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NEW CRITERIA FOR SHIFT VARIANCE AND WIDE-SENSE CYCLOSTATIONARITY
IN MULTIRATE FILTER BANKS

Til Aach

Institute of Imaging and Computer Vision, RWTH Aachen University,
D-52056 Aachen, Germany, til.aach@lfb.rwth-aachen.de

ABSTRACT

Sampling rate conversion in multirate filter banks leads
to time-varying phenomena, which differ between deter-
ministic and stationary random signals. More specifically,
downsampling causes deterministic signals to become pe-
riodically shift variant, while upsampling turns stationary
random signals into cyclostationary signals. We provide
criteria for the quantification of these effects, and com-
pare a variety of paraunitary and biorthogonal perfect re-
construction filter banks as well as orthogonal block trans-
forms. Our criteria also permit frequency-resolved evalu-
ations.

1. INTRODUCTION

Downsampling and upsampling in multirate filter banks
generates time-dependent phenomena, the descriptions
of which differ depending on whether the signals are
viewed as deterministic or wide sense stationary (WSS)
[1, 2, 3, 4, 5, 6, 7, 8, 9]. Based an earlier comparative
analysis of these effects [10, 11], we develop here criteria
to quantify the shift variance and cyclostationarity gener-
ated. While in [10, 11], we have only quantified periodic
shift variance of subband energies for deterministic sig-
nals, and the cyclic nonstationary behaviour of subband
powers for random signals, we extend our analysis here
towards energy spectra and power spectra. Besides giv-
ing scalar numerical quantities for the evaluation of shift
variance and cyclic nonstationarity, our criteria also en-
able the analysis over frequency or individual subbands.

2. DETERMINISTIC AND RANDOM SIGNALS IN
MULTIRATE FILTER BRANCHES

Figure 1 shows one branch of a multirate filter bank, con-
sisting of analysis and synthesis filters H(z) and G(z),
and of a downsampler followed by an upsampler. In
the following, we first describe the effects of decimation
and interpolation on the energy spectra and power spec-
tra of deterministic and WSS signals, respectively. We
then develop our criteria, and apply these to a variety of
widely-used paraunitary and biorthogonal perfect recon-
struction (PR) filter banks, and to three orthogonal block
transforms, viz. DCT, MLT and LOT. The input signal
is denoted as s(n). In the deterministic case, it is as-
sumed to be of finite energy with z-transform S(z) and
energy spectrum RE

ss(z) = S(z)S(z−1). In the WSS

Figure 1. One branch of a multirate filter bank, consisting
of an analysis filter H(z) followed by a downsampler of
factor M . The synthesis part consists of an upsampler and
an interpolation filter.

case, its autocorrelation function (ACF) is rss(n), and
its power spectrum is Rss(z). The M th root of one is
denoted by e−j2π/M = W , and the Fourier matrix by
W. The modulation vector of a signal s(n) is denoted
by sm(z) = [S(z), S(zW ), . . . , S(zWM−1)]T .

2.1. Decimation

2.1.1. Deterministic Signals

Downsampling of the analysis-filtered signal t(n) ◦−•
T (z) = H(z)S(z) yields

X(z) = 1/M · sT
m(z1/M ) · hm(z1/M ) (1)

and, for the energy spectrum

RE
xx(z) = X(z)X(z−1) (2)

=
1

M2
sT
m(z1/M )RE

hh(z1/M )sm(z−1/M )

with the M × M -matrix RE
hh(z) given by RE

hh(z) =
hm(z) · hT

m(z−1). When the signal s(n) is shifted by m
samples to s(n − m), m = 0, . . . ,M − 1, T (z) is mul-
tiplied by the phase term z−m, and the energy spectrum
RE

xx(m, z) becomes

RE
xx(m, z) = 1

M

M−1∑
k=0

T (z
1

M W k) ·W−km ·

1
M

M−1∑
l=0

T (z−
1

M W l) ·W−lm (3)

which generally depends on the shift m. Assembling
RE

xx(m, z) for m = 0, . . . ,M − 1 into a vector yields[
RE

xx(0, z), RE
xx(1, z), . . . , RE

xx(M − 1, z)
]T =

W∗T

M2

[
A0(z1/M ), A1(z1/M ), . . . , AM−1(z1/M )

