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Inspired by the behavior of dandelion sowing, a new novel swarm intelligence algorithm, namely, dandelion algorithm (DA),
is proposed for global optimization of complex functions in this paper. In DA, the dandelion population will be divided into
two subpopulations, and di	erent subpopulations will undergo di	erent sowing behaviors. Moreover, another sowing method is
designed to jump out of local optimum. In order to demonstrate the validation of DA, we compare the proposed algorithm with
other existing algorithms, including bat algorithm, particle swarm optimization, and enhanced 
reworks algorithm. Simulations
show that the proposed algorithm seems much superior to other algorithms. At the same time, the proposed algorithm can be
applied to optimize extreme learning machine (ELM) for biomedical classi
cation problems, and the e	ect is considerable. At last,
we use di	erent fusionmethods to form di	erent fusion classi
ers, and the fusion classi
ers can achieve higher accuracy and better
stability to some extent.

1. Introduction

Nature has evolved over hundreds of millions of years,
showing the perfect e�ciency and magic. People learn a lot
from the study of natural systems and use them to develop
new algorithms and models to solve complex problems.
�erefore, imitation of biological intelligence behavior, draw-
ing on its intelligent mechanism, making many new ways
to solve complex problems continue to emerge. �rough
the modeling of natural intelligence, a number of intelligent
algorithms have been proposed, including genetic algorithms
[1], ant colony algorithm [2], particle swarm algorithm [3,
4], center gravity search algorithm [5, 6], and quantum
computing [7]. Each intelligent algorithm corresponds to an
actual source of inspiration. For example, DNA calculations
are based on a double helix structure proposed by Watson
andCrickwhowin theNobel Prize in physiology ormedicine
and a polymerase linker response proposed by a Nobel Prize
winner Mullis [8]. Arti
cial bee colony algorithm is based
on the decoding of the bees dance behavior [9]. Arti
cial
immune algorithm is based on immune network theory [10].
�e bat algorithm is presented by simulating the bat echo
positioning behavior [11]. Inspired by observing 
reworks

explosion, enhanced 
reworks algorithm is proposed for
global optimization of complex functions [12]. In recent
years, many intelligent algorithms have been applied in
engineering problems successfully [13–20], which not only
reduce the time consumed but also can guarantee better
performance than manual adjustment.

�e above-mentioned intelligent algorithms are all par-
allel to search for the optimal solution. However, the indi-
viduals in them are using the same mechanism in the
process of searching. In this paper, inspired by the behavior
of dandelion sowing, a novel swarm intelligence algorithm
called dandelion algorithm (DA) is proposed for function
optimization. Such an optimization algorithm has advan-
tages such as a simple computational process and ease of
understanding. In DA, dandelion populations are divided
into two subpopulations, suitable for sowing and unsuitable
for sowing, and then perform di	erent sowing ways for
di	erent subpopulations. Meanwhile, another way of sowing
is to carry out the subpopulation which is suitable for sowing,
in order to avoid falling into the local optimum. To validate
the performance of the proposed DA, in our simulation,
we apply the twelve standard functions and compare the
proposed algorithm (DA) with bat algorithm (BA), particle
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Figure 1: Framework of dandelion algorithm.

swarm optimization (PSO), and enhanced 
reworks algo-
rithm (EFWA).�e results show that the proposed algorithm
has better overall performance on the test functions.

Extreme learningmachine is an advanced neural network
[21].�e input weight and the hidden layer bias are randomly
generated according to the number of input neurons and
hidden layer nodes, and the output weight matrix is calcu-
lated according to the Moore-Penrose generalized inverse
of the hidden layer output matrix. Although the extreme
learning machine has many advantages over traditional
neural networks, it causes its instability due to its random
input weight and hidden layer bias. In order to obtain higher
accuracy, this paper proposes a method to optimize the
extreme learning machine with proposed algorithm (DA) for
biomedical classi
cation problems. Moreover, we combine
multiple classi
ers to form a fusion classi
er with di	erent
fusion methods for biomedical classi
cation, and the results
show that it has better performance.

�e paper is organized as follows. In Section 2, the dan-
delion algorithm is introduced. �e simulation experiments
and results analysis are given in detail in Section 3. Using DA
to optimize ELM and combiningmultiple classi
ers to form a
fusion classi
er with di	erent fusion methods are presented
in Section 4. Finally, the conclusion is summarized in 
nal
part.

2. Dandelion Algorithm

2.1. DA Framework. In DA, we assume that the earth is
divided into two types: suitable for dandelion sowing and
unsuitable for dandelion sowing, and the dandelion living in
suitable environment is called core dandelion (CD); on the
contrary, the dandelions except for the core dandelion are
called assistant dandelions (AD).

Without loss of generality, consider the following mini-
mization problem:

� = min� (�) ; (1)

the objective is to 
nd an optimal � with minimal evaluation
(
tness) value.

