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The paper deals with sums of a random number of independent and identically

distributed random variables. More specifically, we compare two such sums,

which differ from each other in the distributions of their summands. New upper

bounds (inequalities) for the uniform distance between distributions of sums are

established. The right-hand sides of these inequalities are expressed in terms of

Zolotarev's and the uniform  distances between the distributions of summands.

Such a feature makes it  possible to consider these inequalities  as continuity

estimates and to apply them to the study of the stability (continuity) of various

applied  stochastic models involving geometric sums and their generalizations.
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1.  Introduction

In this paper we treat random variables defined as follows:

^ œ \ ß Ð"Þ"Ñ�/
5œ"

5

where  are independent, identically distributed random variables (  random\ ß\ ßá" # i.i.d.

variables, for short) and  is a random variable independent of ( ), taking natural/ \ ß 5   "5

values .5 œ "ß #ßá
 Let ,  and  denote the distribution function of . The: œ TÐ œ 5Ñ 5 œ "ß #ßá J \5 "/
problem under consideration is a quantitative comparison of the distribution of  in (1.1)^
with the distribution of the sum:

^ œ \ ß Ð"Þ#Ñ
µ µ�/

5œ"
5

where the random variable  is the same as in (1.1) and , , are  random/ \ \ ßá
µ µ

" # i.i.d.

variables with a common distribution function .J
µ

 In what follows we use the standard definition of the :uniform probability metric

3 0 ( 3
‘

Ð ß Ñ œ ÐJ ß J ÑÀ œ ± J ÐBÑ  J ÐBÑ ± ß
B −

0 ( 0 (sup
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(  are the distribution functions of random variables  and .) Our main goal is to getJ ßJ0 ( 0 (
inequalities of the type (1.3) below which give upper bounds (continuity estimates) of the

uniform distance  between the distributions of  and :3Ð^ß ^ Ñ ^ ^
µ µ

3 3 'Ð^ß ^ Ñ Ÿ - Ö Ð\ ß\ Ñß Ð\ ß\ Ñ×Þ Ð"Þ$Ñ
µ µ µ

 max " " # " "

Here  is Zolotarev's metric (see for instance, [11,13]) and  is some constant.'# -

 In the particular case, when ,  the random variables ,  in: œ ;Ð"  ;Ñ 5 œ "ß #ßá ^ ^
µ

5
5"

(1.1) and (1.2) are called .  The quantitative solution of the continuitygeometric sums

(stability) problem for geometric sums (e.g. the solution given by (1.3)) provides a tool to

estimate the stability of a number of stochastic models involving geometric sums. To give a

hint about the importance of the problem, we first quote from [8]: “Despite the simplicity (or

owing to this) such a sum can model many phenomena in insurance, queuing, finances,

reliability, biology, storage and other real world fields". Second note that in an overwhelming

majority of such applied models, one has to rely only on some approximations, operating with

input data obtained from statistical estimations and (or) theoretical simplifications. In

particular, one can face  the situation where the distribution function of  is handled�/
5œ" 5\

µ

to approximate a “real" and hence desired, but unknown (unavailable) distribution function of�/
5œ" 5\ .

  There are many publications on the theory and applications of geometric sums (or on

“geometric convolutions", which are distributions of such sums). We confine ourselves to

mentioning  works [1-9], where geometric sums and their continuity play a decisive role.

 In the case of geometric sums, inequality (1.3) supplies the uniform (with respect to

; − Ð!ß "Ñ J J) estimate of the nearness of  and  measured in the uniform metric. In [8] the^ ^
µ

following bound has been obtained:

sup
; − Ð!ß "Ñ

Ð^ß ^ Ñ Ÿ ß Ð"Þ%Ñ
µ

3 #Q

%Q 

ÈÈ È$$ $

where , , max .$ 3À œ Ð\ ß\ Ñ I\ œ I\ Q   ÖI\ ßI\ ×
µ µ µ

" " " "
#
"

#

"

 In inequality (1.4) the right-hand side is of order  as .  In the present paper we$ $"Î# Ä !
restrict the class of random variables dealt with, assuming some “smoothness" properties of

distributions of  and .  As a gain we obtain the first power of the distance\ \
µ

" "

maxÖ Ð\ ß\ Ñß Ð\ ß\ Ñ×
µ µ

3 '" " # " "

on the right hand side in (1.3) by making use of methods quite different from those in the

book [8]. The technique of the present paper rather relates to that of [4, 5], where we studied

the continuity of sums with respect to the total variation metric.