]T
(4)



where W∗T is the transjugated Fourier matrix, and Ak(z)
is the result of convolving the modulated DFT-spectra [11,
10]

Ak(z) =
M−1∑
l=0

T (zW l)T (z−1W k−l) (5)

The energy spectrum averaged over m then is

R
E

xx(z) =
1

M2
A0(z1/M ) (6)

and the shift-variant differences ∆RE
xx(m, z) =

RE
xx(m, z)−R

E

xx(z) to the average are[
∆RE

xx(0, z), . . . ,∆RE
xx(M − 1, z)

]T
=

W∗T

M2

[
0, A1(z1/M ), . . . , AM−1(z1/M )

]T

. (7)

The latter are zero if and only if Ak(z) = 0 for k =
1, . . . ,M − 1, i.e., when no aliasing occurs.

2.1.2. WSS random signals

Decimation adds aliased components to the original power
spectrum, but leaves the signal WSS. The power spectrum
of the downsampled signal obeys

Rxx(z) =
1
M

·
M−1∑
k=0

H(z−1/MW−k) ·

Rss(z1/MW k)H(z1/MW k) . (8)

2.2. Interpolation

2.2.1. Deterministic signals

Interpolation of x(n) causes no shift-variant behaviour,
and results in

RE
yy(z) = G(z)RE

xx(zM )G(z−1) . (9)

For the entire filter bank branch, we obtain by inserting
Eq. (4) [

RE
yy(0, z), . . . , RE

yy(M − 1, z)
]T

=

W∗T

M2
[B0(z), . . . , BM−1(z)]T (10)

where
Bk(z) = G(z−1)Ak(z)G(z) . (11)

Thus, the average energy spectrum is

R
E

yy(z) =
1

M2
B0(z) (12)

and the shift-variant differences to the average after syn-
thesis filtering are[

∆RE
yy(0, z), . . . ,∆RE

yy(M − 1, z)
]T

=

W∗T

M2
[0, B1(z), . . . , BM−1(z)]T . (13)

2.2.2. WSS random signals

Upsampling and synthesis filtering generally causes
a WSS signal to become wide-sense cyclostationary
(WSCS) [6, 8]. In other words, the correlation structure
depends periodically on the reference position m with
period M . Arranging the power spectra Ryy(m, z) for
m = 0, . . . ,M − 1 into a vector, we have shown in [12]
that

[Ryy(0, z), . . . , Ryy(M − 1, z)]T =

Rxx(zM )WG(z)
M

gm(z−1) (14)

holds. In [12], the derivation of this expression was based
on a polyphase decomposition the interpolator, and for-
mulating the sought cyclic nonstationary autocorrelation
function of y(n) in terms of cross correlation functions
between the output signals of the polyphase components
of G(z). In the appendix, we provide here an alternative
derivation using cyclic spectral density functions as de-
fined in [7]. The average power spectrum is

1
M

M−1∑
i=0

Ryy(i, z) =
Rxx(zM )

M
G(z)G(z−1) . (15)

In case of non-perfect anti-imaging filtering by G(z), the
nonstationary differences ∆Ryy(i, z) to the average spec-
trum are

[∆Ryy(0, z), . . . ,∆Ryy(M − 1, z)]T =
Rxx(zM )

M
·

WG(z)
[
0, G(z−1W ), . . . , G(z−1WM−1)

]T
(16)

These vanish for ideal anti-imaging filtering. To decribe
the entire filter bank branch, we insert Eq. (8), yielding for
the upsampled power spectrum Rxx(zM )

Rxx(zM ) =
1
M

·
M−1∑
k=0

H(z−1W−k) ·

Rss(zW k)H(zW k) . (17)

