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Abstract

Kim et al. (Proc. Jangjeon Math. Soc. 21(4):589–598, 2018) have studied the central

Fubini polynomials associated with central factorial numbers of the second kind.

Motivated by their work, we introduce degenerate version of the central Fubini

polynomials. We show that these polynomials can be represented by the fermionic

p-adic integral on Zp. From the fermionic p-adic integral equations, we derive some

new properties related to degenerate central factorial numbers of the second kind

and degenerate Euler numbers of the second kind.
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1 Introduction

Let p be chosen as a fixed odd prime number.Wemake use of the following notations: Zp,

Qp,Cp,N,N0 andR denote the ring of p-adic integers, the field of p-adic rational numbers,

the completion of an algebraic closure of Qp, the set of natural number, the set of natural

numbers containing zero and the set of real numbers, respectively. We say that | · |p is

normalized if |p|p = p–1. Let C(Zp) be the space of Cp-valued continuous functions on Zp.

For f ∈ C(Zp), the fermionic p-adic integral of a function f was originally constructed by

Kim [12] as follows:

I–1(f ) :=

∫

Zp

f (x)dµ–1(x) (1)

= lim
n→∞

pn–1
∑

a=0

f (a)µ–1

(

a + pnZp

)

= lim
n→∞

pn–1
∑

a=0

f (a)(–1)a.
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Here I–1 is used symbolically due to its fermionic distribution µ–1. It follows from (1)

that

I–1(f1) + I–1(f ) = 2f (0) (see [12]) (2)

with the assumption f1(x) := f (x+1). Formore information about the applications of p-adic

integrals, one can refer to [4, 8, 9, 14, 17, 22] and the references cited therein.

Very recently, Kim et al. [20] showed that the Fubini polynomials can be represented by

the fermionic p-adic integral on Zp as follows:

∫

Zp

(

x
(

1 – et
))y

dµ–1(y) =
2

1 – x(et – 1)
= 2

∞
∑

n=0

Fn(x)
tn

n!
. (3)

For more information about the Fubini polynomials, one can look at the references [5, 10,

24]. The Stirling numbers of the second kind are defined by (see [11])

xn =

n
∑

k=0

S2(n,k)(x)k , (4)

where

(x)n =

{

x(x – 1) · · · (x – n + 1), when n≥ 1,

1, when n = 0,

or equivalently by

∞
∑

n=k

S2(n,k)
tn

n!
=
(et – 1)k

k!
(k ≥ 0). (5)

Let λ �= 0 be any real numbers. Carlitz [1] introduced the degenerate Bernoulli polyno-

mials by means of the following generating function:

∞
∑

n=0

βn(x;λ)
tn

n!
=

t

(1 + λt)
1
λ – 1

(1 + λt)
x
λ . (6)

When x = 0 in (6), βn(λ) =: βn(0;λ) are the degenerate Bernoulli numbers. It is clear from

(6) that

lim
λ→0

βn(x;λ) := Bn(x) (n ∈N0),

where Bn(x) are the Bernoulli polynomials given by

∞
∑

n=0

Bn(x)
tn

n!
=

t

et – 1
ext , cf. [1].

Parallel to (6), the degenerate Euler polynomials are defined by means of the following

generating function:

∞
∑

n=0

En(x;λ)
tn

n!
=

2

(1 + λt)
1
λ + 1

(1 + λt)
x
λ (0 �= λ ∈R) (see [1]). (7)
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When x = 0 in (9), En(λ) =: En(0;λ) are the degenerate Euler numbers.

For 0 �= λ ∈R, it is worth noting from [16, 21] that

exλ(t) := (1 + λt)
x
λ (8)

=

∞
∑

n=0

(

x

λ

)

n

λn t
n

n!

=

∞
∑

n=0

(x)n,λ
tn

n!
,

where

(x)0,λ = 1, (x)n,λ := x(x – λ)(x – 2λ) · · ·
(

x – (n – 1)λ
)

(n≥ 1) see [19].

The degenerate Euler numbers of the second kind are given by

sechλ(t) =
2

eλ(t) + e–1λ (t)
=

∞
∑

n=0

E∗
n,λ

tn

n!
. (9)

It is obvious that

lim
λ→0

E∗
n,λ := E∗

n,

where E∗
n are the Euler numbers of the second kind given by

2

et + e–t
=

∞
∑

n=0

E∗
n

tn

n!
, cf. [3].

