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ABSTRACT

Algebraic languages are at the heart of many successful optimization modeling systems,
yet they have been used with only limited success for combinatorial (or discrete) optimiza-
tion. We show in this paper, through a series of examples, how an algebraic modeling
language might be extended to help with a greater variety of combinatorial optimization
problems. We consider specifically those problems that are readily expressed as the choice
of a subset from a certain set of objects, rather than as the assignment of numerical values
to variables. Since there is no practicable universal algorithm for problems of this kind,
we explore a hybrid approach that employs a general-purpose subset enumeration scheme
together with problem-specific directives to guide an efficient search.
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1. Introduction

Algebraic modeling languages provide a natural and familiar means of describing math-
ematical programming models to computer systems. These languages express the objective
function as an algebraic expression in parameters and variables, and the constraints similarly
as algebraic equations and inequalities.

Algebraic languages are at the heart of many successful optimization modeling systems,
including AIMMS [2], AMPL [13, 14], GAMS [3, 4], LINGO [34], and MPL [32]. Much of the
popularity of these systems can be regarded as deriving from two strengths that algebraic
languages possess.

First, although originally developed for linear programming, algebraic modeling lan-
guages can be extended in a natural way to describe other important problem classes. Thus
they have long been widely used in nonlinear and integer programming, and more recently
have been extended in useful ways for network flow optimization [2, 11] and for complemen-
tarity problems [9, 10, 41].

Second, although the problems that can be described by an algebraic modeling language
vary greatly in structure and origin, they can be translated to a very general mathematical
form for which general-purpose algorithms are available. As a result, optimization systems
based on algebraic languages can reliably solve many different problem types without much
direction from the user.

These advantages notwithstanding, there remains one very important area of mathe-
matical programming in which algebraic modeling languages have had only limited success:
combinatorial (or discrete) optimization. The key obstacle in this case is not a matter of
language generality — as we will show in this paper — but is rather a lack of general-
purpose algorithms. The preponderance of research in combinatorial optimization has been
concerned with narrowly targeted algorithms for which performance bounds can be derived,
and with heuristics tailored for particular problem classes. Both complexity theory and
computational experience suggest, moreover, that efficient general-purpose algorithms for
combinatorial optimization are unlikely to exist.

The only major success of algebraic modeling languages in combinatorial optimization
has been for those problems that can be formulated as linear integer programs. These can
be translated to a general mathematical form suitable for input to sophisticated implicit
enumeration (or branch-and-bound) procedures. With sufficient attention to the tightness
of the formulation and the parameters of the enumeration scheme, general-purpose packages
can achieve acceptable results for many kinds of problems. Even so, useful information is
often lost in a model’s translation from its original formulation to a solvable formulation
in terms of integer decision variables. Without this information, the model is harder to
understand, and often the problem is harder to solve.

Many other instances of combinatorial optimization cannot be reliably or efficiently
solved through any general-purpose integer programming approach. This is the case for
problems as elementary as minimum spanning tree, and as famous as traveling salesman,
as well as much more complicated problems in network design, routing, and packing. Suc-
cessful attacks on problems of these kinds have relied on highly problem-specific software,
either written from scratch or built on top of general-purpose branch-and-bound and linear
programming libraries such as CPLEX [7] and OSL [23]. Algebraic modeling languages have
been of very limited help here.

The aim of this paper is to show, through a series of examples, how an algebraic modeling
language might be extended to help with a greater variety of combinatorial optimization
problems. We specifically consider those problems that are readily expressed as the choice
of a subset from a certain set of objects, rather than as the assignment of numerical values
to variables. This broad class, which includes some problems that can be expressed usefully
(though less naturally) as integer programs and others that cannot, is not amenable to
any known algorithmic procedure that is both general and efficient. We thus explore a
hybrid approach that employs a general-purpose subset enumeration scheme, together with



problem-specific directives to guide an efficient search for an optimal subset.

To introduce the fundamentals of our approach, we use in Section 2 a very simple knap-
sack example. Then in Section 3 we discuss general-purpose subset enumeration schemes
in more detail. Sections 4 and 5 are devoted to two examples that exhibit more complex
features: a budgeted traveling salesman problem that requires a choice of an ordered subset,
and a bulk loading problem for which a subset must be selected in a certain way from a set
of pairs.

Our work represents only a start in this area. Considerable research and development
remains to be done before modeling languages for combinatorial optimization attain the
same success as languages for other areas of mathematical programming. In Section 6 we
seek to place our current ideas into perspective, by describing and contrasting a variety of
approaches to the design of modeling systems for combinatorial optimization. We consider
algebraic modeling languages that may accommodate a broader range of logical and combi-
natorial expressions — through automatic translation to integer programs, or extension of
current branch-and-bound schemes — as well as alternative logic-based and network-based
model representations. We conclude by suggesting the circumstances in which the approach
that we set forth in this paper is most likely to be successful.

2. A Simple Knapsack Problem

This section introduces our ideas through the use of a very simple knapsack problem. We
begin by contrasting the problem’s integer programming formulation with its more natural
formulation in terms of optimization over subsets. We then describe general principles of
subset enumeration that can be applied in solving the subset formulation directly. Finally,
we propose directives to guide fathoming, bounding and search strategy for an implicit
enumeration of subsets, and describe some updating directives that may streamline the
enumeration’s description and operation.

Our illustrations throughout this paper are based on the AMPL modeling language
[13, 14]. We show in particular the symbolic parts of AMPL models, which declare the
relevant sets and parameters and provide a general algebraic formulation. In practice the
modeler would also supply set and parameter data to define individual problem instances
to be solved.

Formulations

Given a collection of objects i € S having weights w; > 0 and values v; > 0, we want
to find the most valuable subset whose total weight does not exceed a given “knapsack”
capacity W.

A standard algebraic integer programming formulation for this problem defines a variable
x; to be 1 if object 7 is included in the subset, or 0 otherwise. Then it suffices to

Maximize ), g viz;
Subject to Y swir; < W

We can dispense with the zero-one variables, however, by instead expressing the problem as
one of optimizing over all subsets 7 C S:
Maximize U
TCS 2167 ?
Subject to Y, ;w; < W

This is arguably a superior description of the problem, since it more directly says what was
originally intended.

It is easy to transcribe the algebraic integer programming formulation of the knapsack
problem to a model in the AMPL language, as shown in Figure 2—-1; the AMPL set 0BJECTS



set OBJECTS;

param value {0BJECTS} > 0;
param weight {OBJECTS} > 0;

param capacity > 0;
var X {OBJECTS} logical;
maximize Total_Value: sum {i in OBJECTS} valueli] * X[i];

subject to Weight_Limit:
sum {i in OBJECTS} weight[i] * X[i] <= capacity;

Figure 2—1. An integer programming formulation of the knapsack problem, in the AMPL
algebraic modeling language.

set OBJECTS;

param value {0OBJECTS} > 0;
param weight {OBJECTS} > O;

param capacity > 0;
var_set Knapsack within OBJECTS;
maximize Total_Value: sum {i in Knapsack} value[i];

subject to Weight_Limit:
sum {i in Knapsack} weight[i] <= capacity;

Figure 2—2. A decision-set formulation of the knapsack problem, using the proposed new
var_set declaration.

plays the role of § in our formulation. Currently AMPL has no way to describe a maxi-
mization over subsets, however, rather than over values of variables. For this purpose we
propose to introduce a var_set declaration such as the following:

var_set Knapsack within OBJECTS;

This says that Knapsack is a subset of 0BJECTS, whose membership is to be determined.
It may be regarded as a decision set, in contrast to the decision variables X[i] of the
conventional formulation.

The decision set Knapsack plays the role of 7 in our mathematical formulation. Thus
the full alternative AMPL model can be written as shown in Figure 2-2. Aside from the
introduction of the var_set declaration, the same AMPL syntactic forms and semantic
conventions are employed.

Although this second AMPL formulation is easier to write and understand, it is harder to
translate and solve. As one possibility, the language translator could convert it automatically
to a zero-one integer programming problem, which could then be submitted to a standard
branch-and-bound solver. While it is clear how to make such a transformation in this very
simple case, however, formulations using var_set do not in general admit any usefully
concise and tight equivalents in terms of integer variables, let alone equivalents that can be
generated automatically. Examples of more challenging var_set declarations are considered
in Sections 4 and 5.

As an alternative, we imagine that the user is given the option of specifying an implicit
enumeration scheme tailored to the var_set in the problem at hand. This scheme is de-
scribed by additional directives that use AMPL constructs, but that are not part of the
model description itself.