3. QUANTIFYING SHIFT-VARIANT ENERGY

To assess shift variance of the energy at the output of the
multirate filter bank branch, we integrate Eqs. (12) and
(13) over the unit circle. With the aliasing component
(AC) energy ek

ek =
1

2πM2

∫ π

−π

Bk(ejω)dω (18)

and invoking Parseval’s theorem, we can relate the vari-
ance of the energy variation to the squared average energy
given by Eyy = e0, and obtain

C2
e (y) =

1
M

∑M−1
m=0 |∆Eyy(m)|2

(Eyy)2
=

∑M−1
k=1 |ek|2

|e0|2
.

(19)



4. QUANTIFYING CYCLOSTATIONARY POWER

Similarly as above for deterministic signals, we can calcu-
late the power of the WSCS output signal of the multirate
filter bank branch by integrating over the unit circle. The
generally periodically varying power Py(i) of the output
signal y(n) is

Py(i) =
1
2π

∫ π

−π

Ryy(i, ejω)dω , i = 0, . . . ,M − 1

(20)
With pn defined as

pn =
1

2πM

∫ π

−π

Rxx(ejωM )G(ejω)G(e−j(ω+2πn/M))dω

(21)
we obtain by integrating Eq. (14)

[Py(0), . . . , Py(M − 1)]T = W[p0, . . . pM−1]T (22)

Thus, the average power P y is

P y =
1
M

M−1∑
i=0

Py(i) = p0 (23)

and the deviations ∆Py(i) from the average are

[∆Py(0), . . . ,∆Py(M − 1)]T = W[0, p1, . . . , pM−1]T

(24)
To quantify the resulting cyclostationarity, we define the
mean square power deviation from the average power as

C2
p =

1
M

∑M−1
i=0 |∆Py(i)|2(

1
M

∑M−1
i=0 Py(i)

)2 =
∑M−1

n=1 |pn|2

p2
0

(25)

These criteria - C2
e and C2

p - assess the shift variance of
signal energy and the cyclic nonstationarity of the signal
power, respectively. They can be applied to each subband
of a critically sampled PR filter bank. Furthermore, via ek

and pk, they provide information on which aliasing com-
ponent is responsible for most of the variation. Changes in
the energy spectra and power spectra, however, which do
not result in a change of energy and power, respectively,
are not captured by these criteria. For instance, shifting a
deterministic impulse at the input of a filter bank channel
with filters the coefficients of which are constant, such as
the zeroth basis function of the DCT, would not result in a
change of subband energy. Let us, however, additionally
mention that, when applied to critically sampled orthogo-
nal and biorthogonal filter banks, these criteria behave in
a dual manner [11].

5. SHIFT-VARIANT ENERGY SPECTRA

For deterministic signals, changes in the energy spectra
can be captured by interchanging the order of integration
and applying Parseval’s theorem, i.e., by first computing
the squared modulus spectra |Bk(ejω)|2. With

σ2
e(ω) =

1
M

M−1∑
m=0

|∆RE
yy(m, ejω)|2

=
1

M4

M−1∑
k=1

|Bk(ejω)|2 (26)

denoting the variance of the energy spectrum RE
yy(m, ejω)

over m for each ω, a frequency-resolved measure of the
variation of the energy spectrum can be obtained by the
normalization

σ2
eN (ω) =

σ2
e(ω)

|RE

yy(ejω)|2

=
∑M−1

k=1 |Bk(ejω)|2

|B0(ejω)|2
. (27)

Averaging over ω yields the scalar measure

L2
e =

1
2π

∫ π

−π

σ2
eN (ω)dω

=
1
2π

∫ π

−π

∑M−1
k=1 |Bk(ejω)|2

|B0(ejω)|2
dω (28)

Unlike the criterion C2
e above, this measure also captures

changes in the energy spectra which do not result in a
change of energy.

