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ABSTRACT

We show that an integral S over the spectral function of spin-l states of the
Higgs sector is constrained by precision weak-interaction measurements. Current
data excludes large technicolor  models; experiments  at LEP and ‘SLC will sooi
provide more stringent limits on Higgs strong interactions.
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The most pressing question in the study of weak interactions is the nature of the
Higgs sector. In the standard SU(2) x U(1) theor o weak interactions, some newy f
particle or set of forces is needed to break the gauge symmetry. However, models
of these Higgs particles ranging from a minimal doublet of scalar-fields to elaborate
models with a rich spectrum are still consistent with experiment. We do not even
know whether the new sector is weakly interacting, containing fundamental scalar
fields and symmetry-breaking forces visible in perturbation theory, or whether it is

strongly interacting, so that the symmetry-breaking results from nonperturbative
~-.
phenomena.

Beyond the fact that the Higgs sector does break SU(2)  x U(1) in the required
way, the main nontrivial piece of information that we have about its nature comes
from the precision study of weak interaction parameters. [‘I T he relation12’ between
the W and 2’ masses and the value of the weak mixing angle sin2 6,

rn2,/rni  cos2  6, 2 1 ,

to about l%, implies that the Higgs sector h&s an approximate global SU(2) ‘cG
[31todial’ symmetry. Depending on the exact definition used to compute sin2 8,, the

violation of the relation (1) measures the SU(2) ys mmetry violation in the Higgs
sector.

In this letter, we will extend this conclusion to demonstrate that precision
weak interaction experiments also constrain an isospin-symmetric observable of
the Higgs sector. In essence, we will show that, by comparing weak interaction
parameters, one can constrain not only the isospin asymmetry of this sector but

also its total size. A longer and more complete version of this argument will be
presented in ref. 4.

Our analysis will be based on the general formalism for weak interaction radia-
tive corrections presented in refs. 5 and 6. This work begins from the observation
that radiative corrections to weak-interaction processes involving light quarks and
leptons due to new physics beyond the standard model appears dominantly through
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vacuum polarization amplitudes; in most models, the new physics does not signifi-
cantly affect the vertex corrections or box diagrams. For example, modifications of
the Higgs sector give vacuum polarization corrections of order Q but vertex correc-
tions are suppressed by an additional factor of (m/mw)2,  where-m is the external

fermion mass. The authors of ref. 5 called such corrections oblique and presented
general formulae for the oblique radiative corrections to weak-interaction observ-

ables as combinations of vacuum polarization amplitudes. For specific cases, such

asthe effect of the heavy top quark, this formalism reproduced results well-known
from the earlier literature.

We begin this analysis by writing the most important of these general formu-
lae. Let us notate vacuum polarization amplitudes by using the subscripts 1,3 to

denote the weak isospin currents Jc3 and the subscript Q to denote the electric

charged current. We write the 2’ current as (e/SC).  (J3 - s2J~), where s, c denote

the sine and cosine of the weak mixing angle. The W boson self-energy is then
written i(e2/s2)I111(q2);  the Z”-photon mixing amplitude is i(e2/sc)&(q2)  -

s211QQ(q2)).  The Ward identity requires I&(O) = HQQ(O) = 0. * 1w

As our basic set of weak-interaction observables, we choose the following: PI ^

o, GF, mw, mz, and the amplitudes sf(q2), p*(q2),  2, defined by Kennedy and
Lynn in ref. 6.18’ These last three amplitudes are defined as follows: We write

the Z-f-7 vertex as (const)e(13  - st(q2)Q).  Then si(q2) is the ratio of the J3

and JQ terms in the 2’ current and thus determines the weak interaction forward-
backward and polarization asymmetries. For example, the polarization asymmetry

for 2’ production in e+e- annihilation is ALR EZ 8(1/4 - sz(mi)). The quantity
p* is a parameter of the effective Lagrangian of low-energy weak interactions:

L JTJ! +p,(O) (33” - (2) *

It appears in R”, the ratio of neutral to charged current cross sections in deep

inelastic neutrino scattering. The quantity 2, is the wavefunction renormalization

3



of the Z” at its pole; it is measureable through the formula for the 2’ width:

(3)

where cz = 1 - sz, starred parameters are evaluated at q2 = rn& and Nf is the

effective number of colors for the flavor f, including the QCD correction.

