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Abstract

We have developed and implemented a parallel distributed
algorithm for the rigid-body protein docking problem. The
algorithm 1is based on a new fitness function for evaluat-
ing the surface matching of a given conformation. The fit-
ness function is defined as the weighted sum of two contact
measures, the geometric contact measure and the chemical
contact measure. The geometric contact measure measures
the “size” of the contact area of two molecules. It is a po-
tential function that counts the “van der Waals contacts”
between the atoms of the two molecules (the algorithm does
not compute the Lennard-Jones potential). The chemical
contact measure is also based on the “van der Waals con-
tacts” principle: We consider all atom pairs that have a
“van der Waals” contact, but instead of adding a constant
for each pair (a, b) we add a “chemical weight” that depends
on the atom pair (a,b). We tested our docking algorithm
with a test set that contains the test examples of Norel et
al. [NLWN94] and Fischer et al. [FLWN95] and compared
the results of our docking algorithm with the results of Norel
et al. [NLWN94, NLWN95], with the results of Fischer et
al. [FLWN95] and with the results of Meyer et al. [MWS96].
In 32 of 35 test examples the best conformation with re-
spect to the fitness function was an approximation of the
real conformation.

1 Introduction

Docking reactions play an important role in a large num-
ber of biochemical processes. Although the mechanisms of
docking reactions are not well known, two complementar-
ity principles seem to be important for the recognition and
binding of docking partners. The first principle is the shape
complementarity principle: the shapes of the molecules that
build a docking complex are (locally geometrically) comple-
mentary, that is, there is a good fit between the surfaces
of the docking partners. The second complementarity prin-
ciple is the chemistry principle. It states that there is a
strong chemical “complementarity” (with respect to hydro-
gen bonds, electrostatic interactions, hydrophobicity and so
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on) between the sites of docking partners.

Most of the known approaches to protein docking make
use of these two principles and formulate the problem as a
3D matching problem: Given two proteins A and B, com-
pute all rigid motions of B, with A fixed, such that the re-
sulting conformations match large “chemically complemen-
tary” parts of the surfaces of A and B with minimal pene-
tration of B into the interior of A.

In the above rigid body docking problem, the strong as-
sumption is made that the two proteins are rigid. Of course,
proteins are not rigid. They have certain dynamics that may
have a strong influence on their chemical reactivity. For ex-
ample “hinge-bendings” (movement of relatively rigid sub-
structures of molecules by rotations about common hinges)
have been observed in some molecules (see [BH84, FM90,
DNS+92, GC91, SVC+92]) and in some ligand-receptor
bindings (see [WWF+91, RSW92, MSS+89]). But the rigid
body docking is still an important problem as Norel et
al. [NLWNO95] state: “... a rigid body technique which
achieves an efficient and accurate matching of the surfaces
..... may constitute a first step in addressing the more gen-
eral (flexible) problem”. A typical approach to tackle the
conformational flexibility problem is to decompose the pro-
teins into rigid parts. The rigid parts are matched individ-
ually using algorithms for the rigid body docking. Then,
the “local” solutions are tested for “global” consistency and
fitness. See for example [DSD+86, LK92, SNW95].

Connolly [Con3] proposed the first geometry-based ap-
proach for the protein docking problem. In his approach
the “Connolly” surfaces [Conl, Con2] of the molecules were
represented by a discrete point set. Connolly‘s algorithm
works as follows: for certain quadruples of “critical points”
on the surface of A all “similar” quadruples of critical points
on the surface of B are determined. For each pair of simi-
lar quadruples a transformation is computed that maps one
quadruple onto the other. The transformation is applied on
molecule B and the resulting conformation is judged with
respect to Connolly’s scoring function.

Wang [Wan91] changed the definition of “critical points”
slightly. In Wang's algorithm only two-point sets are
matched. The matching of a pair of two-point sets does
not determine a rigid transformation, i.e., there is still a ro-
tational degree of freedom. Hence for each matching pair
of two-point sets a search has to be carried out for suitable
rotations of B around the axes given by the two points on
the surface of A.

Norel et al. [NLWN94, NLWN95] use pairs of critical
points and the corresponding surface normals to compute
surface point matches. The fast algorithm of Norel et al.



was able to match successfully all but one docking exam-
ple out of a selected PDB test set. Other successful ap-
proaches that rely heavily on the surface normals of crit-
ical points have been published by Lin et al. [LNF+494]
and Fischer et al. [FNN+93, FLWN95]. In these papers an
elegant computer-vision based technique called Geometric-
Hashing [LW88] is used to solve the matching problem. Fis-
cher et al. [FLWN95] developed and implemented a suite of
docking tools which contains a geometric docking algorithm
and an energy evaluation routine for judging intermolecular
van der Waals and electrostatic interactions.