By (5) and (6), the degenerate Stirling polynomials of the second kind are defined by the

generating function

∞
∑

n=k

S
(x)
2,λ(n,k)

tn

n!
=
(eλ(t) – 1)k

k!
exλ(t), (10)

where x ∈ R, and k is a nonnegative integer (see [13]). In the case x = 0, S
(0)
2,λ(n,k) :=

S2,λ(n,k) are the degenerate Stirling numbers of the second kind, cf. [1–4, 6, 7].

Since

lim
λ→0

eλ(t) = et

we have

lim
λ→0

S
(x)
2,λ(n,k) := S

(x)
2 (n,k),

where S
(x)
2 (n,k) are the Stirling polynomials of the second kind given by

∞
∑

n=k

S
(x)
2 (n,k)

tn

n!
=
ext(et – 1)k

k!
.
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The central factorial numbers of the second kind, denoted by T(j,k) with the conditions

j ≥ 0 and k ≥ 0, are defined by

xj =

j
∑

k=0

T(j,k)x[k] (see [11]), (11)

where

x[k] =

⎧

⎨

⎩

x(x + k
2
– 1)(x + k

2
– 2) · · · (x – k

2
+ 1), when k ≥ 1,

1, when k = 0

or equivalently by

1

k!

(

e
z
2 – e–

z
2
)k

=

∞
∑

j=k

T(j,k)
zj

j!
(see [11, 23]). (12)

Kim–Kim [15] introduced the degenerate central factorial polynomials of the second

kind as follows:

∞
∑

j=k

Tλ(j,k|x)
zj

j!
=

1

k!

(

e
1
2
λ (z) – e

–1
2

λ (z)
)k
exλ(t), (13)

where k is a nonnegative integer. The case x = 0 yields Tλ(j,k) =: Tλ(j,k|0) that are the

degenerate central factorial numbers of the second kind.

This paper is organized as follows. In Sect. 2, we consider the generating function of

type 2 degenerate central Fubini polynomials and give some properties of these numbers

and polynomials. In Sect. 3, we introduce degenerate central Fubini numbers and polyno-

mials and derive some properties of these polynomials by using p-adic fermionic integrals

on Zp. In Sect. 4, we introduce type 2 degenerate central Fubini polynomials of two vari-

ables and construct some properties of these polynomials. Also, these polynomials are

closely related to degenerate central factorial numbers of the second kind and degenerate

Euler numbers of the second kind.

2 On type 2 degenerate central Fubini polynomials

In this section, we assume that λ �= 0 is any real number. We begin with giving type 2

degenerate central Fubini polynomials as follows:

∞
∑

n=0

F
(C)
n,λ (x)

tn

n!
=

1

1 – x(e
1
2
λ (t) – e

– 1
2

λ (t))
. (14)

Note that

lim
λ→0

∞
∑

n=0

F
(C)
n,λ (x)

tn

n!
:=

∞
∑

n=0

F (C)
n (x)

tn

n!
=

1

1 – x(e
t
2 – e–

t
2 )

(see [11]).
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By (14), one may see that

∞
∑

n=0

F
(C)
n,λ (x)

tn

n!
=

1

1 – x(e
1
2
λ (t) – e

– 1
2

λ (t))

=

∞
∑

k=0

xk
(

e
1
2
λ (t) – e

– 1
2

λ (t)
)k

=

∞
∑

k=0

xkk!

∞
∑

n=k

Tλ(n,k)
tn

n!

=

∞
∑

n=0

(

n
∑

k=0

xkk!Tλ(n,k)

)

tn

n!
.

Thus, we state the following theorem.

Theorem 2.1 Let n be a nonnegative integer. Then the following holds:

F
(C)
n,λ (x) =

n
∑

k=0

xkk!Tλ(n,k). (15)

The degenerate ordered Bell numbers are defined by the generating function to be

1

1 – 2 sinh2λ(
t
2
)
=

∞
∑

n=0

bn,λ
tn

n!
, (16)

where

sinhλ(t) =
eλ(t) – e–1λ (t)

2
, cf. [3].