Search principles

To motivate the directives that we will propose, we begin by considering how the subsets
of a given set may be enumerated in a systematic way. There is more than one approach
to such an enumeration, but for now we imagine that a tree-structured collection of the
subsets is “built up” from the empty set. Thus we start with a tree that consists of only a
root node:

{I}{a,b,c,d}

We associate two sets with each node: a build set that is one of the subsets that has been
built up, and a free set of objects available to be added (shown in small type). Thus the
above diagram shows that the build set associated with the root is the empty set, while the
free set is initially the whole set {a, b, ¢, d}.

To create the first child of the root, an object is chosen from the free set (by some
appropriate rule, as explained later). Suppose that we choose a. Then the build set of the
child becomes the set {a}:

{I}{b,c,d}

I
{Cll}{b,c,d}

Object a is removed from the the root’s free set, which becomes also the free set of the child.
We can next choose an object in either of two ways. If we choose, say, b from the free
set of the root, we create a second child at depth one:

{I}{c7d}

| |
{Cll}{b,c,d} {bl}{c,d}

The build set of this child becomes {b}, and b is removed from the root’s free set, which
becomes also the free set of the new child. We may also choose b from the free set of the
first child, in which case a child at depth 2 is created:

{I}{c,d}

| |
{lf}{c,d} {l;}{c,d}

|
{ai b}{c,d}

The associated build set is {a,b}; object b is removed from the free set of the parent at
depth 1, and the resulting set also becomes the free set of the new child.

Subsequent steps proceed similarly. An object is chosen from the free set of some existing
node. A new child of that node is created, with a build set equal to the parent’s build set
plus the chosen object. The chosen object is then removed from the parent’s free set, which
becomes also the child’s free set.

By continuing this process until all free sets are empty, we construct a tree such as the
one depicted in Figure 2-3. Different priorities for creating new branches and nodes give
rise to somewhat different trees, but all have the same essential properties. Each node is
associated with one of the subsets of {a,b,c,d}, and the nodes at depth k represent all the
subsets of k objects. The tree is asymmetric because the ordering of the objects within
subsets is inessential. (We will observe in Section 3 how this search tree can be regarded as
a special case of the standard binary branch-and-bound tree.)



{}

{clt} {l?} {e} {d}

| | | | |
{a, b} {a,c} {a,d} {b,c} {b,d} {c d}

{a, f% ct {a,b.d} {a,c d} {b,c,d}
{a,b,c,d}

Figure 2—-3. A search tree for all subsets of {a,b,c,d}. This particular tree is realized
when a is given highest priority, b is given next-highest priority, and so forth.

Based on the construction of this sort of tree, we can design an explicit enumeration
algorithm to solve any optimization problem over subsets. Upon the creation of each new
node, the associated build set is evaluated for feasibility and (if feasible) for objective value,
and it is saved as the incumbent if it gives a better objective than any subset previously
seen. The branching priority is irrelevant, since we require only that every subset be built
eventually.

A practical implicit enumeration scheme constructs the same subset tree, but with much
greater care. Node and branch selection strategies, bounds on the optimal value, and other
criteria are applied to greatly reduce the number of nodes actually created. As our previous
remarks have suggested, however, we cannot expect to find useful general-purpose implicit
enumeration criteria for combinatorial optimization problems formulated in terms of decision
sets. To achieve acceptable results, the enumeration criteria must instead be designed
specially for individual problem types.

We thus propose to introduce a collection of directives through which the modeler can
specify problem-specific implicit enumeration criteria. These directives use many of the
syntactic elements of the modeling language, but they are not part of the symbolic model or
of the data. They do not change what is be solved, but rather determine how the implicit
enumeration routines will search for a solution.

The remainder of this section introduces the most important directives, for the case of
the knapsack problem. So that we may refer to the enumeration tree as it is built, a first
directive must associate names with the build set and free set. Recall that the var_set we
are enumerating is Knapsack. At any node, the build set is one of the subsets of objects
that we might place in the knapsack; the free set contains the objects that are outside of
the knapsack but are still eligible to be added. Thus our directive is:

enumerate Knapsack: build_set Inside,
free_set Outside;

The identifiers Inside and Outside will serve as generic names for the build set and free
set respectively. Within our directives, they will participate in expressions like other sets of
the modeling language.

Fathoming

If the weight of the build set at a node exceeds the specified capacity, then no feasible
solution is associated with the node. Moreover, no feasible solution is associated with any of
the node’s descendants, all of which correspond to even larger build sets. Thus the node and
all of the search tree below it can be removed; in the usual branch-and-bound terminology,
the node can be fathomed.

The above conditions are easily converted into a directive that uses the AMPL language’s
terminology:



fathom at child node: sum {i in Inside} weight[i] > capacity;

This is interpreted as stating that the specified feasibility condition is to be checked at
each node upon its initial creation in the search tree. In the presence of such a directive,
the enumeration can proceed much as before, but it will avoid generating potentially large
sub-trees of infeasible solutions.

A more concise directive,

fathom at child node: Weight_Limit.slack < O;

makes an equivalent statement, that any child node should be fathomed if its build set
violates the Weight_Limit constraint.

Bounding

More powerful fathoming criteria often depend on bounding arguments. Thus it is
desirable to have an alternative fathoming directive that simply gives a formula for a bound
to be used.

In the case of a maximization, we seek an upper bound on the objective that may be
achieved at a node or any of its descendants. For the knapsack problem, this means an
upper bound on the total value of objects in a node’s build set plus current free set. As an
example, we may imagine that our knapsack is filled exactly to capacity by adding (to the
build set) a fictitious object that has the greatest value-to-weight ratio of any in the free
set. The resulting total value is an upper bound on the value that can actually be achieved
by any feasible solution that adds zero or more objects from the free set to the build set.

To express this bound algebraically, we write the current total value of objects in the
build set as sum {i in Inside} value[i], and the remaining capacity of the knapsack as
capacity - sum {i in Inside} weight[i]. The largest value-to-weight ratio in the free
set can be written using AMPL’s iterated maximization operator: max {i in Outside}
value[i] / weight[i]. Putting these together, we arrive at the following directive:

bound at child node:
sum {i in Inside} value[i] +
(capacity - sum {i in Inside} weight[i]) =*
(max {i in Outside} value[i] / weight[il);

This specifies an additional activity that is to be carried out whenever a new node is added
to the tree. The bound expression is evaluated, and is compared with the objective achieved
by the current incumbent solution. If the bound is less than the incumbent value, the node
is fathomed.

We may prefer that the bound be computed every time a node is visited (just prior to
becoming a parent) rather than only the first time. There are two reasons to favor such a
strategy: the bound may decline as the free set shrinks, and the incumbent solution may
increase as the enumeration proceeds. These phenomena may cause the node to be fathomed
at a later visit, even though it could not be fathomed originally. To provide this option we
can use the same directive, except with parent replacing child.

Branch selection

So far, we have allowed the enumeration scheme to create new nodes in any arbitrary
order. We can hope to speed the implicit enumeration by providing directives to influence
the ordering.

We can view branch selection as having two aspects: selection of the parent, and selection
of the child. In the present example, we might want to specify a depth-first search, in which
the selected parent should have the largest build set among all those available for branching.
We could reasonably take the child as one that corresponds to adding an object with the
largest available value-to-weight ratio.



To design directives for branch and node selection, we must make a few extensions
to AMPL terminology. The language has a way to specify a maximum over a set (as in
the bound directive above) but not over a collection of active nodes in a search tree. To
distinguish the latter, we introduce a new keyword, largest, in the following directive:

select parent node: largest card {Insidel};

This causes the expression card {Inside} — representing the cardinality of, or number of
members in, the build set Inside — to be evaluated at each node where the free set is not
yet empty. The node that has the largest such value is the one from which the search will
branch.

Once a parent node is selected, it is a straightforward matter to specify the child that
will be added. We need only indicate which member of the free set will be added to the
build set. The following directive specifies an object having greatest ratio of value to weight:

select child node:
arg max {i in Outside} valuel[i] / weight[i];

Here we have invented another AMPL construct, arg max, to return the set of objects for
which the maximum is achieved. (The standard AMPL max operator returns only the value
of the maximum.)

Neither of these directives necessarily specifies a node uniquely. If not, we assume that
the system makes an arbitrary choice of node among the ones specified.