Katchalski-Katzir et al. [KSE+492] proposed correlation
techniques for solving the surface matching problem. Meyer
et al. [MWS96] are developing a new correlation based al-
gorithm which yields excellent docking results (see Section
(4)). Their results have not yet been published.

Ackermann et al. [AHP+95] decompose the surfaces of
the proteins into segments. Their algorithm searches for
surface segments that have a correlation of geometry and
hydrophobicity using a knowledge based semantic network
(ERNEST). For other (geometric) protein docking tech-
niques see [KCF84, KBO+82, HCT94, EKS+95, CDJI1,
JK91, SK91, BM92, WS92].

In this paper we present a parallel distributed algorithm
for the rigid protein docking problem that is based on a new
fitness function Fit(conf) for scoring the surface matching
of a given conformation conf. The fitness function

Fit(conf) = wgeo* GeoFit(conf) +
Wehem * Chem Fit(conf)

is the weighted sum of two new contact measures
GeoFit(conf) and ChemFit(conf) for measuring the geo-
metric and chemical “complementarity” of the surfaces. The
geometric contact measure GeoF'it measures the “size” of
the contact area of two molecules. The measure is a po-
tential function that counts the “van der Waals contacts”
between the atoms of the two molecules (the algorithm does
not compute the Lennard-Jones potential). The chemical
contact measure ChemFit(conf) is also based on the “van
der Waals contacts” principle: we consider all atom pairs
that have a “van der Waals” contact, but instead of adding
a constant for each pair (a,b) we add a “chemical weight”
ChemW eight(a, b) that depends on the atom pair (a,b).
The precise definitions of the two contact measures are
given in Section (2). The algorithm for the docking problem
will be sketched in Section (3). In Section (4) the results for
some ‘“real world” docking examples will be presented. We
tested our docking algorithm with a test set that contains
the test examples of Norel et al. [NLWN94] and Fischer et
al. [FLWN95]. In 32 of 35 examples the best conformation
with respect to the fitness function was an approximation
of the real conformation. All experiments were carried out
with one fixed parameter set. The parameter set was op-
timized so that excellent results are attained for examples
where molecule B is of small or medium size (||B] < 900
non-hydrogen atoms). In all the 25 such examples in our
test set the best conformation with respect to the fitness
function was an approximation of the real conformation.
The rationale behind choosing the parameter set to per-
form well on such examples is the following. We plan to use
the docking program for database screening; i.e., searching
structure databases for possible small or medium sized dock-
ing partners for a given protein. The implementation of our
algorithm is able to handle a list L(B) of docking partners
for molecule A. Further a graphical user interface for mark-
ing parts of the surface of A was implemented. If a part of

the surface of A is marked, then the algorithm carries out a
local docking search testing only the marked area; i.e., the
user can, for example, mark the active site of an enzyme of
a virus and search for possible inhibitors in databases. In
Section (5) we summarize our experience with the new al-
gorithm and discuss approaches for refining the model and
some future research directions.

2 The New Complementarity Measures

In this section the new complementarity measures GeoF'it
and ChemF'it are presented.

The geometric rigid body docking problem is defined as
follows: Given two proteins A and B with n and m atoms,
determine all transformations (rigid motions) of B with A
fixed so that there is a large fit between the surface of A and
the surface of B and almost no penetration of B into the in-
terior of A. The parts of surfaces that match for a particular
conformation are called common surface or contact surface
of the conformation.

We now define the geometric fitness function Geo F'it that
“measures” the size of the common surface of a given con-
formation conf(A, B):

GeoFit(conf(A, B)) = Z Croaw — Z Cpen -
a€EADEB a€AbEB
2.75< d(a,b)<4.0 d(a,b)<2.75

For each atom pair (a,b),a € A,b € B, whose Euclidian
distance d(a,b) is larger than 2.75 A and smaller than 4.0 A,
a constant (4w 1s added to the fitness function. Thus, the
first sum in the fitness function counts the number of atom
pairs that have a “van der Waals contact”. The second sum
represents a negative score for “overlapping” atom pairs. We
presently do not take into account that atoms have different
van der Waals radii, but we could easily refine our fitness
function with a modest increase of running time and space
requirements.

The chemical fitness function Chem F'it is also based on
van der Waals contacts. But instead of adding a constant for
an atom pair (a,b) with a van der Waals contact, a weight
ChemW eight(a,b) that depends on the atom pair (a,b) is
added to the fitness function:

ChemF'it(conf(A, B)) := Z

a€ABEB
2.75<d(a,b)<4.0

ChemWeight(a,b).