Corollary 2.1 Taking x = 1 in (15) gives

F
(C)
n,λ (1) := bn,λ =

n
∑

k=0

k!Tλ(n,k) (n≥ 0).

By (14), we have

∞
∑

n=0

F
(C)
n,λ (x)

tn

n!
=

1

1 – xe
– 1
2

λ (t)(eλ(t) – 1)
(17)

=

∞
∑

k=0

xke
– k
2

λ (t)
(

eλ(t) – 1
)k

=

∞
∑

k=0

xkk!e
– k
2

λ (t)
(eλ(t) – 1)k

k!

=

∞
∑

k=0

xkk!

∞
∑

n=k

S
( –k2 )

2,λ (n,k)
tn

n!

=

∞
∑

n=0

(

n
∑

k=0

xkk!S
( –k2 )

2,λ (n,k)

)

tn

n!
.

Thus, we state the following theorem.
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Theorem 2.2 Let n be a nonnegative integer. Then the following relation holds true:

F
(C)
n,λ (x) =

n
∑

k=0

xkk!S
( –k2 )

2,λ (n,k).

By (9), we have

∞
∑

n=0

E∗
n,λ

tn

n!
=

2

eλ(t) + e–1λ (t)

=
2

2 + (e
1
2
λ (t) – e

– 1
2

λ (t))2

=

∞
∑

k=0

(

–
1

2

)k
(

e
1
2
λ (t) – e

– 1
2

λ (t)
)2k

=

∞
∑

k=0

(

–
1

2

)k

(2k)!

∞
∑

n=2k

Tλ(n, 2k)
tn

n!

=

∞
∑

n=0

( [ n2 ]
∑

k=0

(

–
1

2

)k

(2k)!Tλ(n, 2k)

)

tn

n!
.

Thus we arrive at the following theorem.

Theorem 2.3 Let n be a nonnegative integer. Then the following relation between E∗
n,λ and

Tλ(n, 2k) holds true:

E∗
n,λ =

[ n2 ]
∑

k=0

(

–
1

2

)k

(2k)!Tλ(n, 2k).

The following computations based on (14) show that

∞
∑

n=0

F
(C)
n,λ (x)

tn

n!
=

1

1 – x(e
1
2
λ (t) – e

– 1
2

λ (t))

=

∞
∑

k=0

xk
(

e
1
2
λ (t) – e

– 1
2

λ (t)
)k

=

∞
∑

k=0

xk
k

∑

l=0

(

k

l

)

(–1)k–le
(l– k

2 )

λ (t)

=

∞
∑

k=0

xk
k

∑

l=0

(

k

l

)

(–1)k–l
∞

∑

n=0

(

l –
k

2

)

n,λ

tn

n!

=

∞
∑

n=0

(

∞
∑

k=0

xk
k

∑

l=0

(

k

l

)

(–1)k–l
(

l –
k

2

)

n,λ

)

tn

n!
.

Thus, we obtain the following theorem.
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Theorem 2.4 Let n be a nonnegative integer. Then the following explicit summation for-

mula holds true:

F
(C)
n,λ (x) =

∞
∑

k=0

xk
k

∑

l=0

(

k

l

)

(–1)k–l
(

l –
k

2

)

n,λ

.

3 On type 2 degenerate central Fubini polynomials by the fermionic p-adic

integral on Zp

In this section, let us assume that λ ∈ Cp and t ∈ Cp with the condition |λt|p < p
– 1
p–1 . By

(3) and (14), it becomes

∫

Zp

(

x
(

e
–1
2

λ (t) – e
1
2
λ (t)

))y
dµ–1(y) =

2

1 – x(e
1
2
λ (t) – e

– 1
2

λ (t))
(18)

= 2

∞
∑

n=0

F
(C)
n,λ (x)

tn

n!
.

From (18), we have

2

∞
∑

n=0

F
(C)
n,λ (x)

tn

n!
=

∫

Zp

(

x
(

e
–1
2

λ (t) – e
1
2
λ (t)

))y
dµ–1(y)

=

∫

Zp

(

–x
(

e
–1
2
–λ (–t) – e

1
2
–λ(–t)

))y
dµ–1(y)

= 2

∞
∑

n=0

(–1)nF
(C)
n,–λ(–x)

tn

n!
.