Updating

It can be ineflicient to recompute all the quantities referenced by the directives at each
node. Instead, certain quantities required at a new child node can be updated from their
values at the parent.

As an example, consider the expression sum {i in Inside} value[i] in the bound
directive above. We can call this current_value, and direct that it be initialized to zero at
the root node (where the build set is empty):

param at root node: current_value := 0;

Now we must say that at each new node, our sum is increased by the value of the object
newly added to the build set:

param at child node:
current_value := current_value + value[last(Inside)];

Here we employ the function last (Inside), which selects the element most recently added
to the build set, Inside. In effect, we treat Inside as an AMPL ordered set, with its
members being ordered in the sequence that objects were added to it.

We can similarly define cap_avail to represent the capacity not yet used up by the
build set:

param at root node: cap_avail := capacity;

param at child node:
cap_avail := cap_avail - weight[last(Inside)];

Then our previous fathoming and bounding directives can be rewritten more concisely like

this:

fathom at child node: cap_avail < O;
bound at child node: current_value +
cap_avail * (max {i in Outside} value[i] / weight[il);

Besides being more efficient to carry out, these directives are easier to understand when
written in this way.



3. Alternative Search Principles

In the preceding knapsack example, we presented one approach to enumerating a domain
of unordered subsets. We now observe that this approach embodies most of the features of
the more familiar binary branch-and-bound enumeration tree. We also describe a family of
enumeration schemes that are similar in spirit, but that can build from subsets other than
the empty set.

The branch-and-bound search

An example of the standard branch-and-bound search tree is depicted in Figure 3-1.
There are two nodes below the root: the one labeled {a} represents a commitment to put
a in the chosen subset, while the one labeled {a'} represents a commitment not to put
a in the subset. If we were using zero-one variables (as in the initial formulation in the
previous section) we would say that nodes {a} and {a'} represent the actions of fixing the
corresponding variable to 0 and to 1.

Below {a} are a pair of nodes, {a,b} and {a,b'}, which represent a commitment to add
or not add b to the subset; and similarly below {a’} are nodes {a’, b} and {a’,b'}. At the kth
level there are 2% subsets, representing all possibilities for choosing k of the set members,
or equivalently for fixing k of the 0—1 variables.

It is easy to see how the binary tree of Figure 3—1 can be “collapsed” to a subset tree
like that in Figure 2-3. First drop the a’, V', etc. from the node labels, so that for example
{a,b}, {a,b'}, {d',b}, {d’,V'} become {a,b}, {a}, {b}, and {}. Then combine adjacent nodes
that have the same labels, deleting their connecting arcs.

Viewed in this way, the subset tree appears to contain less information. It shows only
what is committed to be in the enumerated subset — we refer to its node labels as “build”
sets — whereas the binary tree’s nodes also record what is committed to be not in the
subset. Nevertheless, our procedure for using the subset tree in enumeration can be seen,
on closer examination, to incorporate most features of the enumeration of the full binary
tree.

Consider first the root node of the subset tree. When we begin the enumeration described
in Section 2, the root node is associated with a free set containing all the possible members
— in our example, {a,b,c,d}. When the child {a} is formed, however, the member a is
deleted from the root’s free set. By this deletion, we insure that a will not be a member
of any of the subsets represented by other children of the root; in other words, the root
now plays the role of node {a’} in Figure 3-1. Subsequently, when node {b} is formed
under the root, the root’s free set becomes just {c¢,d}, and the root plays the role of {a’,'}.
Continuing in this way, we see that the root node of this tree will eventually play the role of
all the nodes from the binary tree that are collapsed into it. The same is true of the other
subset tree nodes; for example, after {a, b} is created, the node {a} plays the role of {a,b’}.

To say this more generally, let S be the entire set whose subsets are being enumerated,
and let B and F be the build set and current free set of some node in the subset tree. Then

{
|

|
| | ! |
{a, b} {a, 0"} {d, b} {d/, 0}

{a,b,c} {a,b,c} {a,b,c} {a,¥,} {d',b,c} {d,b} {d,0,c} {d ¥, c}

Figure 3—1. Binary search tree for all subsets of {a,b, c}.



we can regard that node as playing the role of
BU[S\(BUF)

in the binary tree, in the sense that it represents a commitment to include all the members
of B and exclude all those of S\(BU F).

If only directives such as bound at child node and fathom at child node are employed,
then our implicit enumeration recognizes only the role played by each node when it is first
created (as a child of some higher node). To incorporate rules that recognize a node’s
subsequent roles, when it is revisited as a parent, we must use the previously described
bound at parent node, or its analogue fathom at parent node. Even then, the commitment
to include a certain object will always be tested before the commitment to exclude it. For
example, our enumeration process branches explicitly from the parent {a} to the child {a, b},
but can only consider {a, b’} when it returns to the parent at a later step.

In conclusion, we can use the subset tree of Figure 2-3 tree in almost the same way that
the binary tree of Figure 3—-1 tree would customarily be used. The latter might be preferable
because it offers a little more flexibility in committing to exclude a set member, or because
it offers a more attractive way to think about some problems; if so, we could readily devise
AMPL directives that work directly with it. We have chosen to instead use the subset tree in
the knapsack example because it is more compact, and because it generalizes to the search
tree needed for ordered subsets — which we investigate in Section 4 below.

Searching from a given set

We have assumed so far that it is desirable to start from an empty set and to “build”
toward larger subsets as the tree is searched at greater depths. In many cases, however, a
reasonably good choice of subset is already known, or can be cheaply computed. One can
thus imagine that it might be desirable to be able to “start” the implicit enumeration from
a given subset. We next suggest how this might be done within the framework that we have
established.

Suppose that we are given a feasible subset for the knapsack problem. It might be
declared in AMPL as a set named GUESS:

set GUESS within OBJECTS;
check sum {i in GUESS} weight[i] <= capacity;

To create a search tree starting from this set, we need only take its symmetric difference with
each of the node labels in the subset tree defined by Section 2. (The symmetric difference
of sets A and B is (AU B)\(AN B).) For the example of Figure 2-3, with GUESS taken as
{b, c}, the result is as shown in Figure 3-2. Every possible subset still labels exactly one
of the nodes, but the arrangement is different; at depth k, all subsets differ by k£ members
from the root subset.

This generalized search tree can be implemented through AMPL directives by allowing
an initial value to be assigned to the build set:

enumerate knapsack: build_set Inside := GUESS,
free_set Free_to_Change;

The initial free set at the root is still the set of all objects, and free sets are modified and
propagated as before. The free set at a node also still determines which build sets may be
generated by branching from that node, but in a more general way. As before, an object
in the free set may be added to the build set, provided that it was not in the root build
set. But also, an object in the free set may be dropped from the build set, if it was in the
root build set. These two different kinds of objects in the free set can be distinguished by
defining:

set at child node: Free_to_Add
set at child node: Free_to_Drop :

Free_to_Change diff GUESS;
Free_to_Change int GUESS;



{b’|c}

{a, f) c} {c} {0} {b, ¢, d}

| | |
{a,c} {a,b} {a,b,e,d} {} {c,d} {b,d}

{Cll} {a,¢,d} {a,b,d} {d}
{a, d}

Figure 3—2. Search tree for all subsets of {a, b, c,d}, starting from {b, c}.

(The operators diff and int are AMPL’s abbreviations for set difference and intersection.)
To save the user the trouble of setting this up, we could provide an option to define these
two additional sets in the enumerate directive.

To accommodate this generalization, we must also generalize Section 2’s fathoming and
bounding conditions. A node may be fathomed if its build set exceeds the knapsack capacity
after removal of all objects from the free set that are eligible to be dropped:

fathom at child node:
sum {i in Inside diff Free_to_Drop} weight[i] > capacity;

When this condition is satisfied, the build set is infeasible for the knapsack, and so are all
subsets associated with its descendant nodes.

To generalize Section 2’s bound, we must similarly consider that some objects in a
node’s build set may be removed at descendant nodes. In particular, we must account for
the possibility of dropping those objects in Free_to_Drop that have a lower value-to-weight
ratio than the highest-ratio object in Free_to_Add. This leads to:

param at child node: best_ratio :=
if card {Free_to_Add} = O then O
else max {i in Free_to_Add} value[i] / weight[i];

set at child node: Keep_Inside := Inside diff
{i in Free_to_Drop: value[i] / weight[i] < best_ratiol};

bound at child node:
sum {i in Keep_Inside} value[i] + best_ratio *
(capacity less sum {i in Keep_Inside} weight[i]);

A few complications here are necessary to assure that a valid bound is computed at nodes
where Free_to_Add is empty, or where the knapsack remains overfilled after dropping the
lower-ratio objects. (In AMPL, a less b means the greater of a - b and zero.)