6. CYCLOSTATIONARY POWER SPECTRA

To capture also changes in power spectra which do not
result in a change of signal power (and thus escape the
above measure C2

p ), we first apply Parseval’s theorem to
Eq. (16), and integrate then over frequency, yielding

σ2
p(m) =

1
2π

∫ π

−π

|∆Ryy(m, ejω)|2dω (29)

and

D2
p(k) =

1
2π

∫ π

−π

|Ck(ejω)|2dω (30)

where

Ck(z) =
Rxx(zM )

M
G(z)G(z−1W k) (31)

With the mean-squared average spectrum

µ2
p =

1
2π

∫ π

−π

|Ryy(ejω)|2dω (32)

we get the normalized criterion

K2
p =

1
M

∑M−1
m=0 σ2

p(m)
µ2

p

=
∑M−1

k=1 D2
p(k)

D2
p(0)

(33)

7. RESULTS

7.1. Deterministic signals

We first analyze the shift-variant behaviour of the energy
spectra in orthogonal and biorthogonal two-channel filter
banks and in 8-channel block transforms. The criterion
employed is L2

e(i) defined in Eq. (28), which we evaluate
for each subband signal. In addition, we show the nor-
malized variance σ2

eN given in Eq. (27) over frequency



filter type L2
e(0) L2

e(1) avg.
john-8 0.1973 0.4345 0.3159
john-16 0.1089 0.1892 0.1491
PR-CQF-8 0.0462 0.0748 0.0605
PR-CQF-16 0.0303 0.0395 0.0349
M-PR-QMF-8 0.2005 0.4445 0.3225
SHA03 0.2032 0.4501 0.3266
BIOR9/7 0 0 0
BIOR6/10 0.2122 0.3098 0.2610

Table 1. Values of L2
e(i) for subbands i = 0 and i = 1 of

two-channel PR filter banks. The last column shows the
average over both subbands.

for selected filter types. Results assessing the shift-variant
behaviour of subband energy based on the measure C2

e in
Eq. (19) were already given in [11]. Since the effects of
shift variance in images are strongly visible at thin, line-
like structures, our test signal s(n) in all cases is a double
impulse without sign change, i.e., two successive unit im-
pulses. Calculations of L2

e are carried out using the DFT
as described in [11]. The DFT length in all cases was
N = 128, with the filter responses padded appropriately
by zeros. The results are summarized in Table 1. The first
two rows (john-8, john-16) refer to the Johnston filters
of lengths 8 and 16, repectively. These are linear-phase
quadrature mirror filters with approximate PR properties
[13, 14]. The longer filters provide better band separa-
tion, and correspondingly lower shift variance. PR-CQF-
8 and PR-CQF-16 refers to the PR-conjugated quadra-
ture filters by Smith and Barnwell, which are not linear
phase, but provide perfect reconstruction [15, 14]. As as-
sessed by our criterion, they are considerably less shift-
variant, with L2

e decreasing as the filter length increases.
M-PR-QMF-8 denotes the multiplierless PR-quadrature
mirror filters of length eight, which can be found in, e.g.,
[14] (coefficients: [−8, 8, 64, 64, 8,−8, 1, 1]). The filter
denoted by SHA03 is the optimal shift-invariant wavelet
in [16] of length 8 (coefficients: 0.0073, 0.015, -0.1197,
0.0698, 0.7196, 0.6711, 0.0999, -0.0488), which, with re-
spect to L2

e and our test signal, appears to perform less
well than, e.g., the PR-CQ-filter of the same length, and
no better than the M-PR-QMF-8 filters. The last two rows
evaluate the biorthogonal 9/7 wavelets, and the biorthog-
onal filter pair of lengths 6/10 found in [17] to have
low shift variance (coefficients: 0.788486, 0.047699,-
0.129078 and 0.615051, 0.133389, -0.067237, 0.006989,
0.018914; both biorthogonal pairs are linear-phase filters).
Among these filters, the biorthogonal 9/7 filters performed
best, with no measurable shift variance as evaluated by
L2

e.