The computation of the weights is based on the follow-
ing classification of atoms. We assume for simplicity
that all molecules are made of a set of base fragments
(the amino acids, the nucleic acids, NADH, FAD, Heme
and so on). Each base fragment has a fragment index
frag_index. The atoms of each base fragment are enu-
merated so that each atom has a unique “atom_index”.
The type of an atom a of a molecule is a two dimensional
vector type(a) := (frag_indez(a), atom_index(a)) that con-
tains the index “frag_indexz(a)” of the fragment to which
atom a belongs and the atom index “atom_index(a)” of a.

We compute the weights ChemWeight as follows:
We select a set of reliable docking examples out of
the Brookhaven Protein Database (PDB). For each pair
(types, type;) of atom types the number of van der Waals
contacts no_of_cont(type;,type;) in the test set is deter-
mined. The number of occurences no_of_occ(type;) of each
atom type is computed and stored in a table. The weight



ChemW eight(a, b) is defined as:
ChemWeight(a,b) := ChemWeight(type(a), type(b))

(no_of-all _occ)?

no_of _occ(type(a)) - no_of _occ(type(b))
) no_of _cont(type(a), type(b))

no_of_all _cont

Here, “no_of_all_oce” is the number of atoms in the test set
and

“no_of_all_cont” is the number of van der Waals contacts in
the test set. Out of several tested statistical weight measures
the above measure yields the best docking results.

3 The Algorithm

First, we describe the data structures built in a preprocess-
ing step for the geometric and chemical fitness test. Sec-
ondly, we outline the technique for selecting a discrete set
of conformations to be tested. Finally we sketch a parallel
version of our docking algorithm.

The geometric fitness test: For a point p its contact
value is defined as

ConVal(p) := Z Codw — Z Chpen,

a€A
2.75<d(a,p)<4.0

a€A
d(a,p)<2.75
i.e, the contact value of p is simply the value of our geometric
fitness function for a molecule consisting of a single atom
which is placed at point p of the three-dimensional space.

We describe two data structures that allow to efficiently
determine an approximation of the contact value ConVal(p)
for any p. The second data structure is faster than the first,
but uses more space. For both data structures a 3D grid
that contains molecule A is computed. The boxes of the
grid have a side length of 4 A. If all points in a box have the
same contact value, we store the contact value with the box.
Otherwise we store the value “Undefined” and a pointer to
a local data structure for this box. The two data structures
for the geometric fitness test differ in the local data struc-
ture that is added to boxes with value “Undefined.” In the
first data structure this local data structure is a simplified
octree [FVF+90] with a constant number (default:4) of hier-
archy levels. The leaves of the octree store the maximum of
the contact values of the eight corners of the corresponding
cube. The second data structure has a 3D grid (array of
contact values) as the local data structure. The approxima-
tion of the contact value that is stored for a cell of the grid
is the maximum of the contact values of its eight corners. It
enables faster tests, but requires more storage.

In order to compute the geometric fitness of a given con-
formation conf(A, B) the following operations have to be
carried out for each atom b of B that “belongs” to the Con-
nolly surface of B: Determine the box of the grid that con-
tains the atom b. If the value of the box is not “Undefined”,
then we add this value to the fitness function. Otherwise we
search the local data structure of the box for a smaller box
that contains the atom and has a defined contact value. This
value is added to the fitness value. The sum of all contact
values is the geometric fitness value of the conformation.

Instead of considering all atoms of B, we compute only
the contact values of the atoms of B that belong to the
Connolly surface of B [Conl, Con2]. These atoms can be
easily computed in a preprocessing step. The rationale be-
hind looking only at atoms in the Connolly surface is that

Figure 1: An icosahedron and the first two recursive refine-
ments.

atoms of B that do not belong to the Connolly surface of B
have a contact value 0 in most feasible conformations.

The chemical fitness test: The data structure for the
chemical fitness test consists of two elementary data struc-
tures. The first elementary data structure is an array that
contains the weights ChemWeight(a,b). The second data
structure is a 3D grid with a grid box length of 4 A. The
atoms of molecule A that are contained in the box as well
as a list of pointers to the non-empty neighbor boxes, are
stored in each box of the grid. In order to compute the
chemical fitness of a conformation the following test has to
be carried out for each atom b belonging to the Connolly
surface of B: compute the box of the grid that contains b;
determine all atoms stored in this or in neighbor boxes that
have a van der Waals contact with b; for each atom a with
this property compute the weight ChemWeight(a,b) and
add it to the chemical fitness function of the conformation.

How can we select the possible docking conforma-
tions? Now we describe the method for selecting the con-
formations CONF that will be tested.