Thus, we get the following theorem.

Theorem 3.1 Let n be a nonnegative integer. The following symmetric relation holds true:

F
(C)
n,λ (x) = (–1)nF

(C)
n,–λ(–x).

By (2) and (14), we have

∫

Zp

(

x
(

e
– 1
2

λ (t) – e
1
2
λ (t)

))y+1
dµ–1(y) +

∫

Zp

(

x
(

e
– 1
2

λ (t) – e
1
2
λ (t)

))y
dµ–1(y) = 2. (19)

By (19), we get

x
(

e
– 1
2

λ (t) – e
1
2
λ (t)

) 2

1 – x(e
1
2
λ (t) – e

– 1
2

λ (t))
+

2

1 – x(e
1
2
λ (t) – e

– 1
2

λ (t))
= 2. (20)

It follows from (20) that

1 = x

(

∞
∑

n=0

((

–
1

2

)

n,λ

–

(

1

2

)

n,λ

)

tn

n!

)(

∞
∑

n=0

F
(C)
n,λ (x)

tn

n!

)

+

∞
∑

n=0

F
(C)
n,λ (x)

tn

n!
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=

∞
∑

n=0

[

x

n
∑

m=0

(

n

m

)

F
(C)
m,λ(x)

((

–
1

2

)

n–m,λ

–

(

1

2

)

n–m,λ

)

+ F
(C)
n,λ (x)

]

tn

n!

=

∞
∑

n=0

[

F
(C)
n,λ (x) + x

n
∑

m=0

(

n

m

)

F
(C)
m,λ(x)

((

–
1

2

)

n–m,λ

–

(

1

2

)

n–m,λ

)

]

tn

n!
.

Thus we state the following theorem.

Theorem 3.2 For n > 0, we have

F
(C)
n,λ (x) = –x

n
∑

m=0

(

n

m

)

F
(C)
m,λ(x)

((

–
1

2

)

n–m,λ

–

(

1

2

)

n–m,λ

)

. (21)

For n ∈N, by (21), we get

F
(C)
n,λ (x) = x

n
∑

m=0

(

n

m

)

F
(C)
m,λ(x)

((

1

2

)

n–m,λ

–

(

–
1

2

)

n–m,λ

)

= x

n–1
∑

m=0

(

n

m

)

F
(C)
m,λ(x)

((

1

2

)

n–m,λ

–

(

–
1

2

)

n–m,λ

)

= x

n–2
∑

m=0

(

n

m

)

F
(C)
m,λ(x)

((

1

2

)

n–m,λ

–

(

–
1

2

)

n–m,λ

)

+ xnF
(C)
n–1,λ(x).

Thus we get the following corollary.

Corollary 3.1 Let n be a positive integer satisfying with n≥ 2.Then the following equation

holds true:

F
(C)
n,λ (x) – xnF

(C)
n–1,λ(x) = x

n–2
∑

m=0

(

n

m

)

F
(C)
m,λ(x)

((

1

2

)

n–m,λ

–

(

–
1

2

)

n–m,λ

)

.

4 On type 2 degenerate central Fubini polynomials of two variable

In this section, we assume that λ �= 0 is any real number. We are now in a position to state

the type 2 degenerate central Fubini polynomials of two variable as follows:

∞
∑

n=0

F
(C)
n,λ (x; y)

tn

n!
=

1

1 – y(e
1
2
λ (t) – e

– 1
2

λ (t))
exλ(t). (22)

When x = 0, F
(C)
n,λ (0; y) = F

(C)
n,λ (y), F

(C)
n,λ (0; 1) = F

(C)
n,λ (1) are called the central Fubini polyno-

mials and the central Fubini numbers, respectively.

Since

lim
λ→0

exλ(t) = ext =

∞
∑

n=0

xntn

n!
,

it is not difficult to show that

lim
λ→0

∞
∑

n=0

F
(C)
n,λ (x; y)

tn

n!
=

1

1 – y(e
t
2 – e–

t
2 )
ext ,
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which is the generating function of the central Fubini polynomials of two variables; see

[18].

From (22), we have

∞
∑

n=0

F
(C)
n,λ (x; y)

tn

n!
=

1

1 – y(e
1
2
λ (t) – e

– 1
2

λ (t))
exλ(t)

=

(

∞
∑

k=0

F
(C)
k,λ (y)

tk

k!