Since the 2’ mass has now been measured with spectacular accuracy at LEP, it

is most convenient to base-predictions in weak interaction theory on the measured

values of cr, GF, mz. We find it convenient to define a weak mixing angle 8,Iz by

sin28,iz  - ( 4~~j~‘)1’2  . (4)

where cr,,o(m$)  is the running electric charge, evaluated at the 2’ mass, with the

PIrenormalization computed from known physics only. Then CY~: = 128.80 f 0.12,

mz = 91.172 f 0.032 GeV[lol gives sin2 &,,lz = 0.23147 f O.b0039. The oblique

corrections to the various weak interaction observables may be written as
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m2w - rni cos2 6,jz

- -
= -{ s2(;22fs2,  [II33(mi)  - 2s21130(mi) - - n,,(o) -s,z” c2,2”2  n,,(m:,)]

e2s2m2
+ w [nbQcm2z)  - ~~Q(o)]c2 -9 >

s2(q2) - sin2 O,jz
.

e2
=

{ [

ll33(m$) - 2s2113Q(mi)  - nil(o)

c2 - s2 4

_ (c2 - s2) y’iz)]

e2s2
+ c2 - s2 [s2$&&  - c~GJQ(O)  + (c2 - s2) IIb,(q2)]

>

P*(O)  - 1 = -$,2,2e2 (n33(0) - nil(o))
Z

Z*(q2) - 1 = &$@33 - 2s2n3Q + s4HQQ) /szzm2 *
z

- e2H’QQ(o)  - e2’f2j s2) (&Qtq2) - s2Hl&Q(q2))  ,

(5)
where Il’(q2) denotes II(q2)/q2. We note that these formulae should be used only
to compute the nonstandard corrections to these observables; the standard model
radiative corrections are not generally oblique and do not fall into such a simple
form. However, the corrections due to the Higgs sector are of the form of (5), and
we may analyze the Higgs contribution by examining the right-hand sides of these
relations.

For the renormalization due to a heavy top quark,
dominant contribution to (5) comes from the difference

n11 - n33 =
3cY 4

16~ sin2 8, m& ’

it is well known that the

(6)
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which is momentum independent to a sufficient approximation. This renormaliza-
tion affects mw, sz, p* in a way which can be easily inferred. Any other momentum-
independent, isospin-asymmetric contribution to the II’s will have the same general
phenomenology. This difference cannot be larger than 1% or so-without having a
grave effect on weak interaction phenomenology.

.

We now propose another simplification of (5) which is appropriate to conven-
tional technicolor models.[11’121 In these models, the Higgs sector is a copy of the
usual strong interactions scaled up to TeV energies. In such models, the technicolor~-.
interactions conserve conventional isospin and also parity, and we may divide the
vacuum polarization amplitudes of weak isospin currents into contributions from

correlators of vector and axial-vector currents: IIll = II33 = (Hvv + II,4,4)/4;

n3Q = lIvv/2. If we expand the II’s in powers of q2 and ignore q4 and above
(making a relative error of m&/M?,  where M is a technicolor mass scale),

bV(q2) = q2&V(o) nAA(q2)  = nAA(o) + q21&A(o) * (7)

Inserting (7) into (5), we find that mw, sz, and 2, receive corrections proportional

to tn’,,(o) - n’,,to))- In a large technicolor model, as we will see below, this
contribution can be as large as that of the heavy top quark. The idea that isospin-

conserving contributions of technicolor can lead to large radiative corrections has
been suggested independently by Golden and Randall!13’

Let us now formalize these considerations as follows:
and T byl14’

Define the parameters S

cd= -e2$(Qw(q2)  - nAAk2))
q2=0

= 4e2dq2d(rh(q2)  - n3Qk2))

crT = ~(n,l(o)  - naa(o))  .
W

(8)
q2=0

Then, if we ignore terms of order q2 in the isospin-violating pieces of the II’s and
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terms of order q4 in the isospin-symmetric terms, we find

m2w -
Q

rn$ cos2 O,lz = rn$ c2 _ s2
[
c2T - f s ]

&q2) - sin2 S,lz =
a

c2 -s2
-s2c2T  + IS

4 1
p*(O)  - 1 = aT

(9)

2, - 1~-.. = gzs *

In principle, comparison of weak-interaction measurements can restrict S and T

independently. We note, though that S and T are generally both positive, so that
they tend to compensate one another in any single observable.

