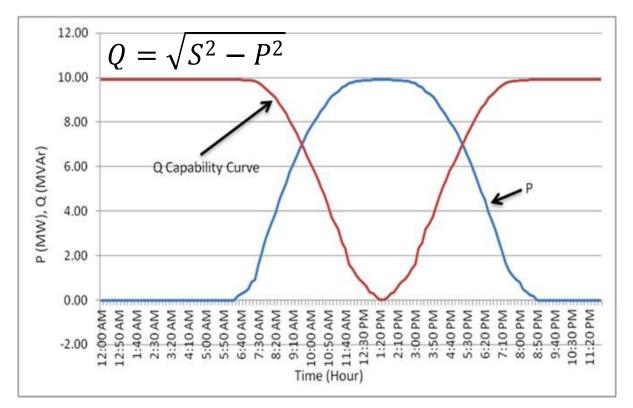
New Control of PV Solar Farm as STATCOM (PV-STATCOM) for Increasing Grid Power Transmission Limits During Night and Day

Rajiv K. Varma, Shah Arifur Rahman

University of Western Ontario London, ON, CANADA rkvarma@uwo.ca **Tim Vanderheide**

Bluewater Power Corporation Sarnia, ON, CANADA

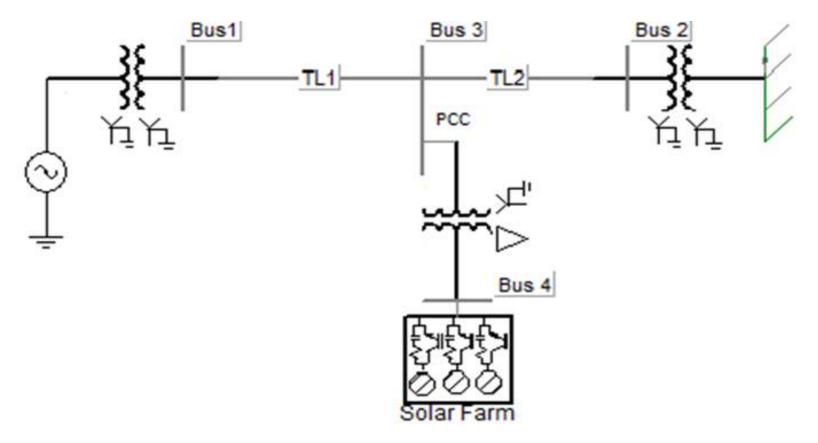
Novel Concept


Utilization of PV Solar Farm in Night and Day as STATCOM!

Termed as PV-STATCOM patent pending

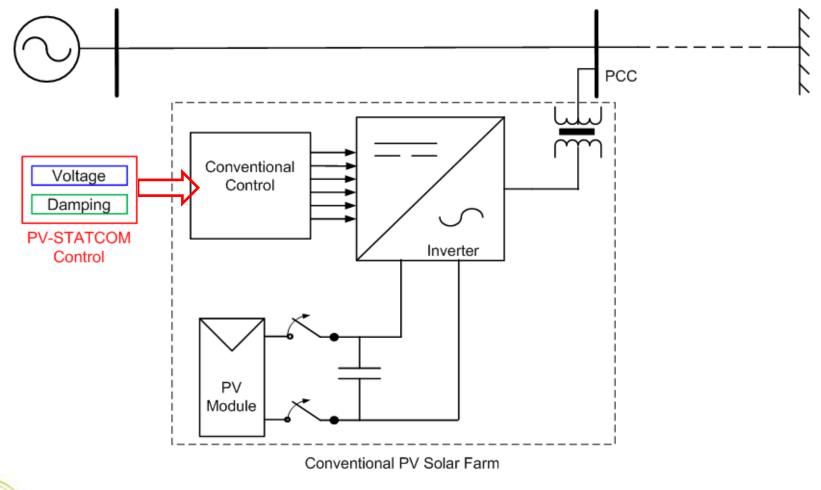
Concept of Control: PV Solar Farm Inverter as STATCOM

Nighttime: Entire Inverter Capacity Utilized for STATCOM Daytime: Remaining Inverter Capacity Utilized for STATCOM


Transmission Challenges

- Power transmission capacity of lines typically limited
- Constraints on adding new generation, e.g. wind power system.
- Potential Solutions:
 - Construct new lines ~ \$500 Million (for 200 km)
 - Install SVC/STATCOM ~ \$50 Million
 - Proposed PV-STATCOM control ~\$ 200k

Study System - 1



Single Machine Infinite Bus (SMIB) System with 100 MW solar farm on a 200 km line

PV Solar Farm as STATCOM

EEE

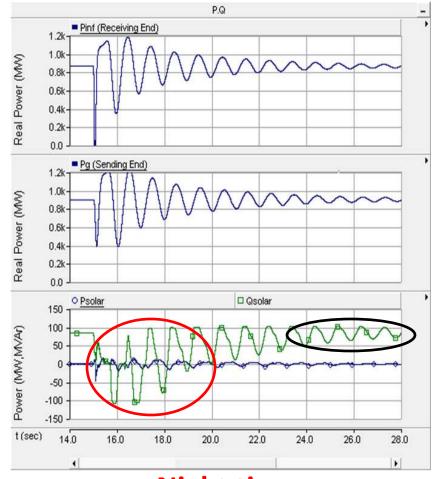
Study Considerations

- Three phase to ground fault for 6 cycles at generator bus.
- Damping controller : lead-lag compensator.
- Damping signal : Line current at inverter output.
- Damping ratio: 5%.
- PCC voltage overshoot not to exceed 1.1 p.u.