In a first step, we compute a point set P above the sur-
face of molecule A which marks possible positions for atoms
of B in the following way: We compute an almost uniformly
distributed point set on the surface of a sphere s. We can
determine such a point set by recursively refining an icosa-
hedron (see Figure 1). For our purposes we take a sphere
with a radius of 3.5 A.

For each atom a of A we carry out the following test:
We move the center of the sphere s to the center of atom
a. For each point of the discrete surface point set of sphere
s the algorithm checks if the point belongs to the so called
probe center surface. A point belongs to this surface if the
smallest distance to any atom in A — a is greater or equal
to 3.5 A. We store all the points that belong to the probe
center surface in a list L. For each point p in the list L the
contact value ConVal(p) is computed. We select the points
with “large” contact values (default: > 12) and store them
in the point set P (see Figure 2). The points that have such
large contact values are usually located in invaginations of
the surface of A.

In a second step the algorithm “matches” triples of points
in P and triples of atom centers of molecule B using geo-
metric hashing [LW88]: We compute all triangles between
points of P, whose side lengths are larger than a lower bound
l; and smaller than an upper bound [,,, and store them in a
hash table H. Then we do the same for the centers of the
atoms of B that belong to the Connolly surface of molecule
B; i.e., we compute all triangles that fulfill the above length
conditions. For each of the triangles between atom centers
of B, we determine all “similar” triangles in the hash table



Figure 2: (a) All points on the probe sphere surface. (b)
The points with contact value greater or equal to 12.

Figure 3: How to determine the transformation test set.

H. Two triangles are “similar” if their edges have almost
the same lengths. For each pair of similar triangles (tl,tg)
a transformation is computed that maps # onto t2. Since
the triangles are similar but not equal, there are different
ways to map the triangles. We use the centers of gravity,
the normals of the triangles and angle bisectors to determine
a transformation (a point = “center of gravity” and three
orthonormal vectors). Thus each pair of similar triangles
yields a transformation that has to be applied to molecule B.
The resulting conformation is added to the test list CONF.

Fitness filters: In our docking algorithm we use “geome-
try” as a first filter; i.e., we compute the geometric fitness
of the conformation set CONF described above. We remove
all conformations from the set CONF whose geometric fit-
ness values are smaller than a constant Cgeo. For each of
the remaining conformations the chemical fitness function

ChemF'it(conf(A, B)) and the weighted sum

Fit(conf(A,B)) = wgeo- GeoFit(conf(A, B))+
Wehem + Chem Fit(conf(A, B))

are computed. The algorithm outputs the 25 conformations
with the largest fitness value.

The parallel version of the docking algorithm: The
docking algorithm described above can be easily parallelized,
by splitting the list of geometric fitness tests. A master

Figure 4: Using a graphical interface, we can mark parts of
the surface of molecule A that should be tested.

processor distributes the work between a set of clients and
coordinates the clients. Each client builds the data struc-
tures for the fitness tests in a preprocessing step. Then the
master processor informs the client which part of the trans-
formation list it should work on by sending it an integer
1. This integer is the list number where the client should
start. The client stops at 1 + STEP, where STEP is a small
integer. The client informs the master that it has finished
by returning an integer. Either all the work has been com-

pleted — in this case the master informs the client that it
should send its list of the best transformations — or there is
an unprocessed part of the transformation list — then the

master sends a new start number to the client. The master
collects all results from the clients and computes a list of
the best transformations. There is no communication be-
tween the clients. The message passing is handled by PVM
routines [Sun90].

By choosing a suitable small constant STEP, the load of
the clients is well balanced, but the communication overhead
is still modest. The first version runs on a cluster of worksta-
tions with processors that have different performance values
(SUN and SGI workstations). Hence, it is difficult to prove
precisely how the speedup behaves, but our experience seems
to imply that the speedup will be greater than 90 % for a
small number of processors (< 32).

Some Important Features of the Implementation:
The implementation of our algorithm is able to handle a
list L(B) of docking partners for molecule A; i.e., the algo-
rithm can solve the 1-to-n docking problem and compute the
“best” docking partners for A contained in the list L(B) of
molecules. Further a graphical interface for marking parts
of the surface of A has been implemented (see Figure 3).
If a part of the surface of A is marked, then the algorithm
carries out a local docking search testing only the marked
area. These features enable the user to search for possible
“inhibitors” of enzymes; i.e., the user can mark for example
the active site of an enzyme of a virus and search for possible
inhibitors in databases.