Before discussing the phenomenological constraints on S and T, let us compute
the values of S and T in technicolor models. We begin with S. The combination
of vacuum polarization amplitudes which appears in the definition of S obeys the
dispersion relation

b’V(Q2) - nAA(q2) = - j$ / ;
i-S [&J’(S) - &(S)] -*p

s - q2 7r

where  h+), RA( s are the analogues of R(s), the cross section for e+e-) anni-
hilation to hadrons in units of the point cross section, with the electromagnetic
current replaced by the vector and axial vector isospin currents. Asymptotically,
both Rv(s) and RA(S) tend to the sums of the squares of the isospins of tech-

nifermions. In an asymptotically free gauge theory, one expects that the leading
two terms of (10) vanish for large q2; this leads to Weinberg’s first and second
spectral function sum rules relating & and WIR,J. For our application, we need
the q2 -+ 0 limit of (lo), so that S is expressed as a zeroth Weinberg sum rule:

s=& J {$ [Rv(s) - &(s)] - i[l - (1 - ?)%(s - m&)1} . (11)

The last term of (11) is the contribution of the standard model Higgs boson sector
which the technicolor theory replaces; mH is the mass of the standard-model Higgs.
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Note that, as s + 0, &(s) -+ l/4 (since we consider the chiral limit where the
pions are massless) and RA( s) + 0. Thus, subtraction of the standard-model

contribution regularizes the infrared divergence in the first term of (11).

To evaluate (ll), we need the vector and axial vector spectral functions for

the technicolor theory. These we evaluated in the following way: We fit the data

on the cross section for e+e- annihilation to hadrons in the familiar strong in-

teractions and extracted its isovector part, in the form of the p resonance, an
enhancement around 1400 MeV, and high-energy continuum. We then represented
the axial-vector spectral function by the ar(1260)  resonance and continuum, fit-
ting the height of the resonance and the approach to the continuum by using the

Weinberg sum rules. Having thus obtained Rv(s) and RA(~) in the usual strong
interactions, we obtained these quantities for a technicolor theory with 3 colors and

2 flavors by multiplying energies by (F,/f,), where fX = 93 MeV, F, = 250 GeV.
To obtain the spectral functions for other values of the number of technicolors  NC

and flavors NF, we used the scaling laws appropriate to gauge theories at large NC:

The area under a resonance should scale as NC, while the width varies as NF/N~.

These simple scaling considerations should give results to about 20% accuracy. For
the masses of pseudo-Goldstone bosons, we used the estimates given in refs. 16,
17. To evaluate S, we took rnH = 1 TeV. Using this procedure, we found

0.4 + O.O8(Nc - 4) 1 doublet
s =

2.1 + 0.4(Nc  - 4) 1 generation , (12)

where the first line of (12) re ersf to the minimal model with one technifermion

doublet and the second line to a model whose fermions have the quantum numbers
of (v, e, u, d). The value of S is roughly proportional to the total number of weak
doublets. The full details of our estimate will be presented in ref. 4. For 1

generation of technifermions, this value of S gives a shift Amw = -500 MeV, in

agreement with other estimates of the technicolor radiative correction.[‘,“I This

is a very large correction, and one is tempted to conclude on this basis that such
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a model is excluded. However, this depends on the value of T, to which we now
turn.

Our estimate of T in technicolor models is much less reliable. In ref. 18,
this quantity was estimated by evaluating the vacuum polarization diagrams using

noninteracting technifermions with scale-dependent masses C( rC2). This gives

.
1 NewT=-----

J
k4

s2m2w  167r dk2 (k2 + =9)4 tc; - $d2 ’
0

(13)

The value of T depends on the isospin splitting of the dynamical masses, which

must appear if the model is to predict a large mass difference for the b and t
quarks. But the integral is dominated by the contribution from the technicolor
mass scale, exactly the region where the estimate is unreliable. If we crudely

estimate (Ci - C$) = 2mtC,  independent of momentum, we find

The factor in parentheses is the standard top quark contribution, which should
be added to the technicolor contribution (14). Note that the factor in brackets

makes the technicolor contribution larger by roughly a factor (Nc/2);1”’ thus, the

expectation for T in technicolor models is dangerously large. Even a more careful
estimate of (13) with scale-dependent C’s, given in ref. 18, show that it is very

difficult to obtain T < 5 in models with rnt > 100 GeV. On the other hand, we
should emphasize again that (13) itself is highly unreliable. A more sophisticated
approach, or special tailoring of the technicolor dynamics, could well yield a smaller
value of T.

