then ! is a 1-form on C � by the �rst monodromycondition. It is straightforward to show that, for any
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1-form !, the residue res0 ! = 0 vanishes whenever��a! = ak! for �a(z) = az with ak 6= 1. In particularwe consider the case where a is a primitive n-th rootof unity. Then ��a! = ak!, and the reality conditionsare satis�ed, if �; � are of the formXj2N[f0g(cjznj + �cjz�nj)dzz ; for cj 2 C ;
with 2 res0 (�+�) 2 nZ+k for gcd(k; n) = 1. In thiscase the potential (3{4) possesses the symmetries��a�� = �� and ���� = ��t�. These imply that thesurface has an n-fold rotational symmetry (since ��is �� SU(2)-valued over jzj = 1). Further, if �; �also satisfy �(�z) = �(z) then the surfaces will haven extra planes of reective symmetry (for example,see Figure 6).

FIGURE 6. The planar geodesic of this CMC cylin-der, marked in black, lies near the beginning of thesequence shown in Figure 7.Figure 7 shows a sequence of planar geodesic cross-sections for CMC cylinders with potential (3{4) for� = 12 dz=z and � = c(z3 + z�3) dz=z, where c 2 R .For c = 0 we obtain the round sphere. As c increases(left to right) the curves acquire more loops.
3C. Other CMC CylindersAnother class of examples is obtained by asking thatthe holomorphic potential satisfy �1 = 0 and ���� =��t� for �(z) = 1=�z.

FIGURE 7. Planar geodesics which are the cross sec-tions of a CMC cylinder family. The dots mark thesix umbilic points.
Proposition 3.5. Let � 2 
1;0C � with RS1 � = 0. Then

�� = � 0 ���� 0 � (��1 � �) (3–5)is the potential for a CMC cylinder with umbilicsat the zeroes of ��� and branch points at the zeroesof �.
Proof. Since �1(z) = 0, the solution �� to (2{1) with��(0) = I has �1 = I. As above, �� = F� overthe unit circle and we deduce MF = I, so the �rst
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monodromy condition of proposition 3.2 is satis�ed.The second monodromy condition follows fromZS1 �� @�@���1� �����=1 = �2ZS1 � 0 ���� 0 � = 0as in the proof of proposition 3.4. �The cylinders generated by these potentials haveconstant frame F� = I over the unit circle. Thismeans that the Gauss map is constant along theimage of the unit circle so that this lies on a singletangent plane to the surface.
Example 6. First, this class contains all Delaunaynodoids. They arise if we take any s 2 R nf�1g andset � = zs+1 dz. The explanation for this lies in thegauge transformation� �s=2 ��1���(��1��) s=2 �dzz 7! � 0 zs�z�s 0 �(��1��)dzzachieved by gauging the left-hand potential by = � esw=2 00 e�sw=2� ;where z = ew. This left-hand potential is �s �Del�with a = �b = �1=s and c = 1=2By contrast, if we take � = (1 + z) dz we obtainthe surface in Figure 8. This example displays thecharacteristic features of the cylinders in this class.More generally, if � = p(z) dz for a polynomialp(z), we have observed that the resulting surface hasdeg(p) legs emerging within a nodoid-like sheath.Experiments suggest that all surfaces in this classare bounded by the outer nodoid-like surface.
4. CONCLUDING REMARKSIt is di�cult to convey in static pictures the intu-ition gained by being able to rotate, cut away andzoom in on these surfaces. One feature which struckus was the ubiquity of nodoidal and unduloidal fea-tures in the ends. In fact, the Smyth end itself,which at �rst looks impossibly complicated, appearsto have the following simple description. Considerthe 2-legged Smyth end. Divide the region jzj > 1into its four quadrants. The lines at angles 0; � aremapped to unduloidal-like pro�les, which decay inamplitude as the radius increases. The line at an-gles �=2; 3�=2 are mapped to nodoidal-like pro�leswhich become more circular as the radius increases.

FIGURE 8. This CMC cylinder is tangent to a planealong the black curve in the solid �gure.Between these lines the surface must interpolate be-tween an unduloid and a nodoid. It does so in a waywhich strongly resembles the way a Delaunay undu-loid unravels and wraps up into a Delaunay nodoidas it moves through the associated family.The surfaces introduced in Sections 3B and 3Chave a similar description as we rotate around C �.But their behavior as the radius increases or de-creases is quite di�erent. Figures 5 and 8 lead usto ask: are either of these surfaces bounded by astandard cylinder?
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For the surface with a planar geodesic in Figure5, as jzj increases from jzj = 1 (or as it decreases)each circle is stretched in two opposite directionsin 3-space. Since the image of circles of constant jzjappear to pass through the central plane of reectionnot far from the planar curve, it is not yet settledwhether these examples are properly immersed.On the other hand, the surface in Figure 8 seemsto be made by translating the same shape as theradius jzj increases and decreases from jzj, althoughthis cannot be literally true since there is only oneumbilic (and branch point): it lies at z = �1. Thissuggests that this map is proper.It seems that these surfaces give two new typesof end behavior which, although they are immersed,do not appear to be signi�cantly more complicatedthan the Smyth surfaces.
5. APPENDIX BY NICHOLAS SCHMITT: K-NOIDS