Furthermore, our docking software package called “Par-
allel Protein Puzzle (PPP)” offers a graphical user interface



Test Set of Docking Complexes

Complex | Receptor Atoms | Ligand Atoms | RMSD (A)
labi* Hydrolase a-Thrombin (LH) 2304 Inhib. (T) 152 2.3
labi Hydrolase a-Thrombin (H) 2039 Chain (L) 265 2.3
lach Hydrolase a-Chymotripsin (E) 1769 Eglin C (I) 522 2.0
1cho a-Chymotrypsin (E) 1750 Turkey 2 Ovomucoid 3rd Domain (I) 400 1.8
1fdl IG*G1 fab fragment (LH) 3308 2-Lysozyme (Y) 1001 2.5
1tec Thermitase Eglin-c (E) 2004 Leech (I) 522 2.2
1tgs Trypsinogen (Z) 1646 Pancreatic Secr. Trypsin Inhib. (I) 416 1.8
1tpa Anhydro-Trypsin (E) 1628 Trypsin Inhib. (I) 454 1.9
2hfl IG*G1 fab fragment (LH) 3227 Lysozyme (Y) 1001 2.5
2igf IG*G1 FAB Fragment (LH) 3378 Myohemerythrin 69-87 (P) 58 2.8
2kai Kallikrein a (AB) 1799 Bovine Pancreatic Trypsin Inhib. (I) 438 2.5
2mhb Hemoglobin a-Chain (A) 1178 B3-Chain (B) 1113 2.0
2ptc B-Trypsin (E) 1629 Pancreatic Trypsin Inhib. (I) 454 1.9
2sec Subtilisin Carlsberg (E) 1920 N-Acetyl Eglin ¢ (I) 530 1.8
2sic Subtilisin (E) 1938 Subtilisin Inhib. (I) 764 1.8
2sni Subtilisin Novo (E) 1938 Chymotrypsin Inhib. (I) 513 2.1
2tgp Trypsinogen (Z) 1629 Pancreatic Trypsin Inhib. (I) 454 1.9
2utg Uteroglobin Chain (A) 548 Chain (B) 548 1.6
3apr Acid Proteinase (E) 2403 Reduced Peptide Inhib. (I) 57 1.8
3dfr Dihydrofolate Reductase 1294 Methotrexate 81 1.7
3hfm IG*G1 fab Fragment (LH) 3295 Lysozyme (Y) 1001 3.0
3sgb Serine Proteinase (E) 1310 Potato Inhib. PCI-1 (I) 380 1.8
3tpi Trypsinogen (Z) 1629 Pancreatic Trypsin Inhib. (I) 454 1.9
4cpa Carboxypeptidase 2437 Potato Carboxypeptidase A Inhib. (I) | 289 2.5
4hvp HIV-1 Protease Chain (A) 758 Chain (B) 758 2.3
4mbn Metmyoglobin 1217 Heme 44 2.0
4phv* HIV-1 Protease (AB) 1520 Inhib. (I) 92 2.1
4phv HIV-1 Protease Chain (A) 760 Chain (B) 760 2.1
4sgb Serine Proteinase (E) 1310 Potato Inhib. PCI-1 (I) 380 2.1
4tpi Trypsinogen (Z) 1629 Pancreatic Trypsin Inhib. (I) 471 2.2
5hmg Influenza Virus Hemaglutinin (E) 2532 Chain (F) 1418 3.2
6tim Triosephosphate Isomerase Chain (A) | 1883 Chain (B) 1894 2.2
&fab IG*G1 FAB Fragment Chain (A) 1544 Chain (B) 1635 1.8
9ldt Lactase Dehydrogenase Chain (A) 2568 Chain (B) 1624 2.0
9rsa Ribonuclease Chain (A) 951 Chain (B) 951 1.8

Table 1: Columns: (1) PDB code of the molecular complex. (2) The name of the receptor A. (3) Number of atoms of A
(without hydrogen atoms). (4) The name of the ligand B. (5) Number of atoms of B (without hydrogen atoms). (6) The

resolution of the complex.

for starting and controlling the docking tests and for setting
the program parameters.

4 Docking Examples

We now summarize our ‘“real world” experiments. We
present results on 35 docking complexes and on 11 exam-
ples of unbound ligand and receptor pairs.

Docking of receptor-ligand complexes: Our test set
containing the test set of Norel et al. [NLWN95] and the test
set of Fischer et al. [FLWN95] is listed in Table (1). In all
35 docking experiments the complete surface of A has been
tested against the complete surface of B. All experiments
were carried out with one fixed parameter set. Note that the
set of docking complexes that has been used to compute the
weights ChemW eight does not contain our test set. In Table
(2) and (3) we compare our results with the results of Norel
et al. [NLWN95], with the results of Fischer et al. [FLWN95]
and with the results of Meyer et al. [MWS96]. The columns
in Table (2) contain the ranks of the lowest ranking solu-
tions with root-mean-square (RMS) deviation smaller than
X A and the RMS-deviations (computed with all atoms of
B) of these solutions. Norel et al. [NLWN95], Fischer et
al. [FLWN95] and Meyer et al. [MWS96] used a tolerance