)(

∞
∑

n=0

(x)n,λ
tn

n!

)

=

∞
∑

n=0

(

n
∑

k=0

(

n

k

)

F
(C)
k,λ (y)(x)n–k,λ

)

tn

n!
.

Thus, we obtain the following theorem.

Theorem 4.1 Let n be a nonnegative integer. Then the following identity holds:

F
(C)
n,λ (x; y) =

n
∑

k=0

(

n

k

)

F
(C)
k,λ (y)(x)n–k,λ.

Changing t to eλt–1
λ

in (22) gives

1

1 – y(e
t
2 – e–

t
2 )
ext =

∞
∑

k=0

F
(C)
k,λ (x; y)λ

–k (e
λt – 1)k

k!

=

∞
∑

n=0

(

n
∑

k=0

F
(C)
k,λ (x; y)λ

n–kS2(n,k)

)

tn

n!
. (23)

By (5) and (23), we have the following theorem.

Theorem 4.2 Let n be a nonnegative integer. Then the following identity holds:

F (C)
n (x; y) =

n
∑

k=0

λn–kF
(C)
k,λ (x; y)S2(n,k).

By (22), we see that

exλ(t) =
(

1 – y
(

e
1
2
λ (t) – e

– 1
2

λ (t)
))

∞
∑

n=0

F
(C)
n,λ (x; y)

tn

n!
(24)

=

(

∞
∑

n=0

F
(C)
n,λ (x; y) –

n
∑

k=0

(

n

k

)(

yF
(C)
n–k,λ(x; y)

((

1

2

)

k,λ

–

(

–
1

2

)

k,λ

))

)

tn

n!
.

By (8) and (24), we obtain the following theorem.

Theorem 4.3 Let n be a nonnegative integer. The following formula holds true:

(x)n,λ = F
(C)
n,λ (x; y) – y

n
∑

k=0

(

n

k

)

F
(C)
n–k,λ(x; y)

((

1

2

)

k,λ

–

(

–
1

2

)

k,λ

)

.
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Let us observe that

e
x1
λ (t)

1 – y1(e
1
2
λ (t) – e

– 1
2

λ (t))

e
x2
λ (t)

1 – y2(e
1
2
λ (t) – e

– 1
2

λ (t))

=
y1

y1 – y2

e
x1+x2
λ (t)

1 – y1(e
1
2
λ (t) – e

– 1
2

λ (t))
–

y2

y1 – y2

e
x1+x2
λ (t)

1 – y2(e
1
2
λ (t) – e

– 1
2

λ (t))
. (25)

By (22) and (25), we have

∞
∑

n=0

(

n

k

)

F
(C)
n–k,λ(x1; y1)F

(C)
k,λ (x2; y2)

tn

n!
(26)

=

∞
∑

n=0

(

y1F
(C)
n,λ (x1 + x2; y1) – y2F

(C)
n,λ (x1 + x2; y2)

y1 – y2

)

tn

n!
.

Therefore, by (26), we obtain the following theorem.

Theorem4.4 Let n be a nonnegative integer with y1 �= y2.The following formula holds true:

n
∑

k=0

(

n

k

)

F
(C)
n–k,λ(x1; y1)F

(C)
k,λ (x2; y2) =

y1F
(C)
n,λ (x1 + x2; y1) – y2F

(C)
n,λ (x1 + x2; y2)

y1 – y2
.

Remark 4.1 Taking x1 = x2 = 0 in Theorem 4.4 reduces to

n
∑

k=0

(

n

k

)

F
(C)
n–k,λ(y1)F

(C)
k,λ (y2) =

y1F
(C)
n,λ (y1) – y2F

(C)
n,λ (y2)

y1 – y2
.

5 Conclusion

In the present paper, we have considered type 2 degenerate central Fubini and type 2 de-

generate central Fubini polynomials of two variables. We investigated some properties,

identities and recurrence relations for these polynomials by making use of generating

functions and p-adic fermionic integrals on Zp. In addition, we have obtained some re-

sults related to degenerate central factorial numbers of the second kind and degenerate

Euler numbers of the second kind.
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