5A. IntroductionA problem of fundamental importance in the theoryof constant mean curvature surfaces is the classi�-cation of complete CMC surfaces with ends asymp-totic to Delaunay surfaces (k-noids). Examples havebeen constructed using the conjugate cousin con-struction of minimal surfaces in S3 [Gro�e-Brauck-mann 1993; Gro�e-Brauckmann et al. 1999]. The al-most embedded CMC surfaces with genus zero andthree ends (triunduloids) have been classi�ed:
Theorem (Große-Brauckmann, Kusner, Sullivan). Triun-duloids are classi�ed by triples of distinct labeledpoints in the two-sphere (up to rotations); the spher-ical distances of points in the triple are the necksizesof the unduloids asymptotic to the three ends . Themoduli space of triunduloids is therefore homeomor-phic to an open three-ball .Specifying DPW potentials and initial conditions toproduce k-noids will require a careful analysis of theRiemann{Hilbert problem. In the genus-zero case,trinoids can be constructed by choosing DPW po-tentials whose monodromy is computable using hy-pergeometric functions, according to J. Dorfmeisterand H. Wu (private communication). For potentialswith more than three poles, the Riemann{Hilbertproblem cannot be solved with hypergeometric func-tions, but one still expects to be able to prove exis-

tence for the various Delaunay-type end con�gura-tions and describe their moduli.In this appendix we conjecture, on the basis ofcomputer experiments, the existence of three fami-lies of genus-zero k-noids. The meromorphic poten-tials for these examples are constructed as the linearsuperposition of Delaunay potentials.

FIGURE 9. Two views of an isosceles 3-noid with onenodoid end; all three ends extend in�nitely down-ward. In contrast to the triunduloids, the two um-bilic points lie not symmetrically about the mirrorplane but on it.
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5B. BalancingAs a prerequisite for specifying the meromorphic po-tentials for the conjectured families, we discuss thebalancing formula for k-noids [Bobenko 1994; Kore-vaar et al. 1989; Kusner 1991].
Theorem 5.1 (Balancing Formula). Let S be an k-noidwith monodromiesMn = Un exp(2�iAn)U�1n (n = 1 : : : k);with Un 2 �� SU(2) andAn = � cn an��1 +�bn�bn��1 + �an� �cn �
and �n = �jan+�bnj2+c2n�1=2 2 12Z as in (2{3). ThenX anbn�2n UnAnU�1n ����=1 = 0:
Proof. With � = ei�, apply @2=@�2���=0 to QMn = I.�In interpreting the balancing formula [Bobenko 1991;Kusner 1991], each summand can be thought of asa force vector along a unit-length asymptotic endaxial direction, scaled, up to a proportionality con-stant, by a weight:axis = U (iA=�)U�1 2 su(2) �= R 3;weight = 2ab=� 2 R ;force = weight � axis:The end weight is equal to mH2r+r�, where m isthe end's wrapping number and r� are the signedneck/bulge radii as in (2{4). The weights of undu-loid/nodoid ends are respectively positive/negative.As a corollary of the balancing formula we havethe triangle-type inequalitiesjwnj �Xj 6=n jwj j (n = 1; : : : ; k):
Applying @3=@�3���=0 toQMn = I leads to a torquebalancing formula.

5C. Genus-Zero k-noidsWe conjecture the existence of two families of tri-noids and a discrete family of k-noids.
Conjecture 5.2 (Triunduloids). The triunduloids are ob-tained from the meromorphic potential �(a1; a2; a3; c)