2.  Results and Discussion

We will prove two version of inequality (1.3), each of them holding under different sets of

assumptions. Such duplication is relevant since both versions have certain disadvantages, yet

in some sense supplement each other. The main Theorems 1 and 2 are, in fact,  direct

consequences of upper bounds (2.8) and (2.9) for the uniform  distance between sums of i.i.d.

random variables. These bounds are of interest in  contexts broader than that of the

continuity analysis of geometric sums.
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 Throughout this paper we use the following probability metrics (  are arbitrary\ß]
random variables and  are their distribution functions):J ßJ\ ]

  The uniform (Kolmogorov) metric:Ð+Ñ

3
‘

Ð\ß ] ÑÀ œ ± J ÐBÑ  J ÐBÑ ± Þ Ð#Þ"Ñ
B −

sup \ ]

  The total variation metric:Ð,Ñ

VÐ\ß ] ÑÀ œ #Ö ± T Ð\ − FÑ  TÐ] − FÑ ± ×ÀF ×Þ Ð#Þ#Ñsup  are Borel subsets of ‘

  Note that

VÐ\ß ] Ñ œ ± 0 ÐBÑ  0 ÐBÑ ± .B'    ∞
∞

\ ]

  if the random variables have densities .0 ß 0\ ]

  Second order Zolotarev's metric:Ð-Ñ

' : : : W# #Ð\ß ] ÑÀ œ Ö ± I Ð\Ñ  I Ð] Ñ ± À − ×ß Ð#Þ$Ñsup

  where  denotes the set of all functions  having (almost every-W : ‘ ‘# À Ä
where) second derivatives bounded by 1.

  The maximum of the uniform and Zolotarev's metrics:Ð.Ñ

. 3 'Ð\ß ] ÑÀ œ Ö Ð\ß ] Ñß Ð\ß ] Ñ×Þ Ð#Þ%Ñmax #

 It is well known (see for instance [9,11]) that the convergence in any above metric yields

the weak convergence of random variables. Also, under the condition  ;I\ œ I]
I\ ßI]  ∞ Ð\ß ] Ñ# #

# #, the distance  is finite. The integral representation for  is known' '
(see [9,11]):

'# \ ]

∞ B

∞ ∞

Ð\ß ] Ñ œ ÒJ Ð>Ñ  J Ð>ÑÓ.> .BÞ Ð#Þ&Ñ' 'º º        

  

In what follows we adopt the notations:

   are two sequences of  random variables;Ð3Ñ Ö\ ß\ ßá×ß Ö\ ß\ ßá×
µ µ

" # " # i.i.d.

   is a random variable assuming natural values and independent ofÐ33Ñ /

   and ;Ö\ ß\ ßá× Ö\ ß\ ßá×
µ µ

" # " #

   .Ð333Ñ ^ œ \ ß ^ œ ß\
µ µ� �/ /

5œ" 5œ"5 5

    is the density of the standard normal distribution.Ð3@Ñ ÐBÑ œ /: "

#
B Î#È 1

#

  All results of this paper are proved using the following basic hypotheses, which we will

not specially mention in the formulations of theorems.

 : .Assumption B I\ œ I\ œ À +
µ

" "

 Using the notations: Var , Var  we assume  that ,  and5 5 5 5#
" "

#œ Ð\ Ñ œ Ð\ Ñ  !  !µ µµ

also , .I ± \ ±  ∞ I ± \ ±  ∞
µ

" "
$ $

 We  exploit  Assumption 1 in Theorems 1 and 3. On the other hand, we make use of

Assumption 2 to prove Theorems 2 and 4.
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   Let  be fixed and , . We assume thatAssumption 1: =   " \ œ \ \ œ \
µ µ� �= =

5œ" 5œ"5 5

both random variables  and  have bounded absolutely continuous densities denoted by \ \ 0
µ

and ,  respectively.  Their derivatives ,  are bounded and belong to .0 0 0 Ð Ñ
µ µw

w

"‹ ‘
   We admit  in Assumption 1 in order not to take out of considerationRemark 1: =  "
such important densities as the uniform densities, the exponential ones, some -densities, etc.>
   Let  and  be normally distributed random variables with parametersAssumption 2: ( (µ

+ß +ß  "µ5 5 α and , respectively. We assume that for some  the following inequalities hold:

  max ;Ð+Ñ Ö Ð\ ß Ñß Ð\ ß Ñ× Ÿ Ð#,ÑV " # "
"( ' ( α

  max , where max , Ð,Ñ Ö Ð\ ß Ñß Ð\ ß Ñ× Ÿ Ð#, Ñ , œ Ö"ß '<Î × , œ
µ µµ µ µ µ

V " # "
" #( ' ( α 5

  max ,Ö"ß '<Î ×µ5 #

< œ ± ÐBÑ ± .B ¸  "Þ'     ∞
∞

ww: 0.967883

The metrics  and  were defined  in (2.2) and (2.3), respectively.V '#
 We now present our results.