When a dandelion is sown, the seeds of dandelion will
be scattered around the dandelion. In our view, the process
of dandelion sowing can be seen to search an optimal in a
particular space around a point. For example, now we need
to 
nd a point � to satisfy � = �(�); then using the dandelion
to sow the seeds in potential space until 
nding a point
is in
nitely close to the point �. Mimicking the process of
dandelion sowing, a rough framework of the DA is depicted
in Figure 1.

In DA, with each generation of sowing, 
rstly, we need to
select � dandelions; that is to say, here we have � dandelions
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to sow.�en a�er sowing, the locations of seeds are obtained
and assessed. �e algorithm will stop when the optimal
location is found. Otherwise, the algorithm needs to select
other � dandelions from the all seeds and dandelions for the
next generation of sowing.

From Figure 1, we can see that the process of sowing
and selection strategy are important for DA, and they are,
respectively, described in detail in the following.

2.2. Design of DA. In this section, we will introduce the
design of the various operators of the dandelion algorithm
and the mathematical model in detail. In the DA, we assume
that there are only two types of dandelion: core dandelion
(CD) and assistant dandelions (AD), and di	erent types
of dandelions perform di	erent sowing ways. Meanwhile,
another way of sowing, called mutation sowing, is designed
to avoid falling into local optimum. Finally, the selection
strategy is designed to select dandelions to enter the next
generation.

To sum up, the dandelion algorithm consists of normal
sowing, mutation sowing, and selection strategy.

2.2.1. Normal Sowing. In the DA, we stipulate that the
core dandelion can produce more seeds, and the assistant
dandelion produces less seeds, because the land with the
core dandelion is suitable for the seeds to grow. �e number
of seeds produced by the sowing is calculated based on its
relative dandelions 
tness values in the dandelion population.
Assume that the maximum number of seeds is max and the
minimum number of seeds is min; the number of seeds ��
for each dandelion �� is calculated as follows.

�� = {{{{{
max × �max − � (��) + ��max − �min + � �� > min

min �� ≤ min, (2)

where �max = max(�(��)), �min = min(�(��)), and � is the
machine epsilon to avoid the denominator which is equal to
0.

From (2), for the minimization problem, we can see that
the dandelion with small 
tness value will sow more seeds,
and the dandelion with large 
tness value will sow less seeds
but can not be less than the minimum number of seeds.

In DA, dandelions are divided into two types: assistant
dandelions and core dandelion; the core dandelion (CD) is
the dandelion with the best 
tness, and it is calculated by

�CD = min� (��) . (3)

�e calculation of the radius of the assistant dandelions
and the core dandelion is di	erent. �e assistant dandelions’
sowing radius (except for CD) is calculated by

�� (�)
= {{{

UB − LB � = 1
� × �� (� − 1) + (�����CD

����∞ − ����������∞) otherwise,
(4)

where t is the the number of iterations, UB is upper bound of
the function, LB is lower bound of the function, and in
nite
norm is the maximum of all dimensions.

From (4), at the beginning of the algorithm, the sowing
radius for the assistant dandelions is set to the diameter of
the search space. A�er that, it is set to di	erence of distance
between current assistant dandelion and core dandelion; here
we use in
nite norm to measure distance. Moreover, in order
to slow down the convergence rate to improve the global
search performance, on the basis of the above, we added
the sowing radius of assistant dandelion in the previous
generation, and the � is a weight factor, to adjust the impact
of the sowing radius of previous generation on the current
sowing radius dynamically. �e weight factor � is designed
as follows.

� = 1 − Fe

Femax

, (5)

where Fe is the current function evaluations and Femax is the
maximumnumber of function evaluations. It can be seen that
the value of � changed from large to small, it means that
the sowing radius of the previous generation has less and less
impact on the current sowing radius.

But for the CD, it is another way to calculate the sowing
radius, which is adjusted based on the CD in the last
generation; it is designed as follows.

�CD (�) = {{{{{{{{{
UB − LB � = 1
�CD (� − 1) × � � = 1
�CD (� − 1) × � � ̸= 1,

(6)

where �CD(�) is the sowing radius of the CD in generation�. At the beginning of the algorithm, the sowing radius for
the CD is also set to the diameter of the search space. � and �
are the withering factor and growth factor, respectively, and� re�ects the growth trend, which is calculated by

� = �CD (�) + ��CD (� − 1) + � , (7)

where � is the machine epsilon to avoid the denominator
which is equal to 0. When � = 1, it means that the algorithm
does not 
nd a better solution, and the place is not suitable
for sowing; thus, we need to reduce the sowing radius, and
the withering factor � is designed to describe this situation; of
course � can not be too small; the value should be in [0.9, 1).
On the contrary, when � ̸= 1, it means that the algorithm
nds
a better solution than last generation, and the place is suitable
for sowing, and the sowing radius should be enlarged, which
can speed up the convergence rate; based on this, the growth
factor � is proposed; of course � can not be too large; the value
should be in (1, 1.1].