Figures 2 and 3 show the normalized variance σ2
eN (ω)

over frequency ω from zero to 2π. These diagrams al-
low to identify the frequencies which contribute strongest
to shift variance. For each of the two subbands, σ2

eN (ω)
was calculated according to Eq. (27), the figures show the
averages. A comparison of the figures shows that for the

Figure 2. Normalized variance σ2
eN (ω) averaged over

both subbands for the Johnston filters of length 8, shown
for 0 ≤ ω < 2π.

Figure 3. Normalized variance σ2
eN (ω) averaged over

both subbands for the Johnston filters of length 16, shown
for 0 ≤ ω < 2π.

longer filters, the effective bandwidth of the frequency in-
tervals contributing to shift variance is lower.

Figures 4, 5 and 6 show the same results for the
PRCQF-8, PRCQF-16 and multiplierless PR-QMF-8 fil-
ters.

Figures 7 and 8 depict these diagrams for the filter de-
veloped in [16] and the biorthogonal 6/10 pair.

To complement these measurements, Table 2 shows
the results for a different input signal s(n), viz. a double-
sided deterministic signal the energy spectrum of which is
identical to the power spectrum of a WSS AR(1)-process
with correlation coefficient ρ = 0.95. The signal now
extends over a much larger effective time interval than the
above double impulse. For this lowpass-like signal, the
Johnston-QM filters, the biorthogonal 6/10 pair and the
multiplierless PR-QM filters perform best.

Results for the DCT, MLT and LOT, each for M = 8,
and s(n) again being the double impulse, can be found
in Table 3. The length of the DCT basis functions cor-
respondingly is 8, while both the MLT and the LOT ba-
sis functions have length 16. The LOT basis functions
were computed for an AR(1)-process with correlation co-
efficient ρ = 0.95 as described in [18, 19]. As expected,
the DCT is poorest, since its basis functions are only half
as long as those of MLT and LOT, while the MLT leads
the field. The normalized variances averaged over all sub-
bands of each transform are given in Figs. 9, 10 and 11.



Figure 4. Normalized variance σ2
eN (ω) averaged over

both subbands for the PR-CQ filters of length 8, shown
for 0 ≤ ω < 2π.

Figure 5. Normalized variance σ2
eN (ω) averaged over

both subbands for the PR-CQ filters of length 16, shown
for 0 ≤ ω < 2π.

Figure 6. Normalized variance σ2
eN (ω) averaged over

both subbands for the multiplierless PR-QM filters of
length 8, shown for 0 ≤ ω < 2π.

filter type L2
e(0) L2

e(1) avg.
john-8 0 0 0
john-16 0 0 0
PR-CQF-8 0.1245 0.2511 0.1878
PR-CQF-16 0.0736 0.1206 0.0971
M-PR-QMF-8 0.0038e-03 0.1812e-03 0.0925e-03
SHA03 0.0045 0.0313 0.0179
BIOR9/7 0.2206 0.3037 0.2621
BIOR6/10 0 0 0

Table 2. Values of L2
e(i) for subbands i = 0 and i = 1

of two-channel PR filter banks. The last column shows
the average over both subbands. The test signal here is a
double-sided expontial-like impulse the energy spectrum
of which is equal to the power spectrum of a WSS AR(1)
random signal.

Figure 7. Normalized variance σ2
eN (ω) averaged over

both subbands for the optimized filter of length 8 from
[16], shown for 0 ≤ ω < 2π.

Figure 8. Normalized variance σ2
eN (ω) averaged over

both subbands for the biorthogonal 6/10 filter pair, shown
for 0 ≤ ω < 2π.

transform L2
e(0) L2

e(1) L2
e(2) L2

e(3) L2
e(4)

DCT 0.0512 0.5234 0.5295 0.5234 1.1796
MLT 0.1615 0.3279 0.3282 0.1846 0.1350
LOT 0.1778 0.3102 0.3726 0.5433 0.5876

L2
e(5) L2

e(6) L2
e(7) avg.