 Theorem 1:  Suppose that random variables  and  satisfy Assumption . Then\ \ "
µ

" "

3 .Ð^ß ^ Ñ Ÿ Ö#=  "ß - × Ð\ ß\ Ñß Ð#Þ'Ñ
µ µ

max " " "

where  is some constant and the metrics  and  were defined in  and .- Ð#Þ"Ñ Ð#Þ%Ñ" 3 .

   Suppose that random variables  and  satisfy Assumption . ThenTheorem 2: \ \ #
µ

" "

3 .Ð^ß ^ Ñ Ÿ Ö"ß - × Ð\ ß\ Ñß Ð#Þ(Ñ
µ µ

max # " "

where , sup .- œ Ð#Î  "Î Ñ œ ± ÐBÑ ± ¸ !Þ#%"*("  !Þ#%#µ
B

#
"

"
# w#

α# 5 5 # :

 In the next two theorems we use the notations:

W œ \ á \ W œ \ á \ 8   "Þ
µ µ µ

8 " 8 8 " 8, , 

 Theorem 3:  Under Assumption , we get, for every " 8   #=À

3 'ÐW ß W Ñ Ÿ - Ð\ ß\ Ñß Ð#Þ)Ñ
µ µ

8 8 " # " "

with the same constant  as in .- Ð#Þ'Ñ"

   Under Assumption , we get, for every Theorem 4: # 8   "À

3 .ÐW ß W Ñ Ÿ Ö"ß - × Ð\ ß\ Ñß Ð#Þ*Ñ
µ µ

8 8 # " "max

with the same constant  as in .- Ð#Þ(Ñ#

 To start a discussion about the results obtained, we observe that a noteworthy feature of

inequalities (2.7), (2.9) is the explicit form of the constants  and , , which depend only- , ,
µ

#

on variances  on random variables  and  (in Theorems  2, 4 and Assumption 2).  To get\ \
µ

" "

upper bounds for these constants one needs to know only some lower bounds for variances 5#

and .5µ #

  In contrast to such a good property, the constant  in inequalities (2.6), (2.8) of Theorems-"
1 and 3 are far from being  explicit and moreover,  depends on certain characteristics of the-"
densities  and of random variables  and  defined in Assumption 1.  As we will see in0 0 \ \

µ µ

the proof  of Theorem 3,
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- œ  ß Ð#Þ"!Ñ"
Ð"= Ñ. .

µ

µ

"

# #5 5

where again, Var , Var  and5 5#
" "

#œ Ð\ Ñ œ Ð\ Ñµ µ

. œ ± 0 ÐBÑ ± . œ ± 0 ÐBÑ ± ß Ð#Þ""Ñ
5   = 5   =B B

µ µ
sup sup , sup supw

5

w

5

where  denote, respectively, the densities of the following “normed sums"0 ß 0
µ

5 5

\ á\ \ á\

5 5

µ µ

µ
" 5 " 5

5 5È È,  ,  5   =Þ

 Nevertheless, the proof of Theorem 3 ensures finiteness of the constants  and  in (2.11). .
µ

and displays the following asymptotics:

lim sup lim sup sup
5 Ä ∞ 5 Ä ∞B B B

± 0 ÐBÑ ± œ ± 0 ÐBÑ ± œ ± ÐBÑ ± œ ¸ !Þ#%#ß
µw w

5

w

5 : #

where again, , .  Using the explicit forms of densities of sums: ‘ÐBÑ œ / B −"

#
B Î#È 1

#

and computer calculations, it is not a difficult task to estimate the constants  and  from. .
µ

(2.11) in a number of important particular cases.  For example, we obtain the  following

results.  (Note, that the values of  and  do not depend on expectations):. .
µ

   if  is a normally distributed random variable (with arbitraryÐ+Ñ .  !Þ#%# \"

parameters, taking );= œ "
Ð,Ñ . œ # \  if  is an exponentially distributed random variable (with arbitrary"

parameter, taking );= œ #
Ð-Ñ . œ !Þ#& \  if  is a uniformly distributed random variable (with arbitrary"

parameters, taking );= œ #
Ð.Ñ . œ # \ œ #  if  has the -density with parameter ; and arbitrary parameter " > α -

(taking );= œ "
Ð/Ñ .  !Þ&#$ \ œ %  if  has the -density with parameter ; and arbitrary parameter " > α -

(taking ).= œ "
 It is instructive to trace out the behavior of the value sup  as a func-"

‘
5

w
5œ ± 0 ÐBÑ ±

B −
tion of  in the particular cases.  The next four tables and accompanying  picture give a5
eyewitness account of such behavior.