Finally, we can consider a variety of branching directives. If it is expected that most
objects in the initial set will indeed be found in the optimal set, then we may prefer to
branch from parents where fewer of the initial objects have been dropped:

select parent node: smallest card {GUESS diff Inside};
Or, we may want to branch from parents that are closer to the initial subset:
select parent node: smallest card {GUESS symdiff Inside};

This latter rule is just a breadth-first search for our generalized subset tree. (AMPL’s
symdiff operator gives the previously defined symmetric difference.)

As before, we can specify branching to the child node that adds an object having the
largest available value-to-weight ratio:

10



select child node:
arg max {i in Free_to_Add} value[i] / weight[i];

If Free_to_Add is empty, then this directive is ignored, and the implicit enumeration pro-
cedure selects some arbitrary child from Free_to_Drop. As a refinement, we can specify a
secondary preference for the child node that drops an object having the smallest available
value-to-weight ratio:

select child node: if card {Free_to_Add} > 0
then arg max {i in Free_to_Add} value[i] / weight[i]
else arg min {i in Free_to_Drop} valuel[i] / weight[i];

Further refinements to the branching (as well as bounding and fathoming) criteria are pos-
sible, for example by distinguishing the cases of feasible and infeasible build sets.

4. The Budgeted Traveling Salesman Problem

We next consider a more difficult case, typical of routing problems. The solution consists
of a choice of an ordered subset, or subsequence.

We begin by stating the problem and considering its formulation in terms of both decision
variables and decision sets, with the latter transcribed to AMPL. We then discuss the
principles underlying the enumeration of subsequences, and consider the various ways in
which the previously described directives can be used to specify a good implicit enumeration.

Formulation

We are given a set C of cities, and a home city h € C. Travel between cities is restricted
to a subset of links £ C C x C : if (i,7) € L, then it is possible to travel from 7 to j, at
a cost ¢;; (# c¢j; in general). We want to find a tour through the home city that visits as
many other cities as possible, subject to a budget B for travel costs.

We can formulate this problem as a zero-one integer program, but only through the use
of some tricks. Naturally there is a variable x;; for each (4, j) € £, equal to 1 if link (7, 7) is
used by the tour, and zero otherwise. A new city is visited with each link traversed, so the
objective is

Maximize Z Tij,
(i.4)EL

and the budget constraint is enforced by

Z CijTgj < B.

(1,7)€L

We add constraints to assure that the tour leaves and re-enters the home city,

Z zhj =1, Z zip = 1,

(h,g)eL (i,h)eL

and that it leaves every other city the same number of times that it enters:

Z Tk = Z xyj, forall k € C\{h}.

(i,k)eL (k,j)eL
Finally, we eliminate additional subtours that do not visit the home city, by specifying

w; —u; + |Cla;; < |C]—1, forall (4,5) € £ such that j # h,
0 <wu; <|C|, for all i € C.
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set CITIES;
param Home symbolic in CITIES;

set LINKS within {i in CITIES, j in CITIES: i <> j};
param cost {LINKS};

param budget > O;

Figure 4-1. AMPL data declarations for the budgeted traveling salesman model.

var X {LINKS} logical;
var U {CITIES} >= 0, <= card {CITIES};

maximize Cities_Visited: sum {(i,j) in LINKS} X[i,j];

subject to Budget_Limit:
sum {(i,j) in LINKS} cost[i,j] * X[i,j] <= budget;

subject to Leave_Home:

sum {(Home,j) in LINKS} X[Home,j] = 1;
subject to Return_Home:
sum {(i,Home) in LINKS} X[i,Home] = 1;

subject to Enter_equals_Leave {k in CITIES diff {Homel}}:
sum {(i,k) in LINKS} X[i,k] = sum {(k,j) in LINKS} X[k,j];

subject to Subtour_Elimination {(i,j) in LINKS: j <> Home}:
U[i] - U[j] + card {CITIES} * X[i,j] <= card {CITIES} - 1;

Figure 4—-2. An integer linear programming formulation of the budgeted traveling salesman
problem, using standard AMPL declarations.

where u;, 1 € C, are supplementary continuous variables.

Here, even more so than in the knapsack problem, we can make the formulation more
concise and intuitive by introducing a decision set. In this case we seek a subset 7 of
C, representing the cities of the tour. Unlike in the knapsack case, however, 7 must be
regarded as an ordered set, because the cost of the tour depends on the order in which the
cities are visited. Indeed, it is convenient to regard 7 as being circularly ordered, so that
for every i € T there is a unique city next(i) € 7. Then the optimization can be formulated

as follows:
Maximize |7 |

TCC
Subject to Zci,next(i) <B
i€T
first(7) = h

(t,next(i)) € £, forallie T

The first constraint imposes the budget as before, while the others say that 7 describes a
tour out of the home city that uses only allowed links from £. The circular ordering insures
that, in the case of the last city [, we have next(l) = first(7) = h, returning the tour to the
home city as required

Both of our formulations of this problem are readily transcribed to AMPL. For either one,
the data may be described as in Figure 4-1. In the case of the zero-one formulation, AMPL’s
standard features are also sufficient to describe the variables, objective and constraints, as
shown in Figure 4-2. To represent the ordered set formulation, however, we must introduce
a declaration of a circularly ordered subset that plays the role of the decision set 7:
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var_set Tour circular within CITIES;
maximize Cities_Visited: card {Tour};

subject to Budget_Limit:
sum {c in Tour} cost[c,next(c)] <= budget;

subject to Leave_Home: first(Tour) = Home;

subject to Link_Exists {c in Tour}: (c,next(c)) in LINKS;

Figure 4-3. A decision-set formulation of the budgeted traveling salesman problem, using
the new var_set declaration to specify a circularly ordered subset.

var_set Tour circular within CITIES;

This is much the same as the var_set declaration used in our knapsack example, except for
the addition of the keyword circular to specify that Tour is to be treated as a circularly
ordered set in subsequent AMPL declarations and directives.

Using this var_set, the AMPL objective and constraints can be written in the much
more concise form depicted by Figure 4-3. The simplicity of this alternative is appealing,
but again it is not a useful formulation unless we can append some directives to say how
the collection of possible tours is to be implicitly enumerated. Because different orderings
of the cities represent distinct tours, having generally different costs, we must work with a
somewhat larger search tree than before.

As in Section 2, we first describe the principles of the search, and then survey the
directives that can be used to specify an implicit enumeration.

Search principles

We want to start at the home node, and build up a tour by adding successive cities.
Thus at the root node of our search tree, the build set contains the home city, while the free
set contains all other cities; that is, the build set is {h}, and the free set is C\{h}.

To create the first child of the root, we pick some city a from the free set. The build set
of the resulting node is {h,a}, and represents the tour from home to a and back. City a is
also removed from the root’s free set, which becomes C \ {h, a}. The child’s free set consists
of all cities not in its build set, so it is also C \ {h,a}.

A second child of the root may next be created in an analogous way, by picking another
city b from the root’s free set. Then the build set of the resulting node is {h,b}; city b is
removed from the root’s free set, which becomes C\{h,a,b}. The child’s free set, consisting
of all cities not in its build set, is C\{h, b}.

We can also create a new node by choosing the root’s first child to be a parent, and
selecting b from its free set. The build set of the resulting child node is {h, a, b}, representing
the tour from home to a to b and back. City b is removed from the parent’s free set, which
becomes C\{h, a,b}. The child’s free set consists of all cities not in its build set, so it is also
C\{h,a,b}.

In general, a branching operation consists of choosing a parent node, and choosing a city
from the current free set at that node. A child is created, whose build set is the parent’s
with the chosen city added at the end, and whose free set contains all cities not in its build
set. The chosen city is also removed from the parent’s free set. The final search tree is
essentially the same regardless of the order in which parents and children are chosen; an
example is shown in Figure 4-4.