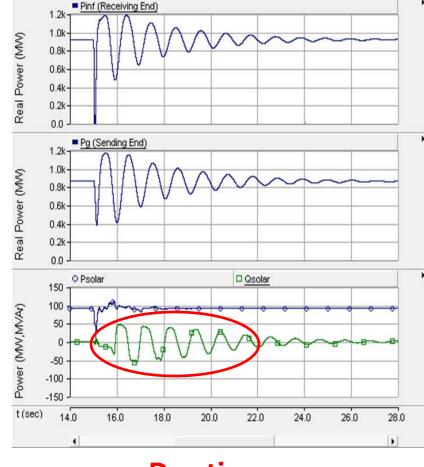
SMIB System with One Solar Farm

Maximum power transfer with conventional PV system

Night	$P_{PV}=0$ MW	731 MW
Day	$P_{PV}=19MW$	730 MW
	$P_{PV}=91MW$	719 MW

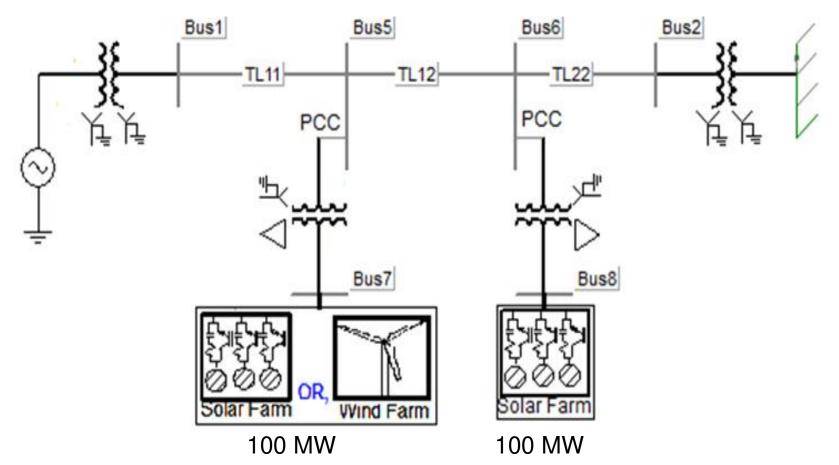

Power transfer improvement with PV-STATCOM

PV-STATCOM Control	Nighttime Power	Daytime Power Limit Gain (MW)	
	Limit Gain (MW)	Solar DG Power output 19MW	Solar DG Power output 91MW
Voltage control	102	85	7
Damping Control	119	121	142
Voltage control with damping control	168	93	36



SMIB System with One Solar Farm

Night time Voltage and damping control

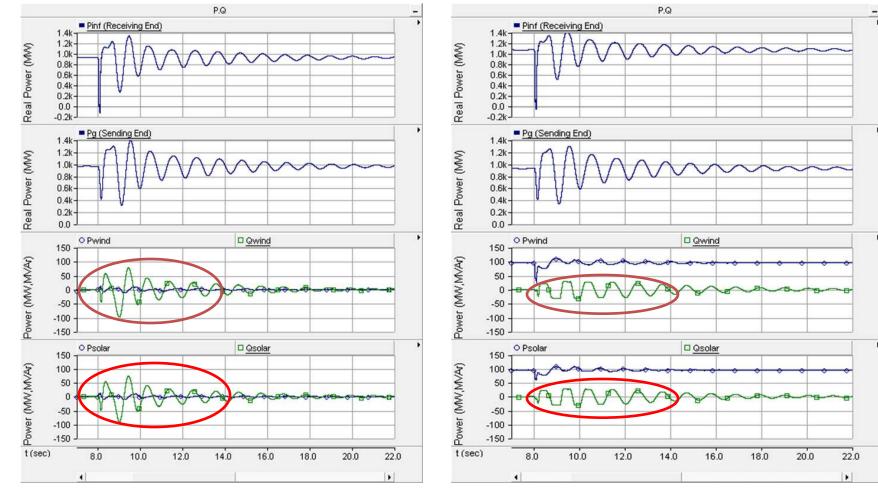

P.Q

Day time Damping control; P_{PV}=91MW

Study System - 2

SMIB system with 2 x 100 MW solar farms on a 200km line

SMIB System with Two DGs as STATCOM


Power transfer improvement with damping control

DG Real Power	Maximum Power Transfer Limits (MW)		Net Increase in		
Outputs (MW)	Without Damping	With PV-STATCOM	Power Transfer		
	Controller	Damping Controller	Limit (MW)		
Nighttime					
P _{solar} =0; P _{wind} =0	731	960	229		
$P_{solar}=0; P_{wind}=20$	729	948	219		
P _{solar} =0; P _{wind} =95	716	936	220		
Daytime					
$P_{solar}=20; P_{wind}=20$	726	923	197		
$P_{solar}=95; P_{wind}=95$	700	930			
$P_{solar}=20; P_{wind}=0$	730	944	214		
P _{solar} =95; P _{wind} =0	719	938	219		

SMIB System with Two DGs as STATCOM

Nighttime (damping control)

IEEE

Power & Energy Society

Daytime (damping control)

Conclusion

- Novel Control proposed for PV Solar Farm inverter as STATCOM, termed PV-STATCOM.
- PV- STATCOM utilizes voltage and damping control with "unused" capacity of PV inverter.
- Provides significant enhancement of transient stability and power transfer capacity, very cost-effectively.
- Similar STATCOM controls can be implemented on inverter based wind turbine generators.

Conclusion

- PV-STATCOM technology has the potential to bring
 - New revenues to solar farms during night and day
 - Better network performance for utilities
- Appropriate agreements will be required between regulators, utilities, solar farm developers, and inverter manufacturers

Acknowledgement

- Ontario Centres of Excellence (OCE).
- Natural Science and Engineering Research Council (NSERC).
- Bluewater Power Corporation
- Hydro One Inc.