FIGURE 10. Two isosceles 3-noids with one nodoidend, sliced by a mirror plane. The correspondingends of the two surfaces have the same neck radiibut opposite phase: the top example has a bulge atthe center, the bottom one a neck.(see De�nition 5.4) subject to weight constraintsw1 > 0; w2 > 0; w3 > 0:
Conjecture 5.3 (Trinoids with one nodoid end). Thereexists a family of 3-noids with one nodoid and twounduloid ends . These are obtained from the mero-morphic potential �(a1; a2; a3; c) (see De�nition 5.4)subject to weight constraints w1 > 0, w2 > 0, w3 < 0,jw3j � jw1j+ jw2j.
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Definition 5.4 (Family of trinoid potentials). Let e1, e2,e3 2 C P be �xed distinct points. Let a1; a2; a3 2R n f0g, and s; c 2 R satisfys = a1 + a2 + a3; s2 + c2 = 14 :The meromorphic �� sl(2; C )-valued di�erential � =�(a1; a2; a3; c) is de�ned uniquely by these condi-tions:
(i) � has simple poles only at e1; e2; e3; p 2 C P .
(ii) With A� denoting the Delaunay residue as in(2{3), the residues of � arerese1 � = A�(�s+a1; �a1; �c);rese2 � = A�(a2; s�a2; c);rese3 � = A�(a3; s�a3; c);resp � = A�(0; �s; �c):
(iii) the Hopf di�erential corresponding to � has nei-ther pole nor zero at p; with the above residues,this condition speci�es p uniquely.The end weights of the trinoid induced by�(a1; a2; a3; c)are wk = 4ak(ai+aj), with fi; j; kg = f1; 2; 3g.
Conjecture 5.5 (Maximal equilateral k-noids). For eachinteger k � 2 there exists an equilateral k-noid withmeromorphic potential �k de�ned by�k = � 0 �k��1+�k��k��1+�k� 0 � ;

�k = (zk�1�1) dz2 (z�1)(zk�1) ;�k = (k�1)zk�2(z�1) dz2 (zk�1�1)(zk�1) :
Cone Points. The conjectured k-noid potentials have,besides the k poles inducing ends, k� 2 extra poles,which we will call cone points, that are not ends(or umbilics) on the CMC surface. These arise fromthe fact that the meromorphic di�erential � in thepotential � = �  ���1+�����1+�� � �
has k simple poles at the ends and a total of 2k� 4zeros at umbilics, and must therefore have k � 2more poles so that the algebraic sum is �2. At thesecone points, � is constructed to have zeros so that

FIGURE 11. Views of an asymmetric 3-noid whoseends are asymptotically a cylinder, a nodoid, andan unduloid. The downward force of cylinder andunduloid are balanced by an upward force of thenodoid.the Hopf di�erential does not see the cone point.The residue at each cone point p is chosen to be�A�(0; b; c) with b2+c2 = 0 so that the monodromyaround p is �I and the surface closes at p for anyinitial condition.
5D. Experimental EvidenceThat the meromorphic potentials in the DPW initialvalue problem (2{1) for these examples are locallythose of Delaunay surfaces is not su�cient to guar-antee global existence: initial conditions must alsobe found which simultaneously close all the ends.While it it yet unproved that such initial conditionsexist, these are conjectured on the basis of compu-tational evidence: we have computed approximateinitial conditions with a minimizing algorithm.This computational algorithm implements conju-gate gradient methods [Press et al. 1992] to �nd
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a DPW initial condition C that minimizes, for a�xed potential, an error-measure "(C) on the mon-odromies:
"(C) =Xn Mn(C)j�=1 + I+  dd�Mn(C)����=1:Mn(C) is the monodromy of the extended framearound the n-th end induced by C. The sum is takenover a set of generators of the fundamental group ofthe underlying Riemann surface. This method wasused to create the k-noids shown in Figures 9{12.

5E. Further DirectionsRecent experiments give evidence for other genus-zero k-noids: trinoids with three nodoid ends, fam-ilies of k-noids with k > 3, and 4-noids with non-coplanar end axes.A monodromy-closer under development �nds ini-tial conditions more e�ciently by unitarizing themonodromies simultaneously.

ACKNOWLEDGMENTSWe are grateful to Franz Pedit and Josef Dorfmeisterfor helpful discussions, and to Rob Kusner for hisencouragement.This work was partially supported by NSF grantsDMS-9626804 and DMS-9705479. Kilian was alsopartially supported by SFB 288 at Technische Uni-versit�at Berlin, and Schmitt by NFS grant DMS-9704949.
ELECTRONIC AVAILABILITYFor further information about CMC surfaces, theDPW construction, and the dpwlab software, visitthe site of The Center for Geometry, Analysis, Nu-merics and Graphics (GANG) at www.gang.umass.edu, or write Schmitt at nick@gang.umass.edu.
REFERENCES[Bobenko 1991] A. I. Bobenko, \Constant mean curva-ture surfaces and integrable equations", Uspekhi Mat.

FIGURE 12. Maximal equilateral genus-zero k-noids.