value X of 3.0 A for computing the ranking. The ranking
of the geometric approach of Lenhof [Len95] (Column (6))
was computed with a tolerance value X of 5.0 A. The new
results (Column (7)) were computed with X = 3.0 A. Note
that even conformations with more than 5.0 A may be good
approximations of the real conformations. See for example
B-Trypsin and the Pancreatic Trypsin Inhibitor (2ptc). The
inhibitor has the shape of a long wedge. Thus even small ro-
tations of the inhibitor may cause “large” RMS-deviations.
Therefore, for larger ligands it may make more sense to mea-
sure only the RMS-deviation of the atoms near the contact
surface.

For completeness the running times of the various dock-
ing algorithms are listed in Table (3). Note that the
tests have been carried out on different hardware platforms.
Therefore, a fair comparison of the running times is not
possible. The results of Meyer et al. have not yet been
published. The author received a list of the ranks and the
corresponding RMS-deviations without the running times
from M. Meyer.

The comparison of the pure geometric approach and the
new approach with a “mixed” fitness function shows that
adding the chemical component improves the ranking sig-
nificantly. See for example the ranking of 2hfl in Table (2).
Testing the chemical fitness is more time consuming than



Ranking and RMS-Deviation

Complex | [NLWNO95] [NLWN95] [FLWN95] [MWS96] Len95 Len96

Rank RMS | Rank RMS | Rank RMS | Rank RMS | Rank RMS | Rank RMS
labi* — — — — — — — — — — 1 1.16
labi 2 0.57 2 0.57 — — — — — — 1 0.95
lach 5 1.78 5 1.78 — — 1 0.98 — — 1 1.26
1cho — — — — 6 0.80 1 0.85 1 2.96 1 2.89
1fdl 2900 217 3455 217 — — 33 2.01 — — 126>25 1.77
ltec 6 2.36 6 2.36 134 0.69 1 1.88 1 1.25 1 0.80
1tgs 2 1.68 2 1.68 1 0.72 1 0.31 1 1.91 1 2.98
1tpa 1 0.61 1 0.61 — — 1 0.63 — — 1 1.43
2hfl 24 2.07 25 2.07 — — 28 2.56 54 3.16 1 2.46
2igf — — — — 1 1.03 1 0.61 — — 1 1.47
2kai 125 2.18 229 2.18 — — 1 0.89 4 3.68 1 2.38
2mhb 2 0.69 2 0.69 1 0.79 1 0.68 1 2.16 1 2.03
2ptc 2 1.27 2 1.27 3 1.15 1 1.58 1 4.35 1 1.28
2sec 249 2.99 249 2.99 8 1.06 1 1.18 1 1.02 1 1.43
2sic 2 2.08 2 2.08 — — 1 1.95 — — 1 0.79
2sni 3 1.16 3 1.16 — — 1 1.22 1 1.28 1 2.05
2tgp 2 0.50 2 0.50 — — 1 0.66 1 3.65 1 2.52
2utg — — — — — — 1 0.57 1 2.22 1 1.60
3apr — — — — — — 1 0.44 1 3.04 1 2.19
3dfr — — — — 7 0.65 1 0.61 1 1.31 1 0.70
3hfm 104 0.94 106 0.94 — — 7>75 0.82 13 1.59 1 0.90
3sgb — — — — — — — — 4 1.28 1 0.48
3tpi — — — — — — — — 1 2.26 1 1.38
4cpa 3 1.88 3 1.88 147 1.51 1 1.20 11 3.31 1 2.68
4hvp 2 1.64 2 1.64 0.92 1 0.63 1 1.62 1 1.19
4mbn — — — — 1 0.48 1 0.97 1 1.89 1 1.66
4phv* — — — — 1 0.75 1- 0.90 — — 1 1.19
4phv — — — — 327 1.25 1 0.67 — — 1 0.83
4sgb 72 3.59 72 3.59 6 1.09 1 0.51 1 4.53 1 2.28
4tpi 2 1.40 2 1.40 2 0.91 1 0.79 1 1.52 1 0.64
5hmg 2 1.37 2 1.37 — — — — — — 7>25 —
6tim 2 0.85 2 0.85 — — — — — — 1 1.62
8fab 4 2.00 4 2.00 — — — — — — 1 1.92
9ldt 2 2.08 2 2.08 — — — — — — 1 2.65
9rsa 10 1.63 10 1.63 — — — — — — 7>25 —