Table 1:  The Case of the Exponential Density

                              5 # $ % & ' ( ) *
    .6913  .5220  .4511 .4109 .3857 .3678 .3542   "5 #
   

       10  11  12   1    20     30  50  80  5 &
    .3442  .3359  .3290  .3145 .2997 .2852 .2726 .2647   "5
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Table 2:  The Case of the Uniform Density

                               5 # $ % & ' ( ) *
    .1667  .2500  .2222  .2273 .2300 .2316 .2329 .2339   "5
   

       10  11  12   1    20     30  50  80  5 &
    .2344  .2353  .2357  .2370 .2383 .2385 .2404 .2414   "5
 

Table 3:  The Case of the -Density with > α œ #

                                5 " # $ % & ' ( ) *
    2  .5220  .4109  .3678  .3442 .3290 .3186 .3107 .3047   "5
    

     10      11   12    15   20   30     50  80  100  5
    .2997   .2960 .2926  .2852  .2773 .2690 .2618 .2568 .2550     "5
 

Table 4:  The Case of the -Density with 4> α œ

                                   5 " # $ % & ' ( ) *
    .5224  .3678  .3290  .3107  .2997 .2926 .2872 .2833 .2801    "5
    

     10      11   12    15   20   30     50  80  100  5
    .2773   .2753 .2734  .2690  .2647 .2597 .2550 .2518 .2503     "5
 

 Below we present the graphs of absolute values of the derivatives  calculated for0 ÐBÑw
5

5 œ "ß #ßá ß #! \ œ œ # with  having the -density with 4, ." > α -
 The above tables show that, at least in these examples, the sequence

Ö ± 0 ÐBÑ ± ß 5   =× ¸
B −

sup  approaches the limit 0.241971 “in a rather regular way''.
‘

#w
5

This allows us to estimate easily the value  in (2.11)..

Figure 1:  The Graphs of , for ± 0 ÐBÑ ± 5 œ "ß #ßáß#!Þw
5
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 We can also  offer a rough upper bound of the constant  when we have some information.
on the characteristic function  of the random variable .: 5Ð>Ñ \ Î"
 Assume that some , , is known such that$ $!   "

± Ð>Ñ ± Ÿ ± > ±   " Ð#Þ"#Ñ: $
±>±$Î=

 for .

Now, for  let  denote the characteristic function of the random variable 5   = :5
\ á\

5
" 5

5È
and let  be the density of this  random variables.05
 From (2.12) it follows that   and  hence we can calculate  as'∞

∞ 5
w
5± > ± ± Ð>Ñ ± .>  ∞ 0:

follows

0 ÐBÑ œ Ð  3>Ñ/ Ð>Ñ.> B − Þw 3>B
5

"
#

∞

∞
51

'     : ‘,  

Thus

sup
B

± 0 ÐBÑ ± Ÿ ± > ± ± Ð>Ñ ± .> œ ± > ± ± Ð>Ñ ± .>w 5
5

" 5
# #

∞ ∞

∞ ∞
51 1

' '          

: :

Ð#Þ"$Ñ

œ ± > ± ± Ð>Ñ ± .>  ± > ± ± Ð>Ñ ± .>5 5
# #

"

"

5 5

±>± "
1 1
' '    

: : .

 By (2.12) the second integral in (2.13) is less than   '
±>± " ±>±

# =
$5#=± > ± .> œ$ $5 5

$5
=

and for this, the second term on the right-hand side of (2.13) is smaller than
= 5 = B

$5#= $B#=1 1
$ $ $  (since the function  is decreasing for ).
5 = B

Ÿ B   =

 Applying Theorem 1, Ch. 1 in [10], we see that (2.12) yields the following inequality:

± Ð>Ñ ± Ÿ "  > ± > ±  "Þ: "
)

#$#  for 

 The last inequality allows us to estimate the first term on the right-hand side of (2.13).  We

have:

5 5 "
# )

" "

" !

5 #
5

1 1
$' ' ’ “Š ‹        

± > ± ± Ð>Ñ ± .> Ÿ > "  > .>:  
#

œ "  " % 5 "
Ð" Ñ 5" )

5"

$ 1
$

#

#

  ” •Š ‹

Ÿ Þ%
Ð" Ñ$ 1#

 Gathering all above inequalities together we finally get the estimate:
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. œ ± 0 ÐBÑ ± Ÿ =  Þ
5   = B
sup sup w =

5
" %

"1 $
: ‘$ #

 Let us now turn to inequalities (2.7), (2.9) in Theorems 2, 4. Everything is all right with

the constant  in these inequalities but the requirements  and  of Assumption 2 (which- Ð+Ñ Ð,Ñ#

demand the nearness of random variables to normal ones) is undesirable. This is evidently a

weak point that reduces the range of possible applications. For this, Theorems 2 and 4 should

be considered as a first step towards better results of this kind. Note that normally distributed

random variables have been  chosen in Assumption 2 only to fix the idea. The normal density

can be replaced by the uniform one, -density with  and more generally by any density> α   "
which satisfies the hypotheses of Lemma 1 in [5] and for which the constant in this lemma

can be effectively calculated. We reproduce here the formulation of this lemma. (See Lemma

2 in the next section).