This ordered subset search tree is significantly different from the unordered subset tree
that we used for the knapsack problem (Figure 2-3). Because differently ordered subsets
are distinguished, this tree is symmetric, and its number of nodes grows much more quickly
with the number of members of the initial free set. Also, in the particular example of the

13



|
)
| | |
{h,a} {h,b} {h,c}

{h,a,b}  {h,a,c} {h,b,a} {h,b,c} {h,c,a} {h,c,b}
{h,a,b,c} {h,a,c,b} {h,b,a,c} {h,b,c,a} {h,c,a,b} {h,c,b,a}

Figure 4—4. Search tree for orderings of {h,a,b,c}, starting from h.

budgeted traveling salesman, the root node is associated with {h} rather than {}, because
there is no meaning to a tour that does not include the home city.
As in previous examples, our first directive must give names to the build and free sets:

enumerate Tour: build_set SubTour := {Homel},
free_set Free;

In this case we explicitly assign {Home} as the initial build set, on the assumption that the
enumeration procedure will not know to do this automatically.

Fathoming

A node and all its descendants can be dropped if there is obviously no way within the
budget to get from the last city in the build set back to the home city.

To develop a directive for this purpose, we first consider the cost of traveling from the
home city to the last city in the build set, through the other cities in the build set in the
given order. This cost, which we denote path_cost, is easily updated from node to node
by use of the updating directives that we previously introduced:

param at first node: path_cost := O;

param at child node:
path_cost := path_cost +
cost [prev(last (SubTour)),last(SubTour)];

Because SubTour is an ordered set, we can use AMPL’s built-in functions prev and last to
write prev(last (SubTour)) for the city just previous to the last city.
There are two ways in which we might get from the end of the build set back to Home:

e Travel directly from last (SubTour) to Home, if a link between them exists.

e Travel from last(SubTour) to a city in the free set, and later from a city
in the free set to Home.

We want to say that the node is fathomed if the cost of either of these possibilities, when
added to the above-defined path_cost, must cause the budget to be exceeded. For the first,
clearly the cost of travel is just cost[last (SubTour) ,Home], if a link from last (SubTour)
to Home exists. For the second, we can say that the travel back to Home will equal at least
the sum of the following two costs:

e The cheapest cost of traveling from the last city in the build set to some
city in the free set.

e The cheapest cost of traveling to the home city from some city in the free
set.
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The following directives define these as out_cost and in_cost:

param at new node:
out_cost := min {j in Free:
(last(SubTour),j) in Links} cost[last(SubTour),j];

param at new node:
in_cost := min {i in Free: (i,Home) in Links} cost[i,Home];

Using these, we can write out the fathoming directive:

fathom at child node:

(last (SubTour) ,Home) notin Links or
path_cost + cost[last(SubTour),Home] > budget) and

(path_cost + in_cost + out_cost > budget);

This directive may be ineffective at early stages of the search, where the build sets are still
small and the path_cost values low. Thus we next look at other ways to keep the tree to
manageable size.

Pruning

When a new node is created, many of the members of its free set correspond to obviously
impossible branches. We want to specify that these members be removed from the free set
immediately — or equivalently, that the branches be pruned immediately — so that search
time is not wasted.

Most obviously, there is no sense branching to a city that is not connected by a link
from the last city of the build set. To communicate this information to the enumeration
procedure, we require a new kind of directive:

prune at child node:
{c in Free: (last(SubTour),c) notin Links};

Here we have specified a set of cities, all of which are to be removed from the free set
immediately after any node is created.

We can go further, to remove cities whose addition to the tour would be obviously too
expensive. Suppose that we are considering the addition of city ¢ to the tour represented
by a certain build set. The cost of the resulting tour has three components:

e The cost of traveling from the home city to the last city in the build set.
e The cost of traveling from the last city in the build set to city c.

e The cost of traveling from city ¢ back to the home city.

The first of these is what we have already denoted path_cost, and the second is just
cost[last (SubTour),c]. It is tempting to write the third cost similarly as cost [c,Home].
However, we cannot be sure that the pair (c,Home) is in the set of allowed links; even if
it is, there may be a shorter indirect route (unless the costs satisfy a triangle inequality).
Instead we simply add a lower bound, equal to the cheapest path from c to either the
home city, or another city in the free set. In AMPL notation, this bound can be written as
min {(c,j) in Links: j = Home or j in Free} cost[c,j].

Motivated by this analysis, we can write the following pruning directive to be applied
after our first one:

prune at child node:
{c in Free: path_cost + cost[last(SubTour),c] +
min {(c,j) in Links: j = Home or j in Free} costlc,j]
> budgetl};
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This says that we prune cities when a lower bound on the cost of adding them is already
greater than the remaining budget. This lower bound can be improved in various straight-
forward ways, particularly by more closely considering the case in which (c,Home) is not
an allowed link.

Bounding

We can try to further generalize the above strategy by calculating an upper bound on
the number of cities that can be visited within the budget, given that we start with the
sequence specified by the build set.

First, we note that if two cities from the free set are added to the build set, the cost of the
resulting tour is at least path_cost + out_cost + in_cost. We then observe that, to insert
k more cities from the free set, we must use k+ 1 more links that are entirely between cities
in the free set. Thus k + 1 times the cheapest link between two free-set cities cannot exceed
budget minus path_cost + out_cost + in_cost. Solving for k, the maximum number of
additional cities capable of insertion is defined by:

param at child node:
max_insert := floor (
(budget less (path_cost + out_cost + in_cost))
/ (min {(i,j) in Free} cost[i,jl) - 1)

We take the floor of (greatest integer less than or equal to) the computed number, since
we can only insert an integral number of cities.

The desired upper bound can now be expressed as the number of cities in the build
set, plus at most two additional cities connected directly by links to the build set, plus the
quantity max_insert defined above:

bound at child node: count {SubTour} + 2 + max_insert;

An analysis of this formula shows that it gives a correct bound even when max_insert
comes out to be 0 or —1.

Branch selection

One appealing implicit enumeration strategy is to always extend the search tree by the
cheapest branch. In other words we select a city, within the free set of some node, that
can be reached from the end of the node’s build set at lowest cost. We can hope that, by
proceeding in this way, the search will quickly find good tours through large subsets of cities.

Such a selection strategy actually involves two choices: selection of a node that admits
a cheapest branch, and selection of a city that corresponds to such a branch. The situation
may be seen more clearly by examining the requisite directives:

select parent node: lowest min {c in Free} cost[last(SubTour),c];

select child node: arg min {c in Free} cost[last(SubTour),c];

The first directive selects the parent node at which the new child will be created; it is the
node with the “lowest” minimum-cost branch available. Then the second directive picks a
child to be created by branching from the selected parent.

5. A Loading Model

We consider finally a model motivated by the loading of bulk materials onto vehicles.
The set from which a subset must be chosen is a set of pairs. The constraints exhibit
complications that are typical of combinatorial optimization problems.
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Formulation

Our vehicles have a fixed number of compartments, of various volumes. Compartments
must be loaded in a given order — not necessarily their physical order — so as to maintain
balance and other desirable properties. A particular compartment can hold only certain of
the products that are to be shipped, and it must be filled completely with one product.

The relevant data for this problem can be described by the AMPL set and param
declarations in Figure 5-1. For each compartment c in 1..number_compart, there is a
volume vol[c]. For each product p in set PROD, there are both a minimum required shipment
min_ship[p] and a maximum acceptable shipment max_ship[p]; the difference between
them provides us with some leeway to to find a feasible solution under the requirement that
all compartments be filled completely and with one product.

One further piece of data, the set of pairs OK declared in Figure 5-1, indicates which
compartments may hold which products. A compartment c is allowed to contain a product
p if and only if (c,p) is a member of OK.

We can view each feasible loading order as corresponding to a subset of the (c,p) pairs
from OK. Since the choice of this subset is the decision to be made, it can be declared as a
var_set in our previous terminology:

var_set Loading within OK;

Figure 5-2 shows the model that results. The objective sum {(c,p) in Loading} voll[c] is
simply to ship as much as possible. The constraints Demand_Met ensure that the amount of
each product shipped is between the specified limits.