DCT 0.5234 0.5295 0.5234 0.5479
MLT 0.3334 0.3457 0.5491 0.2957
LOT 0.5672 0.3693 0.7316 0.4574

Table 3. Shift variance measure for each subband of DCT,
MLT, and LOT. The last column lists the averages.



Figure 9. Normalized variance σ2
eN (ω) averaged over the

eight subbands for the DCT, shown for 0 ≤ ω < 2π.

Figure 10. Normalized variance σ2
eN (ω) averaged over

the eight subbands for the MLT, shown for 0 ≤ ω < 2π.

Figure 11. Normalized variance σ2
eN (ω) averaged over

the eight subbands for the LOT, shown for 0 ≤ ω < 2π.

transform K2
p(0) K2

p(1) K2
p(2) K2

p(3) K2
p(4)

DCT 0.0179 1.3909 1.7700 1.7836 1.7822
MLT 0.0080 0.6967 0.7006 0.6995 0.6994
LOT 0.0115 0.7589 0.6828 0.7582 0.7077

K2
p(5) K2

p(6) K2
p(7) avg.

DCT 1.6960 1.4697 0.6820 1.3240
MLT 0.6989 0.6968 0.2794 0.5599
LOT 0.8673 0.7874 0.3691 0.6179

Table 4. Measure for the cyclostationary behaviour of
each subband of DCT, MLT, and LOT. The last column
lists the averages.

7.2. Random signals

For random signals, we evaluated the cyclostationary be-
haviour of the power spectrum at the output of the filter
bank branch by criterion K2

p(i) in Eq. (33) for each sub-
band. The WSS test input signal s(n) was a sample from
an AR(1)-process with correlation coefficient ρ = 0.95.
The results are shown in Table 4. As above, the DCT per-
forms poorest, while the MLT performs best. Note that,
when evaluating only the cyclostationary behaviour of the
signal powers (rather than of the power spectra) by cri-
terion C2

p in Eq. (25), the LOT performs better than the
MLT (see [11]).

8. CONCLUSIONS

We have extended our earlier results on the evaluation of
time-variant phenomena in multirate filter banks by new
criteria, which do not only capture the changes in energy
and power, but also assess changes in the shapes of en-
ergy spectra and power spectra. We have applied these to
a variety of multirate filter banks. Clearly, the properties
of the signals processed, in particular temporal extent and
spectral content, have an influence on how critical these
effects are. For shift variance of deterministic signals, we
have therefore examined two different test signals, one be-
ing very short, which would correspond to the profile of a
thin line in images, while the other is rather lowpass-like
with larger temporal extent. In images, the profile of the
latter would correspond to a wide ridge. Our framework
and results could thus help in the selection of filters appro-
priate for a specific application, or with reasonably good
behaviour over a variety of signals.

9. APPENDIX

To derive Eq. (14), we examine the cyclic correlation
function which is defined in [7, Eq. (21)]. In our notation,
the cyclic correlation function reads

rc
yy(m,n) =

1
M

M−1∑
k=0

ryy(k, n)W−mk (34)



Its transform with respect to n is the cyclic spectral density
function Syy(m, z) [7, Eq. (22)] given by

Syy(m, z) =
∞∑

n=−∞
rc
yy(m,n)z−n (35)

=
1
M

M−1∑
k=0

W−mk
∞∑

n=−∞
ryy(k, n)z−n

With
∑

n ryy(k, n)z−n = Ryy(k, z), the cyclic spectral
density can be assembled into the vector

[Syy(0, z), . . . , Syy(M − 1, z)]T =

W∗T

M
[Ryy(0, z), . . . , Ryy(M − 1, z)]T (36)

Conversely, the vector with power spectra then is

[Ryy(0, z), . . . , Ryy(M − 1, z)]T =
W[Syy(0, z), . . . , Syy(M − 1, z)]T (37)

With [7, Eq. (36)], the cyclic spectral density of the inter-
polated signal is

Syy(m, z) =
1
M

G(z)Rxx(zM )G(z−1Wm) (38)

Inserting this into Eq. (37) leads to Eq. (14).
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