This increases the importance of the parameter S. Since S is a simple integral

over the zeroth-order spectrum of technicolor, we believe that the estimate we have
given above is valid within a wide variety of technicolor models. Let us now address

the question of whether S can be constrained independently of the value of T.
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If we use the dependence (9) to. compute the weak interaction radiative correc-

tion due to new physics, any single measurement selects a line (or, rather, a band)
in the S-T plane. By combining measurements, we may determine the region in

the S-T plane that they collectively allow. In this analysis, we take the standard
model calculations at the fixed values rnt = 150 GeV, mH = 1000 GeV based on

[201the measured values of cy, GF, and rnz = 91.17 GeV, as reference values. We do

not intend to systematically reanalyze the whole corpus of weak interaction data;
rather we select the few best-measured observables. These are listed, together~-.
with their current and reference values, in Table 1. The first three quantities in

this table--R’, mw/mz,  and Fz give the bands in the S-T plane shown in Fig.
l(a). Unfortunately, the three curves are almost parallel, so that they do not give

a strong constraint on S independently of the value of T. From (9), it is clear that
a direct measurement of sf would be a powerful way to constrain S, since the effect
of S relative to T is largest in this quantity. Unfortunately, there seems to be no
highly accurate direct measurement of ~3. The two best current measurements are
listed in the fourth and fifth lines of Table 1; these produce the rather wide bands

.- w.(
shown in Fig. l(b). Combining the five measurements, we find the’likelihood con-
tours shown in Fig. l(c). Fig. l(d) compares these measurements to the standard

model with a varying top quark mass, and to two technicolor models using the

estimate (14) for T. We re-emphasize that, in the technicolor models only the

computation of S is trustworthy. The likelihood analysis yields a 90% confidence
upper limit on S: S < 3.6 This would exclude models with two generations of

technifermions-for which we expect S 2 4 for NC = 4-but not yet models with
a single generation.

The next two years of data-taking at LEP and SLC will produce much more
accurate direct measurements of s:(ms),  through the measurement of the polariza-

tion asymmetry ALR and the forward-backward asymmetry to bb at the 2’. Fig.

l(d) shows the band allowed by a polarization asymmetry measurement with 10’

Z’s and 40% polarization; such a measurement would either verify or strongly con-
strain the possibility of a new strong interaction sector associated with the Higgs
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bosons.

We are grateful to Martin Einhorn, Paul Langacker, Harvey Lynch, Yossi Nir,

Lisa Randall, and particularly to Morris Swartz for their helpful advice, and to
Tom Rizzo for a useful correspondence.
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Table 1. Measurements used in to constrain S and T

0 bservable Measured Value

R:: 0.3095 f 0.004

mwlmz 0.8791 f 0.0036

rZ 2.540 f 0.026

sin2 et< ve) 0.233 f 0.014

&VO) 0.133 f 0.104

ALR(~') ?

(ref.)

21

23

10

26

28

Standard Model (ref.)

0.3115 22

0.8786 24

2.501 25

0.231 27

0.065 29

0.129 29
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FIGURE CAPTIONS

1) Allowed region of the S,T plane: (a) bands in the S,T plane allowed by the
measured values of R”, mw /mz, l?z, within 1 Q errors; (b) bands allowed
by the measurements of ve scattering and AkB, within 1 a; (c) likelihood
contours based on the five measurements, corresponding to 68% and 90%
probability (the dotted curves include only the measurements in (a)); (d)
comparison of these contours with the predictions of two technicolor models,

~-. and with the band allowed by an anticipated measurement of ALR. All four
figures show the standard model prediction for T and S as a function of the
top quark mass, with stars at rnt = 50, 100, 150, 200, 250 GeV; the last

figure shows the analogous curves for technicolor models with one doublet
and one generation, respectively, NC = 4, and T estimated using (14).
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