  The next remark outlines an even more promising way to overcome restrictions  andÐ+Ñ
Ð,Ñ in Assumption 2.

    The revision of the proof of Lemma 2 of the next section shows that  in-Remark 2:

equalities (3.4) and (3.5) can be replaced by the following ones: for 8   #=

VÐW ß ] Ñ Ÿ , ß


8 8 =?

provided that

?=
\ á\

= =
áÀ œ ßmax , š Š ‹V " = " =È È0 0

›Š ‹'#
\ á\

= =
á "" = " =È È, 

0 0 Ÿ Ð#, Ñ ß


where  is an arbitrary, but fixed integer and the explicitly calculated constant  does=   " ,


not depend on .  The point is to replace conditions  and  in Assumption 2 by the= Ð+Ñ Ð,Ñ
conditions:

maxš ›Š ‹ Š ‹V \ á\ \ á\
= =#

"" = " =È Èß ß ß Ÿ Ð#, Ñ ß Ð#Þ"%Ñ


( ' ( α

max   š ›Š ‹ Š ‹V \ á\ \ á\
µ µ µ µ

= =#
"" = " =È Èß ß ß Ÿ Ð#, Ñ ß Ð#Þ"&Ñµ µ µ

( ' ( α

and to take an advantage of known estimates of the rate of convergence in the  central limit

theorem in order to choose  in (2.14), (2.15) so that these inequalities are satisfied for a wide=

enough class of random variables .  (In (2.14), (2.15) \ ß\ ß
µ µ

" " ( (
are, of course, normal random variables with corresponding parameters.)

 For instance, to estimate , one can exploit the following result given inVÐ ß Ñ\ á\
=

" =È (

[10], Ch. VII, Supplement. Suppose a random variable  has a density bounded by a\"

constant .  Denoting by  the density of ,O :8
\ á\ 8+

8
" 8

5È
one has for every :B − ‘

¹ ¹: ÐBÑ  / Ÿ ß8
"

#
B Î# EÖI±\ ± × Ö"ßO ×

8Ð"±B± ÑÈ È1 5

# "
$ $ &

# *

max
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where  is an absolute constant. Integrating this inequality one gets the upper bound forE

VŠ ‹\ á\
8

" 8È ß Þ(

3.  Auxiliary Results and the Proofs of the Theorems

The proof of Theorem 3 makes use of the following simple assertion.

 Lemma 1:   Let  and  be independent random variables such that\ß] ^ À
  ; ;Ð+Ñ I\ œ I] I\ ßI]  ∞# #

  the distribution function  has a bounded, absolutely continuous densityÐ,Ñ J^

0^ ;

Ð-Ñ 0 Ð Ñ the derivative  is a bounded function on a set where it exists .w
^

 Then

3 'Ð\  ^ß ]  ^Ñ Ÿ ± 0 ÐBÑ ± Ð\ß ] ÑÞ
B

sup w
^ #

   By the definitions of  and of convolution we getProof: 3

3
‘

Ð\  ^ß ]  ^Ñ œ ± J ÐBÑ  J ÐBÑ ±
B −

sup \^ ]^

Ð$Þ"Ñ

œ ± J ÐB  >Ñ.ÒJ Ð>Ñ  J Ð>ÑÓ ± Þ
B −

sup
‘

'     ∞
∞

^ \ ]

 Integration by parts in

MÐBÑ œ J ÐB  >Ñ.ÒJ Ð>Ñ  J Ð>ÑÓ'    ∞
∞

^ \ ]

gives

MÐBÑ œ 0 ÐB  >ÑÒJ Ð>Ñ  J Ð>ÑÓ.>Þ'    ∞
∞

^ \ ]

Again, integrating by parts, we get

MÐBÑ œ 0 ÐB  >Ñ. ÒJ Ð=Ñ  J Ð=ÑÓ.=' '        ∞ >

∞ ∞
^ \ ]

Ð$Þ#Ñ

œ 0 ÐB  >Ñ ÒJ Ð=Ñ  J Ð=ÑÓ.= .>Þ' '” •        ∞ >

∞ ∞

w
^ \ ]  
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(Recall , hence lim ).  From (3.1) and (3.2) weI\ œ I] ÒJ Ð=Ñ  J Ð=ÑÓ.= œ !
> Ä ∞

' >

∞ \ ]

obtain the following inequality

3
‘

Ð\  ^ß ]  ^Ñ Ÿ ± 0 ÐB  >Ñ ± ÒJ Ð=Ñ  J Ð=ÑÓ.= .>
B −

sup   ' 'º º       ∞ >

∞ ∞

w
^ \ ]

Ð$Þ$Ñ

Ÿ ± 0 ÐBÑ ± ÒJ Ð=Ñ  J Ð=ÑÓ.= .>Þ
B −

sup   
‘

w
^

∞ >

∞ ∞
\ ]' 'º º        

The second (integral) factor in (3.3) is the integral representation (2.5) of Zolotarev's metric.