Kilian, McIntosh, and Schmitt: New Constant Mean Curvature Surfaces 611

Nauk 46:4 (1991), 3{42, 192. In Russian; translated inRussian Math. Surveys 46:4 (1991), 1{45.[Bobenko 1994] A. I. Bobenko, \Surfaces in terms of 2 by2 matrices. Old and new integrable cases", pp. 83{127in Harmonic maps and integrable systems, edited byA. P. Fordy and J. C. Wood, Aspects of mathematics,E 23, Vieweg, Braunschweig, 1994.[Burstall and Pedit 1994] F. E. Burstall and F. Pedit,\Harmonic maps via Adler{Kostant{Symes theory",pp. 221{272 in Harmonic maps and integrable systems,edited by A. P. Fordy and J. C. Wood, Aspects ofMathematics E23, Vieweg, Braunschweig, 1994.[Burstall and Pedit 1995] F. E. Burstall and F. Pedit,\Dressing orbits of harmonic maps", Duke Math. J.80:2 (1995), 353{382.[Dorfmeister and Haak � 2000] J. Dorfmeister and G.Haak, \Construction of non-simply connected CMCsurfaces via dressing". In preparation.[Dorfmeister andWu 1993] J. Dorfmeister and H. Y. Wu,\Constant mean curvature surfaces and loop groups",J. Reine Angew. Math. 440 (1993), 43{76.[Dorfmeister et al. 1998] J. Dorfmeister, F. Pedit, andH. Wu, \Weierstrass type representation of harmonicmaps into symmetric spaces", Comm. Anal. Geom. 6:4(1998), 633{668.[Gro�e-Brauckmann 1993] K. Gro�e-Brauckmann, \Newsurfaces of constant mean curvature", Math. Z. 214:4(1993), 527{565.[Gro�e-Brauckmann et al. 1999] K. Gro�e-Brauckmann,R. Kusner, and J. Sullivan, \Constant mean curvaturesurfaces with three ends", Preprint 5.1, University ofMassachusetts (GANG), Amherst, 1999. Submitted toProc. Nat. Acad. Sci. USA.

[Korevaar et al. 1989] N. J. Korevaar, R. Kusner, and B.Solomon, \The structure of complete embedded sur-faces with constant mean curvature", J. Di�erentialGeom. 30:2 (1989), 465{503.[Kusner 1991] R. Kusner, \Bubbles, conservation laws,and balanced diagrams", pp. 103{108 in Geomet-ric analysis and computer graphics (Berkeley, 1988),edited by P. Concus et al., Math. Sci. Res. Inst. Publ.17, Springer, New York, 1991.[Lerner and Sterling 1995] D. Lerner and I. Sterling,\Construction of constant mean curvature surfaces us-ing the Dorfmeister{Pedit{Wu representation of har-monic maps", in Proceedings of the Symposium on Dif-ferential Geometry, Hamiltonian Systems, and Oper-ator Theory (Mona, Jamaica, 1994), The UniversityPrinters (Univ. of the West Indies), 1995.[Press et al. 1992] W. H. Press, S. A. Teukolsky, W. T.Vetterling, and B. P. Flannery, Numerical recipes inC, 2nd ed., Cambridge University Press, Cambridge,1992.[Pressley and Segal 1986] A. Pressley and G. Segal, Loopgroups, The Clarendon Press Oxford University Press,New York, 1986.[Smyth 1993] B. Smyth, \A generalization of a theoremof Delaunay on constant mean curvature surfaces", pp.123{130 in Statistical thermodynamics and di�erentialgeometry of microstructured materials (Minneapolis,MN, 1991), edited by H. T. Davis and J. C. C. Nitsche,IMA Vol. Math. Appl. 51, Springer, New York, 1993.[Sterling and Wente 1993] I. Sterling and H. C.Wente, \Existence and classi�cation of constant meancurvature multibubbletons of �nite and in�nite type",Indiana Univ. Math. J. 42:4 (1993), 1239{1266.[Timmreck et al. 1994] M. Timmreck, U. Pinkall, and D.Ferus, \Constant mean curvature planes with innerrotational symmetry in Euclidean 3-space", Math. Z.215:4 (1994), 561{568.
Martin Kilian, Center for Geometry, Analysis, Numerics and Graphics, Deptartment of Mathematics, University ofMassachusetts, Amherst, MA 01003, United States (kilian@gang.umass.edu)Ian McIntosh, Department of Mathematics, University of York, York YO10 5DD, United Kingdom (im7@york.ac.uk)Nicholas Schmitt, Center for Geometry, Analysis, Numerics and Graphics, Deptartment of Mathematics, Universityof Massachusetts, Amherst, MA 01003, United States (nick@math.umass.edu)
Received August 26, 1999; accepted in revised form March 30, 2000