The remaining constraints enforce our operational requirements. For a compartment c,
the expression card {(c,p) in Loading} equals the number of products loaded into c.
The constraint Fill_First_Compartment says that one product is loaded into the first
compartment, while the constraints Load_in_Order ensure that a contiguous sequence of
compartments is filled with one product each, while all other compartments are left unfilled.

param number_compart integer > 0;
set PROD ’products’;
param vol {1..number_compart} ’volume’ > O;

param min_ship {PROD} ’required’ > O;
param max_ship {PROD} ’acceptable’ > 0;

set OK within {1..number_compart,PROD} ’permitted combinations’;

Figure 5-1. AMPL data declarations for the bulk material loading model.

var_set Loading within OK;
maximize Total_Shipped: sum {(c,p) in Loading} voll[c];

subject to Demand_Met {p in PROD}:
min_ship[p] <= sum {(c,p) in Loading} vol[c] <= max_shipl[p];

subject to Fill_First_Compartment: card {(1,p) in Loading} = 1;

subject to Load_in_Order {c in 2..number_compart}:
card {(c,p) in Loading} <= card {(c-1,p) in Loading};

Figure 5—2. AMPL declarations for the objective and constraints of the bulk material
loading model, employing var_set to specify the selection of an optimal subset from a set
of ordered pairs.
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Search principles

If we treat Loading as merely a collection of objects, we can use the same kind of search
tree as in the knapsack example. Most of the subsets enumerated by such a tree are in
violation of the constraints, however, because they do not fill consecutive compartments
with one product each. To avoid enumerating all these infeasible subsets, we prefer to
restrict the search so that it considers filling the compartments in order. The search tree
then looks like the example in Figure 5-3.

We can specify such a tree by simply restricting the free set at each node. A free
directive could be introduced into AMPL for this purpose:

enumerate Loading: build_set Filled,
free_set Unfilled;

param at root node: nextC := 1;
free at root node: {(nextC,p) in OK};

update at child node: nextC := nextC + 1;
free at child node: {(nextC,p) in 0K};

The parameter nextC simply keeps track of the next compartment to be filled; it is equal to
the depth of the node in the tree. The free set at a node is thus initially the set of all pairs
(nextC,p) where p is a product that can be accommodated in the next compartment. This
option of specifying the free set offers a great deal of flexibility in designing the search tree
to take advantage of particular constraints. Indeed, its main weakness is that it may offer
too much flexibility. It does nothing to prevent the modeler from accidentally specifying an
incomplete tree, which may fail to include any of the optimal feasible subsets.

As an alternative, rather than expand the variety of search directives, we might enhance
the var_set declaration so that it could directly describe our problem as one of choosing
a sequence of products to load. Just as we declared the decision set Tour in the budgeted
traveling salesman example to be ordered, we could declare Loading in the current example
to be a sequence:

var_set Loading sequence within PROD;

The structure of the search tree in Figure 5-3 would follow directly from this declaration.
As a bonus, we would be able to dispense with the constraints Fill_First_Compartment
and Load_in_Order, which are arguably as unnatural as many of the constraints found in
integer programming formulations. In their place we could declare simply:

empty

1,a) 1,a) (1,0) (1,b) (1,¢) (1,¢)

2,Ia) (2,Id) (27Ia) (27Id) (2,|a) (2,|d)

| | | | | | | | | | | |
(1,a) (La) (1,a) (1,a) (1,b) (1,0) (L,b) (1,0) (1,¢) (Le) (1,¢) (1,¢)
(2,a) (2,a) (2,d) (2,d) (2,a) (2,0) (2,d) (2,d) (2,a) (2,0) (2,d) (2,d)
B,0) (3,d) (3,¢) B.,d) 3,¢) (3,d) B0) B,d) (3,¢) (3,d) B,¢) (3,d)

Figure 5-3. Search tree for an instance of the loading problem, where compartments 1, 2,
and 3 can accommodate products from the sets {a, b, ¢}, {a,d}, and {c, d}, respectively.
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subject to Loading_Allowed {p in Loadingl}: (ord(p),p) in OK;

The disadvantage to this approach is that Loading is no longer a set in the usual sense.
It could be, say, (a,b,a,a,c,b,d,b), with some members appearing more than once because
some products are loaded into more than one compartment. Sequences of this sort behave
differently from sets when subjected to many of the usual indexing and set operations. Sig-
nificant extensions to the syntax and semantics of the modeling language would be necessary
to accommodate them.

Fathoming

We can define a parameter loaded[p] at each node, to represent the amount of product
p that has already been loaded into compartments 1,...,nextC — 1:

param at child node {p in PROD}:
loaded[p] := sum {(c,p) in Filled} voll[c];

Then a node can be fathomed if neither it nor its descendants can possibly satisfy the
demand constraints:

fathom at child node {p in PROD}: loaded[p] > max_shipl[p];

fathom at child node:
sum {p in PROD} (min_ship[p] less loaded[p])
> sum {c in nextC .. number_of_compartments} voll[c];

The first directive detects any product of which too much has already been loaded. The
second is for the case in which the volume of all remaining compartments is insufficient to
permit the total minimum shipments of all products.

We can construct a stronger condition by observing that, because all filled compartments
must be filled completely, there might be no combination of remaining compartments that
will permit the total shipment of product p to lie between min_ship[p] and max_ship[p].
If this is true of even one product, then none of the descendant nodes is feasible, and the
node under consideration can be fathomed.

To specify this condition we imagine that we are given, for each compartment c, a set
FEAS [c] that has the following property: a number s is in FEAS [c] if and only if a shipment
of volume s can be made using some combination of compartments ¢ and later. We then
specify the fathoming condition as follows:

set FEAS {1..number_compart} ’possible shipment sizes’;

set at child node: Can_Ship {p in PROD} :=
{s in FEAS[nextC]:
min_ship[p]-loaded[p] <= s <= max_ship[p]-loaded[pl};

fathom at child node: exists {p in PROD} card {Can_Ship([p]} = O;

For each product p, the set Can_Ship[p] contains the different total amounts that could
be shipped in compartments nextC and later so as to achieve a feasible solution, given that
an amount loaded [p] has already been committed in compartments prior to nextC. Thus
a new child node can be fathomed if there exists any p for which this set is empty.

It is undesirable to have to supply each set FEAS [c] as independent data, since its mem-
bership is fully determined by the compartment sizes vol[c] up to vol [number_compart].
In this case, a short script of AMPL commands could build the needed sets:

let FEAS[number_compart] := {0, vol[number_compart]};

for {c in number_compart-1 .. 1 by -1}
let FEAS[c] := FEAS[c+1] union setof {f in FEAS[c+1]} (f+voll[c]);
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Our fathoming criterion could be refined further, at the cost of some additional complication,
to take account of the fact that only certain products can go into certain compartments.
The sets FEAS[c,p] needed for this purpose could still be computed in AMPL. For yet
more complicated cases, problem-specific data manipulation routines could be written in a
language such as C, then linked to a function in the modeling language; AMPL and other
languages provide for user-defined functions of this kind.

Bounding

The sum of 1loaded [p] and the largest member of Can_Ship [p] gives the most of product
p that can be feasibly loaded. Thus an upper bound on the objective for a new node and
all its descendants is given by

bound at child node:
sum {p in PROD} (loaded[p] + max {s in Can_Ship[pl} s);

The maximum is guaranteed to be over a nonempty set, since otherwise the node would
already have been fathomed as explained above. If p has already been loaded as much as
possible, then the corresponding set Can_Ship [p] will be {0}.

Pruning

The sets Can_Ship[p] are computed independently of the free set. Thus we could
compute these sets first, and then use them to further restrict the free set:

free at child node:
{(nextC,p) in OK: max {s in Can_Ship[pl} s > 0};

Alternatively, if it is clearer or more convenient, we could use the simpler free directive
introduced previously, together with a pruning directive:

free at child node: {(nextC,p) in 0K};

prune at child node:
{(nextC,p) in Unfilled: max {s in Can_Ship([p]} s = 0};

Recall that Unfilled is the name given to the free set. We prune branches to products for
which Can_Ship[p] has only the member zero, since there is no feasible way to ship any
more of these products.

We can alternatively refine the free set by dropping products that would exceed their
maximum if loaded into the next compartment:

prune at child node:
{(nextC,p) in Unfilled: loaded[p] + voll[nextC] > max_ship[pl};

All nodes pruned by the preceding directive are in fact pruned by this one. This directive
may prune additional nodes, however, representing products that cannot be loaded into
compartment nextC but that remain eligible to be loaded into later, smaller compartments.

Branch selection

Criteria for selecting the next parent node for branching may reasonably be based on
the amount loaded so far. For instance, we could specify either

select parent node: smallest sum {p in PROD} loaded[p];
or

select parent node: largest sum {p in PROD} loaded[p];
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The former gives a kind of breadth-first search, and the latter a depth-first search.