 The following Lemma 2 appeared in [5] and was proven there (see Lemma 1 in [5] and

related Theorem 3 in [12]). Lemma 3 was given as Lemma 1 in [12]. We will use both these

facts in the proof of Theorem 4.

    i.i.d.Lemma 2: Let  random variables such that ,  0 0 0 0" # " "
#
"ß ßá IÐ Ñ œ IÐ\ Ñ I  ∞

and , , .] œ á  W œ \ á \ 8   "8 " 8 8 " 80 0
 Assume that the random variable  has a bounded density  satisfying the  following0" :
conditions:

  the derivative  is bounded and absolutely continuous;Ð+Ñ :w

  the derivatives ,  belong to ;Ð,Ñ : : Ð Ñw ww
"‹ ‘

  for some Ð-Ñ  !)

'
±B± 8

ww "

)

± : ÐBÑ ± .B œ SÐ8 Ñ 8 Ä ∞ as .

  Then there exist a constant , independent of the distribution of , such, \"

that for 8   "

VÐW ß ] Ñ Ÿ , ß Ð$Þ%Ñ8 8 ?

provided that

? 0 ' 0À œ Ö Ð\ ß Ñß Ð\ ß Ñ× Ÿ Ð#,Ñ Þ Ð$Þ&Ñmax V " " # " "
"

   As  shown in [5], the constant  in (3.4) and (3.5) is expressed in the form:Remark 3: ,

, œ Ö"ß '<Î × œ Ð Ñßmax ,  Var5 5 0# #
! ! "

< œ ± 0 ÐBÑ ± .B  ∞ß
5   "

sup '    ∞
∞

ww
5

where  is the density of the random variable , .0 5 œ "ß #ßá5
á

5

0 0

5
" 5

!
È

 Note that for normally distributed random variables  we have  and easily0 0 :" # 5ß ßá 0 œ
calculate 0.967883 .< ¸  "
 Lemma 3:   Let  and  be independent random variables.\ß] ß^ X
 Then
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3 3 3Ð\  ^ß ]  ^Ñ Ÿ Ð\ß ] Ñ Ð^ß X Ñ  Ð\  X ß ]  XÑÞ Ð$Þ'ÑV

 The Proofs of Theorem 1 and 2:  By the definition of the uniform metric we get

(applying the total probability formula):

3
‘

Ð^ß ^ Ñ œ T \ Ÿ B  T \ Ÿ B
µ µ

B −
sup   º ºŒ 7 Œ 7� �/ /

5œ" 5œ"
5 5

œ T \ Ÿ B  T \ Ÿ B TÐ œ 8Ñ
B −

µ
sup      
‘

/º º� � �” •Œ 7 Œ 7∞ 8 8

8œ" 5œ" 5œ"
5 5

Ð$Þ(Ñ

Ÿ T \ Ÿ B  T \ Ÿ B TÐ œ 8Ñ
B −

µ� � �º ºŒ 7 Œ 7∞ 8 8

8œ" 5œ" 5œ"
5 5  sup       

‘
/

œ ÐW ß W ÑT Ð œ 8ÑÞ
µ�∞

8œ"
8 83 /

 Having applied the well-known regularity property of , we write for  3 8 œ "ßá ß #=  "
(  in Theorem 2):= œ "

3 3ÐW ß W Ñ œ Ð\ á \ ß\ á \ Ñ
µ µ µ

8 8 " 8 " 8

Ÿ 8 Ð\ ß\ Ñ Ÿ Ð#=  "Ñ Ð\ ß\ ÑÞ
µ µ

3 ." " " "

 On the other hand, for , due to Theorems 3 and 4 we can write  the corresponding8   #=
inequalities as follows:

3 .ÐW ß W Ñ Ÿ - Ð\ ß\ Ñß Ð$Þ)Ñ
µ µ

8 8 " " "

3 .ÐW ß W Ñ Ÿ Ö"ß - × Ð\ ß\ ÑÞ Ð$Þ*Ñ
µ µ

8 8 # " "max

 Combining inequalities (3.7), (3.8) and (3.9), we complete the proofs of the  theorems.