Table 2: Columns: (1) PDB code of the molecular complex. (2) The results of the algorithm of Norel et al. [NLWN95] (with
connectivity). Each column contains the ranks of the lowest ranking solutions with RMS-deviation smaller than 3.0 A and
the RMS deviations of these solutions. Column (3) shows the results of Norel et al. [NLWN95] without connectivity. Column
(4) presents the results of the (geometric) docking algorithm of Fischer et al. [FLWN95]. Column (5) contains the results of
the algorithm of Meyer et al. [MWS96], Column (6) the results of the pure geometric approach of Lenhof [Len95] and Column

(7) the new results using the weighted fitness function F'it.

the geometric fitness test. Therefore, the running times for
the mixed fitness function may sometimes be larger than the
running times for the pure geometric docking approach by
a factor of 10. See for example the running times of 1cho.
The average running time “increase” factor is much smaller
=~ 3).

( T)he comparison of the rankings of the six docking al-
gorithms shows that only the new correlation approach of
Meyer et al. yields results of the same quality as our mixed
fitness function approach. In 32 of 35 test examples the first
(most probable) conformation on the result list of our algo-
rithm was an approximation of the real conformation. Since
we plan to use the algorithm for testing lists of small and
medium size (< 900 atoms) inhibitor candidates, we have
chosen a parameter set for the experiments that gives excel-
lent results when B is a small- or medium-sized molecule.
All experiments have been carried out with this parame-
ter set. Note that all examples with ||B|| < 900 have been
solved “optimally”; i.e., the best conformation with respect
to the fitness function was an approximation of the real con-

formation. Nevertheless the algorithm also yields good re-
sults for most “large” docking examples. But for large ex-
amples the running time and the quality of the results can
be tremendously improved by changing the parameter set,
especially the distance parameters for computing the “trian-
gles”. Adapting the parameters for large molecules B (one
new parameter set) improves for example the ranking of 1fdl
(126 — 17, RMSD 1.53 A), the ranking of 5Shmg (> 25 — 1,
RMSD 2.41 A) and the ranking of 9rsa (> 25 — 12, RMSD
2.12 A).

Docking of unbound receptors and ligands: The dock-
ing of receptor-ligands pairs where the spatial structure of
the “docking” complexes are known are only test cases for
the docking approaches. The ultimate goal of the docking
research is the development and implementation of docking
algorithms that are able successfully to predict docking re-
actions where the structures of the docking complexes are
unknown. In the above 35 test examples the input for the
docking algorithm was the 3D structures of A and B found



Running Times

Complex | [NLWNO95] | [NLWN95] | [FLWNO95] | [AHP+95] | Len95 Len96
Tabi™ — — — — 5.08(4)
labi 35.30 20.06 — — 11.01(4)
lach 111.24 38.18 — — 17.04(4)
Tcho 1354 15.54 10.48 321(2) | 9.33(6)
1fdl 262.00 117.48 — — 175.53(4)
Ttec 83.42 28.42 8154 500(5) | 12.28(4)
Ttgs 63.18 24.00 11.00 122(5) | 4.56(4)
ltpa 60.48 23.06 — — 13.56(4)
2hfl 304.24 135.00 — 227 56(4) | 101.01(6)
2igf — — 5118 — 3.53(2)
2kai 7736 25 54 — T15(4) | 20.08(4)
2mhb 241.24 111.30 542 7.07(6) | 90.09(5)
2ptc 64.43 25.42 24.36 132(2) | 6.25(4)
2sec 82.52 2554 82.06 13.37(4) | 18.04(4)
2sic 164.48 62.54 — — 45.10(5)
2sni 86.42 31.12 — 9.46(1) | 8.30(5)
2tgp 19.48 17.42 — 5.00(5) | 8.11(5)
2utg — — — 111(6) | 13.26(4)
3apr — — — 157(1) | 3.38(2)
3dfr — — 10.48 1.23(1) | 2.25(1)
3hfm 353.30 158.42 — F1.51(4) | 79.56(7)
3sgh — — — 6.25(4) | 8.02(4)
3tpi — — — 3.51(6) | 20.48(3)
Icpa 50.30 15.06 22.36 527(4) | 6.31(4)
Thvp 35.18 15.48 142 23.31(1) | 20.22(5)
Imbn — — 8.30 1.32(1) | 1.18(1)
Iphv — — 5.06 — 20.31(4)
Iphv — — 7.00 — 5.46(1)
Isgh 28.18 9.30 22.24 131(4) | 5.07(4)
Itpi 58.18 21.24 13.18 10.28(1) | 14.10(4)
5hmg 574.06 308.36 — — 327.43(4)
6tim 539.36 295.7 — — 199.39(7)
8fab 128.7 68.51 — — 17.42(7)
9ldt 713.18 457.36 — — 921.56(4)
9rsa 126.30 44.42 — — 74.32(4)