In selecting branches to child nodes, we might want to first consider those that load
products that are highly constrained in the total that can be shipped. Then the selection
directive would be

select child node:
arg min {(c,p) in Unfilled} (max_ship[p] - min_ship([p]l);

Another possibility is to favor products that still have a large shipment quantity unassigned:

select child node:
arg max {(c,p) in Unfilled} (min_ship[p] - loaded[pl);

Or, precedence might be given to products that have fewest shipment-size options remaining:

select child node:
arg min {(c,p) in Unfilled} card {Can_Ship[p]l};

Several of these could be used in sequence, each applying to the potential branches that are
tied under the previous criteria. Here the modeling language shows its power in allowing
many criteria to be formulated quickly and simply for testing.

6. Concluding Remarks

There is no single best way of representing combinatorial optimization problems to com-
puter systems. We begin this section by contrasting several approaches currently under in-
vestigation or development. We first address enhancements to algebraic modeling languages
that may be achieved through translation to integer programs and through generalization of
branch-and-bound procedures, and then consider alternative logic-based and network-based
approaches.

To conclude, we summarize the advantages and disadvantages of the decision-set ap-
proach proposed in this paper, and indicate some directions for extension of this work.

Translation to integer programs

As we have remarked at several points in this paper, certain classes of combinatorial opti-
mization problems have long been addressed by formulating them as integer linear programs.
Algebraic modeling languages are ideal for representing these formulations, as illustrated in
Figures 2-1 and 4-2.

One logical next step would be to automate the integer programming formulation process.
The modeling language would first be extended to better represent combinatorial problems,
perhaps by adding constructs such as the var_set that we have proposed, and perhaps by
extending the variety of expressions allowed in objectives and constraints. As an example of
the latter, AMPL’s existing or, card (set cardinality) and if ... then ... else operators
can be used to write meaningful expressions for fixed costs,

minimize Total_Cost:
sum {i in ORIG, j in DEST}
(if sum {p in PROD} Trans[i,j,p] > O then fcost[i,jl) + ... ;

zero-or-minimum constraints,

subject to Truckload {i in ORIG, j in DEST}:
sum {p in PROD} Trans[i,j,p] = O or
sum {p in PROD} Trans[i,j,p] >= minload;

and uniqueness restrictions:
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subject to Unique_Supplier {j in DEST, p in PROD}:
card {i in ORIG: Trans[i,j,p] > 0} <= 1;

The language translator would then be extended to convert problems using these kinds
of expressions into problems in terms of integer decision variables. In effect, the translator
would apply a variety of integer programming formulation “tricks” (as discussed for example
in Chapter 24 of [2]) without the modeler having to know about them. Following the
translation, any general-purpose branch-and-bound code could be used as a solver. (Some
provision would also have to be made for translating the results back into the terms of the
original model.)

This approach has been investigated by Greenberg [17, 18], Hiirlimann [24], and Mitra
et al. [37], and continues to be of considerable interest. It is not yet available within many of
the most popular modeling languages, however, and appears to face at least two significant
hurdles to wider adoption.

First, when any new type of combinatorial expression is allowed in objectives and con-
straints, the variety of new problems that can be expressed is likely to exceed the variety of
problems that can be translated to integer programs. Some of the new problems will contain
expressions too complex for the translator to sort out, while others will be found to admit
no concise integer programming formulation at all. As a result, certain restrictions will have
to be placed on modeling language extensions for combinatorial optimization. Greenberg’s
MODLER system, for example, permits logical logical constraints of the forms

IF binary condition THEN binary condition
IF binary condition THEN activity bound condition

where the binary condition and activity bound condition are carefully restricted to ensure
that a translation to algebraic constraints is always possible. Restrictions of these kinds
have the advantage of ensuring that anything properly written in the language can be
successfully translated, but also have the disadvantage of tending to appear arbitrary from
the modeler’s point of view. Especially for modelers unfamiliar with the the mathematics
of the translation, these restrictions can make the language seem more complicated and less
suitable as a general-purpose tool.

Second, any difficult combinatorial optimization problem has a range of different equiva-
lent integer programming formulations, some of which are much better than others from the
standpoint of solution time. The ability of a branch-and-bound code to return an optimal (or
even near-optimal) solution may depend critically on the ability of the modeler to provide a
“tight” formulation that gives good bounds at the nodes of the search tree. The ability of a
modeling language translator to similarly provide a tight formulation is unproven. Certain
principles can be seen clearly in individual cases, but their generalization for purposes of
automatic translation remains a challenge.

Generalization of branch-and-bound procedures

As an alternative to translating combinatorial optimization problems into a form that
standard branch-and-bound solvers require, one can consider generalizing the solvers to
handle a broader variety of discrete constraints. The solvers can then directly support a
more natural and general variety of expressions in algebraic modeling languages.

A few kinds of combinatorial restrictions on groups of variables, known as special ordered
sets [1], have a long history of being accommodated by large-scale branch-and-bound codes
[45]. Special ordered sets “of type 2” are employed to represent separable piecewise-linear
functions, and hence can be supported by AMPL’s piecewise-linear function notation [11].
Special ordered sets “of type 1”7 specify that at most one variable in a group may be nonzero.
This restriction is harder to express in current algebraic languages, whose syntax does not
naturally support statements about “at least one” or “exactly one” variable from a specified
group. The AIMMS language [2] circumvents this difficulty by allowing a constraint in
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nonnegative variables to be designated a S0S1 CONSTRAINT, in which case at most one
variable appearing in that constraint is allowed to be positive.

The usefulness of special ordered sets suggests that they should be supported in algebraic
modeling languages by a constraint syntax that expresses their intent directly. For exam-
ple, the constraints Unique_Supplier[j,p] above, employing the card function, represent
special ordered sets of type 1. They could be made clearer, both to the modeler and to
the solver, by introducing a new construct analogous to the exists and forall operators
currently in AMPL:

subject to Unique_Supplier {j in DEST, p in PROD}:
atmostl {i in ORIG} (Tramns[i,j,p] > 0);

A language translator might automatically identify this constraint as a special ordered set,
requiring no special designation by the user, and involving no translation into algebraic
constraints in terms of integer variables.

Such an approach need not stop at special ordered sets. Branch-and-bound procedures
can be extended to directly handle of variety of other logical conditions in objectives and
constraints. A generalization to zero-or-range constraints such as Truckload[i, j] above is
described by Hansen and Hugé [19]. More broadly, many search procedures developed for
constraint satisfaction and logic programming are known to have powerful analogues in the
context of branch-and-bound, as elucidated by recent work of Hooker and others [20, 22, 21].
These generalizations can help to speed the branch-and-bound process, by enabling it to
deal directly with a problem’s essential combinatorial restrictions, rather than limiting it to
constraints that the user is able to construct in terms of integer variables.

As long as modeling languages (or other optimization problem formats) tend to force
the modeler to work in terms of integer variables, however, there is limited motivation to
generalize branch-and-bound solvers to handle combinatorial constraints. At the same time,
since few such generalizations are implemented in solvers, there is limited motivation to ex-
tend the constraint syntax of modeling languages. Newer solvers, constructed modularly to
invite generalizations, may help to break this deadlock. MINTO [38] is designed specifically
to encourage users to write their own branching and bounding routines; to a lesser degree,
similar “user exit” or “callback” features can be found in other widely used packages such
as OSL [23] and CPLEX [7].

A generalized branch-and-bound approach has the great advantage of bypassing difficul-
ties associated with automatic translation to an integer program. There remains the other
kind of difficulty discussed previously, that in making the corresponding generalizations to a
modeling language, we can easily cause the variety of language expressions allowed to exceed
the variety of expressions that a solver can handle. Using the atmost1 operator introduced
above, for example, the modeler would expect to be able to formulate a related constraint,

subject to Unique_Supplier_All {j in DEST}:
atmostl {i in ORIG} (sum {p in PROD} Trams[i,j,p] > 0);

which however does not describe a special ordered set in the usual sense. In such situations,
we can at least anticipate that the job of recognizing supported expressions may be pushed
down from the language translation level to the solver level. As an example, independently of
any solver, the AMPL translator could process the above constraint into its standard parsed
output format. The driver linking any solver to AMPL would subsequently examine the
parsed constraint to determine whether it was of a form that could be accommodated in the
solver’s branch-and-bound routines — much as current drivers for quadratic programming
solvers check the parsed nonlinear objective to determine whether it represents a quadratic
function. The modeling language itself would not have to be arbitrarily restricted in any
way, and so would remain ready to support any more general forms that a solver might later
be extended to handle.
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Logic-based languages

Rather than continue to stretch algebraic modeling languages to better accommodate
combinatorial optimization, one may consider alternative modeling languages that are de-
signed specifically for the purpose of describing combinatorial or logical constraints. Indeed
many such languages have been proposed, studied and implemented. Lauriere’s ALICE
[33], the most notable early work in this area, describes an optimization problem in terms
of finding a best function of a certain kind, in a way that offers several parallels to our
concept of a decision set; constraints are described through a variety of algebraic and logical
forms. Work in this area has proceeded mainly within the field of artificial intelligence,
by contrast to work on algebraic languages which his appeared mainly in the operations
research literature.