   Let  be an arbitrary, but fixed integer and let The Proof of Theorem 3: 8   #= 7 œ Ò8Î#Ó
(  stands for the integer part of ).ÒBÓ B
 We denote:

^ œ \ á \ ^ œ \ á \ à7 " 7 7" 8
w
7,  

Ð$Þ"!Ñ

^ œ \ á \ ß ^ œ \ á \ Þ
µ µ µ µ µ µ

7 " 7 7" 8

w

7  

 By the triangle inequality:

3 3 3ÐW ß W Ñ Ÿ Ð^  ^ ß^  ^ Ñ  Ð^  ^ ß^  ^ ÑÞ
µ µ µ µ µ

8 8 7 7 7 7
w
7 7 7 7

w w w

Applying Lemma 1 and the following property of the uniform metric  ,3 3Ð+\ß +] Ñ œ Ð\ß ] Ñ
+ Á !, we get
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3 3Ð^  ^ ß^  ^ Ñ œ  ß 
µ

7 7
w
7 7

w ^ ^
7 7 7 7

^ ^
µŒ 77 7 7 7

w
w

5 5 5 5È È È È 

Ð$Þ""Ñ

Ÿ 0 ÐBÑ ß Þ
B

sup    º º Œ 7w
#

^ ^

7 7

µ

^7
7

w
7 7

w

5È '
5 5È È

The “ideal properties" of Zolotarev's metric:

' 0 ( ' 0 (# 3 3 # 3

8 8 8

3œ" 3œ" 3œ"

#Œ 7� � �+ ß + Ÿ + Ð ß Ñß

(  and  are independent) (see, for instance, [9, 11, 13]) yield the  following chain of0 (3 3

inequalities:

' ' '# # 5 5 # " "
^ ^

7 7

µ
"
7 Ò8Î#Ó

8

5œ7"

8Ò8Î#ÓŒ 7 �w
7 7

w

# #5 5 5 5È Èß Ÿ Ð\ ß\ Ñ Ÿ Ð\ ß\ Ñ
µ µ

      

Ð$Þ"#Ñ

Ÿ Ð\ ß\ Ñß
µÐ"= Ñ

# " "

"

#5 '

since

sup
8   =

Ð8  Ò8Î#ÓÑÎÒ8Î#Ó œ Ð"  = ÑÞ"

By the same arguments we get

3 3Ð^  ^ ß^  ^ Ñ œ  ß 
µ µ µ

7 7

w w

7 7
^ ^

µ µ µ µ87 87 87 87

^ ^
µ µµŒ 77 7 7 7

w w

5 5 5 5È È È È 

Ÿ 0 ÐBÑ Ð\ ß\ Ñ Ð$Þ"$Ñ
B

µ
sup  » »w "

µ
Ò8Î#Ó

8Ò8Î#Ó # " "^
µw
7

µ 87

#

5È 5
'

Ÿ 0 ÐBÑ Ð\ ß\ Ñ
B

µ
sup  .» »w "

µ # " "^
µw
7

µ 87

#

5È 5
'

 From inequalities (3.11), (3.12) and (3.13) the desired result (2.8) follows with

- œ "
Ð"= Ñ. .

µ

µ

"

# #5 5
, if we show that
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.À œ 0 ÐBÑ  ∞ . À œ 0 ÐBÑ  ∞Þ Ð$Þ"%Ñ
5   = 5   =B B

µ
sup sup  and sup supº º » »w w

^5
7

^
µ
5

µ 55 5
È È

Let us verify (3.14), say, for densities  of the  random variables0 ´ 05 ^5
55È

\ á\

5
" 5

5È .  First of all, note that

sup  sup  
B B

0 ÐBÑ œ 0 ÐBÑ ßº º º ºw w
^5

5

^

5
55 5È È

where

^ œ Ð\ I\ Ñ á  Ð\ I\ ÑÞ


5 " " 5 5

Denote

 .0 À œ 0


5 ^

5
55È

  The hypotheses of Theorem 3, particularly, the conditions , I ± \ ±  ∞ 0 − Ð Ñ" "
$ w ‹ ‘

guarantee the hypotheses  of Theorem 7, Ch. VI in [10], which in our case states:

0 ÐBÑ œ / .C  /  9Ð5 Ñß
 w

5
" .

# .B

B

∞

C Î# B Î# "Î#I\ ÐB "Ñ

' 5È È1 5
  

#

#

# # $ #
"
$” •'    

 uniformly in .B − ‘
 The last equality implies finiteness of  in (3.14). This also provides the following asymp-.
totic behavior of max

B
± 0 ÐBÑ ± Àw

5

max max   as 
B B

± 0 ÐBÑ ± Ä / 5 Ä ∞Þw B Î#
5

"

#

wº º’ “È 1

#
 

  Let  and  be  normally distributedThe Proof of Theorem 4À ( ( ( (" # " #ß ßá ß ßáµ µ i.i.d.

random variables with parameters  and  respectively. Set ;+ß +ß ] œ á µ5 5 ( (5 " 5

] œ á  5 œ "ß #ßá
µ µ µ

5 " 5( ( , .