Table 3: The running times of the different algorithms (in minutes.seconds). Columns: (1) PDB code of the molecular
complex. (2) The running times of the algorithm of Norel et al. [NLWN95] with “connectivity”. Column (3) shows the
running times of the algorithm of Norel et al. [NLWNO95] without “connectivity”. The times have been measured on a PC
clone 486 (66Mhz). Column (4) presents the running times of the geometric docking algorithm of Fischer et al. [FLWN95].
The times have been measured on an Silicon Graphics workstation. Column (5): The results of Meyer et al. [MWS96] are
still not published. The author recieved the results by private communication. The result list did not contain running times.
Column (6) the running times of the geometric algorithm of Lenhof [Len95] and Column (7) the running times of the new
algorithm. The times have been measured on a cluster of SGI workstations (R4400,150Mhz). The numbers of processors that

were used are given in brackets.

in the docking complex. The input of the “unbound” tests
consists of 3D structures of A and B that have been eluci-
dated separately.

We have tested 11 “unbound” receptors and ligands with
a parameter set that is very tolerant as regards overlappings
of atoms; for example, the “penalty” Chpeyn for overlapping
atom pairs is small. The more tolerant parameter set causes
a significant increase in running times because the number of
completely tested conformations grows tremendously. Since
we have only recently started testing unbound examples, we
have not yet optimized the parameters. This will be done
in the near future. Our first goal was to check how sensitive
the fitness measures are to small local structure changes;
i.e., what happens with the ranking when the two 3D struc-
tures are not as “complementary” as the structures that can
be found in the crystal docking complexes. We have not yet
attempted to improve the running times, which could be sig-
nificantly improved by optimizing the docking parameters.

In Table (4) we summarize the preliminary results for un-
bound examples. Details can be found in the full version of
the paper.

5 Summary

We have presented a new algorithm for the rigid protein
docking problem that yields good docking results for com-
plexes. The first results for unbound examples are satis-
factory and show that the new contact measures have the
potential to overcome problems arising from overlappings
and local structure changes. The geometry fitness function
“counts” the number of van der Waals contacts. The chem-
istry fitness function measures the “chemical” probability of
docking conformations. Adding the chemical valuation to
the geometric fitness improves the results significantly. The
obvious next step is to optimize the docking parameters for
unbound examples. Future extensions include adding a fit-



Examples with Unbound Receptors and Ligands

Receptor | RMSD (A) | Ligand | RMSD (A) | Rank | RMSD (A) | Running Time
Icho (E) 1.8 20vo 1.5 1 3.21 240.13(4)
Ttpo 1.7 2ptc (1) | 1.9 1 1.27 235.41(4)
Ttpo 1.7 4pti 1.5 78 0.87 128.15(4)
2apr 1.8 3apr (I) | 1.8 5 1.67 3.22(4)
2pte (B) 1.9 4pti 1.5 23 2.38 345.29(4)
2sni (B) 2.1 2ci2 () | 2.0 7 1.80 166.23(4)
3cpa 2.0 4dcpa (I) | 2.5 7>25

3hfm (LH) | 3.0 1lyz 2.0 7>25

5cha (A) 1.7 20vo 1.5 7 3.83 381.41(4)
5cha (A) 1.7 Icho (T) | 1.8 1 1.92 399.07(4)
ohvp (AB) | 2.8 Shvp () | 2.0 1 1.50 21.49(4)

Table 4: Columns: (1) PDB code of the receptor. (2) Resolution of the receptor. (3) PDB code of the ligand. (4) Resolution
of the ligand. (5) The ranks of the lowest ranking solutions with RMS-deviation smaller than 4.0 A and (6) the RMS deviations
of these solutions. (7) The running times in minutes.seconds. The number of used processors is given in brackets.

Figure 5: The snapshot on the right shows the docking com-
plex 1ICHO (A = a-Chymotrypsin and B = an inhibitor).
The snapshot on the left shows the number one of our result
list, when the docking is carried out with the “unbound”
conformations of A (5cha) and of B (2ovo).

ness function that judges the electrostatic interactions and
implementing an energy evaluation routine for computing
the final scoring of the best conformation candidates.

Acknowledgment: I thank Prof. Dr. Kurt Mehlhorn, Dr.
Susanne Albers and Dipl. Chem. Oliver Kohlbacher for their
comments on earlier versions of the paper. Their proposals
significantly improved the readability of the paper. T am
also grateful to Cand. Inform. Nicolas Boghossian for imple-
menting the protein docking statistics.

Figure 6: Example: (a) The natural docking conformation
of the HIV-1 protease (dimer). (b) The best geometric fit.
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