Logic programming in particular has been extensively studied as an alternative to tra-
ditional mathematical programming systems for specifying and solving decision problems.
In fact a logic programming language such as Prolog [44] is analogous, in several important
respects, to an algebraic modeling language such as AMPL that has been extended to en-
compass decision sets. Both are declarative languages that can describe many combinatorial
problems. Any problem expressed in either language can be solved, at least in principle, by
a form of enumeration. When either is applied to problems of practical interest, however,
no simple or explicit enumeration scheme can be relied upon to consistently find an answer
in an acceptable amount of time.

In the context of the CHIP project, Van Hentenryck [46] has designed extensions to
Prolog that are similar in general intent to our proposed AMPL enumeration directives.
His extensions allow powerful search strategies to be introduced, and greatly simplify the
description of search rules that are specific to individual problem classes. Additional ex-
tensions facilitate the description of constraints and objectives natural to combinatorial
optimization problems.

An implementation of CHIP has been successfully applied to a variety of hard combi-
natorial optimization problems [8, 47]. Logic programming for combinatorial optimization
continues to be an active area of research, with notable related work including Colmerauer’s
Prolog III [6], and McAloon and Tretkoff’s 2LP [35].

For combinatorial optimization problems that are directly concerned with numerical de-
cision variables, algebraic modeling languages offer a natural form of expression based on
familiar mathematical notation, while logic programming languages often have the disadvan-
tage of requiring a substantial re-thinking and translation. For other kinds of combinatorial
optimization problems, however, the conversion to decision variables can be awkward, with
the result that the logic programming approach has advantages both in naturalness of ex-
pression and in speed of solution. The ideas presented in this paper can be regarded as
a way of generalizing algebraic modeling languages so that their advantages extend to a
broader range of combinatorial optimization problems.

Network-based optimization

Network-based systems are motivated by the great variety of combinatorial optimization
problems defined (like our budgeted traveling salesman example) in terms of some collection
of nodes (cities) and arcs (links). These systems dispense with any constraint expression lan-
guage, employing instead a collection of standard symbols — such as the netforms of Glover,
Klingman and Philips [15, 16] — for describing network structure and attributes. Recent im-
plementations such as Steiger, Sharda and Leclaire’s GIN [42, 43], Ogryczak, Studziniski and
Zorychta’s DINAS/EDINET (39, 40], Chesapeake Decision Sciences” MIMI/G [5], McBride’s
NETSYS [36], Jones’s NETWORKS [28, 25, 26, 27], and Kendrick’s PTS [30, 31] can thus
offer intuitive graphical interfaces for the solution of combinatorial optimization problems
on networks.

Typically, the graphical interface is employed to set up a display of the nodes and
arcs, and to enter their fundamental attributes such as demands and requirements. The
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modeler then selects from a menu of minimum-cost flow, optimal design, routing, and other
combinatorial problems for which the system has built-in algorithms. The network display is
automatically updated to represent the optimal solution, and in some cases also the progress
of the algorithm.

These systems completely avoid the difficulties of describing combinatorial optimization
problems in algebraic terms. In many respects their designs are analogous to those of
successful statistical systems, with network diagrams being the counterpart of data series.

The main drawback of these systems is their limitation to whatever problem types have
been built in. Current implementations have tended to concentrate on minimum-cost flow,
shortest path, and maximum flow problems. These are relatively easy to describe in any
algebraic modeling language, however, and are especially easy to describe in languages (like
AMPL and AIMMS) that offer the option of defining variables and constraints through
node and arc declarations [2, 11]. Possibly the best features of algebraic and network-based
representations could be combined into a single design, as proposed for example by Jones
and D’Souza [29].

Decision sets in algebraic modeling languages

Our examples from previous sections suggest that algebraic modeling languages have
several strengths for the specification of combinatorial optimization problems. Most notably,

e A modeling language’s facilities for describing sets, parameters and indexing
are valuable in discrete optimization just as in continuous optimization.

e The set notation of a modeling language is well suited to describing a variety
of discrete decisions that involve choosing some kind of subset.

e The algebraic expressions of a modeling language are well suited to describ-
ing sets and values that control bounding, fathoming and branching in an
implicit enumeration scheme.

We have proposed to take advantage of these strengths by introducing the concept of decision
sets into algebraic modeling languages. Our illustrations have shown — through introduction
of the var_set construct — how decision sets can enable an algebraic language to express a
broader range of combinatorial optimization problems, and to express such problems more
naturally.

To the extent that this approach involves an extension of a modeling language’s expres-
sions, it has something in common with the algebraic language approaches described earlier
in this section. Yet it also differs substantially, through its introduction of supplementary
directives to guide an implicit enumeration of the decision set. By providing these directives,
it relies less than other approaches on the ability of model translators or solvers to recognize
and exploit combinatorial structures automatically. At the same time, it relies more on
the modeler’s ability to describe bounds, branching priorities and other rules relevant to a
particular problem.

We have argued throughout this paper that the combination of decision sets with enu-
meration directives has the potential to successfully address a particularly wide variety of
combinatorial optimization problems. This approach is also subject to some drawbacks that
may limit its applicability, however, as our examples have also shown.

At the least, a significant degree of analysis will be needed to determine how a given
discrete optimization problem can be accommodated using our ideas. The initial work of
constructing a model is not at issue, since a formulation in terms of a decision set is often
shorter and closer to the modeler’s original idea than one in terms of decision variables.
Further study will usually be necessary, however, to determine what enumeration directives
are appropriate, and how they can be written in the modeling language. The work of
constructing and testing directives will require considerably more talent on the part of the
modeler than, say, the formulation of typical linear constraints.
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There are also limits to the variety of implicit enumeration criteria that can be expressed
through algebraic directives. Tighter bounds and stronger fathoming rules, in particular, are
likely to involve subsidiary computations that cannot be characterized by purely declarative
statements such as we have used in our examples for this paper. These computations will
require the use of procedural statements, such as repeat, if and break in the AMPL
command language [12] or their counterparts in the AIMMS [2] and GAMS [4] languages.
Because these are interpreted languages that have been designed and implemented with
an emphasis on generality and flexibility of the set and parameter expressions — rather
than on speed of execution — computations are likely to be much slower than for identical
bounds and rules implemented in C or another compiled language. AMPL’s user-defined
functions may help to circumvent this problem, by allowing statements in AMPL to call the
user’s compiled procedures, but at the cost of requiring the user to work in C as well as
in the modeling language. Alternatively, following the lead of many database management
systems, mathematical programming systems may introduce optional compilers for their
languages.

In light of these observations, the approach proposed in this paper can be seen as of-
fering both the advantages and disadvantages of using general-purpose rather than custom-
designed optimization tools. A language custom-designed for budgeted traveling salesman
or for bulk material loading problems would be easier to work with, but would require a
greater initial investment relative to the range of problems covered. Similarly, an implicit
enumeration algorithm custom-developed for one of these problems would be more efficient,
but would require that a considerable expenditure in programming, debugging and mainte-
nance be devoted to a restricted problem class.

An algebraic modeling language is thus likely to be most attractive for combinatorial
optimization where a large investment is not immediately desirable. Examples include the
solution of discrete problems whose size and complexity are modest, and the prototyping
of branch-and-bound schemes for applications that cannot yet justify a commitment to
more specialized software. The teaching of computational discrete optimization is another
attractive prospective use.

We conclude by observing that our analysis has concentrated on the case of a single
decision set (or var_set), and on certain ways of enumerating subsets. A variety of issues
thus remain for study, including;:

e Enumeration of more than one decision set in the same model.

e Formulation in terms of a decision set together with numerical-valued vari-
ables, either continuous or discrete.

e Specification of continuous linear programs or other subproblems to be
solved for bounding information at each node.

e Extension of the decision set concept to sequences that may include several
copies of a member.

Resolution of these matters will require further study of the principles underlying implicit
enumeration, as well as further extensions to the proposed modeling language directives.
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