 For  we introduce the same notation ;  as in relations (3.10).8   # ^ ß^ ^ ß^
µ µ

7 7
w
7 7

w

 By the triangle inequality and by virtue of inequality (3.6) in Lemma 3 we can write:

3 3 3ÐW ß W Ñ Ÿ Ð^  ^ ß^  ^ Ñ  Ð^  ^ ß^  ^ Ñ
µ µ µ µ µ

8 8 7 7 7 7
w
7 7 7 7

w w w

Ÿ Ð^ ß^ Ñ Ð^ ß ] Ñ  Ð^  ] ß^  ] Ñ Ð$Þ"&Ñ
µ µ

3 3w w
7 7 7 7

w w

7 7 7 7V

 Ð^ ß^ Ñ Ð^ ß ] Ñ  Ð^  ] ß^  ] ÑÞ
µ µ µ µ µ µ

3 37 7 87 7 87 7 87

w

7V

 From Assumption 2 and Lemma 2 it follows that
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V VÐ^ ß ] Ñ Ÿ Î# Ð^ ß ] Ñ Ÿ Î# 8   #Þ Ð$Þ"'Ñ
µ µ

7 7 87

w

7α α,  for every 

(Since in this case  and random variables  in Lemma 2 are normal; see Lemma 2 and5 5 0! 5œ
Remark 3.)

 Applying (as in the preceding proof) the suitable properties of metrics  and ,3 '#
Lemma 1 and observing that  are normal random variables of unit variance] Î 77 5È
(and  hence sup sup , with , we obtain the

B B
0 ÐBÑ œ ± ÐBÑ ± ÐBÑ œ / Ñº ºw w B Î#"

#
]7

7

#

5È : : È 1

following inequalities:

3Ð^  ] ß^  ] Ñ
µw

7 77 7

w

œ  ß  Ÿ 0 ÐBÑ ß
B −

3 '
‘

Œ 7 º º Œ 7^ ^ ^ ^

7 7 7 7 7 7
] ]

µ µ
w

#

w w
7 7 7 7 7 7

w w

]7
7

5 5 5 5 5 5È È È È È È sup      
5È

Ÿ ± ÐBÑ ± Ð\ á \ ß\ á \ Ñ Ð$Þ"(Ñ
B −

µ µ
sup
‘

: 'w "
7 # 7" 8 7" 85#

Ÿ Ð\ ß\ Ñ Ÿ Ð\ ß\ ÑÞ
µ µ# #

5 5# # 
8Ò8Î#Ó
Ò8Î#Ó # " " # " "

#' '

(Here sup 0.242).# :
‘

À œ ± ÐBÑ ± 
B −

w

 Similarly,

3 '
‘

Ð^  ] ß^  ] Ñ Ÿ 0 ÐBÑ ß
µ µ µ

B −
7 87 7 87 #

w ^ ^
µ µ87 87

µ

sup     º º Š ‹
]
µ
87

µ 87

7 7

5È 5 5È È

Ÿ Ð\ ß\ Ñ Ÿ Ð\ ß\ ÑÞ Ð$Þ")Ñ
µ µ# #

5 5µ µ
Ò8Î#Ó

8Ò8Î#Ó # " " # " "# # ' '

 Finally, from (3.15), (3.16), (3.17) and (3.18) we have

3 3 3 'ÐW ß W Ñ Ÿ Ð^ ß^ Ñ  Ð^ ß^ Ñ   Ð\ ß\ Ñ
µ µ µ µ

8 8 7 7 # " "# #
w
7 7

w #
µ

α α # #
5 5

Š ‹# #  

Ÿ Ö Ð^ ß^ Ñß Ð^ ß ^ Ñ×   Ð\ ß\ ÑÞ Ð$Þ"*Ñ
µ µ µ

α . . # .max w
7 7

w

7 7 " "
# "

µŠ ‹5 5# #

 To complete the proof we use induction arguments together with inequality (3.19). We

have  for ,  if .8 œ " ÐW ß W Ñ œ Ð\ ß\ Ñ Ÿ - Ð\ ß\ Ñ -   "
µ µ µ

3 3 .8 8 " " " "

 Suppose that  for .3 .ÐW ß W Ñ Ÿ - Ð\ ß\ Ñ 5 Ÿ 8  "
µ µ

5 5 " "

 From (3.19) it follows that

3 α # .ÐW ß W Ñ Ÿ -   Ð\ ß\ ÑÞ
µ µ

8 8 " "
# "

µ’ “Š ‹5 5# #
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 The induction would hold if

α #-   Ÿ -ßŠ ‹# "
µ5 5# #

or if we choose the constant  to satisfy the inequalities-

-    -   "Þ#
α 5 5"

# "
µŠ ‹# # , and 
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