Algorithm 1 describes the process of the normal sowing

in DA. �min
� and �max

� refer to the lower and upper bounds
of the search space in dimension �.
2.2.2. Mutation Sowing for the Core Dandelion. In order to
avoid falling into the local optimal and keep the diversity of
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(1) Calculate the number of seeds ��
(2) Calculate the ADs of sowing radius ��
(3) Calculate the CD of sowing radius �CD

(4) Set � = rand(1, �)
(5) For � = 1 : � do
(6) If � ∈ � then

(7) If ��� is core dandelion then

(8) ��� = Xk
i + rand(0, �CD)

(9) Else

(10) ��� = ��� + rand(0, ��)
(11) End

(12) If ��� out of bounds
(13) ��� = (2 × rand − 1) × (�max

� − �min
�)/2 + (�max

� + �min
�)/2

(14) End if
(15) End if
(16) End for

Algorithm 1: Generating normal seeds.

(1) Find out the core dandelion �CD in current population
(2) Set � = rand(1, �)
(3) For � = 1 : � do
(4) If � ∈ � then
(5) Produce mutation seeds ��CD by Eq. (8)
(6) If ��CD out of bounds

(7) ��CD = (2 × rand − 1) × (�max
� − �min

�)/2 + (�max
� + �min

�)/2
(8) End if
(9) End if
(10) End for

Algorithm 2: Generating mutation sparks.

the population, another way to sow, called mutation sowing,
is proposed for the CD. It is de
ned as

��CD = �CD × (1 + Levy ( )) , (8)

where Levy( ) is a random number generated by the Levy
distribution, and it can be calculated with parameter � = 1.5.

Algorithm 2 is performed for mutation sowing for CD to
generate location of seeds. �is algorithm is performed ��
times (�� is a constant to control the number of mutation
seeds).

2.2.3. Selection Strategy. In theDA, it requires that the current
best location is always kept for the next iteration. In order to
keep the diversity, the remaining locations are selected based
on disruptive selection operator. For location��, the selection
probability �� is calculated as follows.

�� = ��∑��	=1 �	
�� =      �� − �avg

     ,
(9)

where �� is the 
tness value of the objective function, �avg is
themean of all 
tness values of the population in generation �,

and SN is the set of all dandelions (dandelions, normal seeds,
and mutation seeds).

�e selection probabilities determined by this method
can give both good and poor individuals more chances to be
selected for the next iteration, while individuals with mid-
range 
tness values will be eliminated. �is method can not
only keep the diversity of the population but also re�ect the
better global searching ability.

2.3. Summary. Assume that the number of dandelion popu-
lations is �. Algorithm 3 summarizes the framework of the
DA. During each sowing, two types of seeds are generated,
respectively, according to Algorithms 1 and 2. Firstly, the
number of seeds and sowing radius are calculated based
on the quality of the corresponding dandelion. Moreover,
another type is designed with a Levy mutation, which can
help to avoid falling into local optimum. A�er that, �
locations are selected for the next generation. In the DA, we
assume that the total number of normal seeds is �
, and
the number of mutation seeds is ��. So approximate � +�
 + �� function evaluations are done in each generation.
Suppose the optimum of a function can be found in �
generations; then we can deduce that the complexity of the
DA is !(� × (� + �
 + ��)).
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(1) Randomly choosing N dandelions
(2) Assess their 
tness
(3) Repeat
(4) Obtain �� (except for �CD) by Eq. (4)
(5) Obtain �CD by Eq. (5)
(6) Obtain the number of seeds �� by Eq. (2)
(7) Produce normal seeds using Algorithm 1
(8) Produce mutation seeds using Algorithm 2
(9) Assess all seeds’ 
tness
(10) Retain the best seed as a dandelion
(11) Select other � − 1 dandelions randomly by Eq. (9)
(12) Until termination condition is satis
ed
(13) Return the best 
tness and a dandelion location

Algorithm 3: Framework of DA.

Table 1: Parameter settings.

Algorithm Parameters

BA � = 20, " = 1, � = 1, # = $ = 0.9

EFWA � = 50, % = 50, � = 0.8, & = 0.04, "max = 40

PSO � = 20, '1 = 2, '2 = 2, � = 0.7298

DA � = 2, �� = 2, max = 100, min = 10, � = 0.95, � = 1.05

3. Experiments

To assess the performance of DA, it is compared with BA,
EFWA, and PSO.

3.1. Experiment Settings. �e parameters of DA, BA, EFWA,
and PSO are setting as Table 1, and the settings are applied in
all the comparison experiments.

In Table 1, � is population size, " is the loudness, � is the
the rate of pulse emission,% is the total number of sparks, and� and & are 
xed constant parameters that con
ne the range
of the population size. "max is the the maximum explosion
amplitude and �� is the number of mutation dandelions.

In the experiment, the function of each algorithm is
repeated 51 times, and the 
nal results a�er the 300,000
function evaluations are presented. In order to verify the
performance of the algorithm proposed in this paper, we use
the 12 di	erent types of test functions, which are listed in
Table 2 and their expressions are listed in the appendix.

Finally, we use Matlab R2014a so�ware on a PC with
a 3.2GHz CPU (Intel Core i5-3470), and 4GBRAM, and
Windows 7 (64 bit).

3.2. Comparison Experiments among the DA,

the BA, the EFWA, and the PSO

3.2.1. Comparison of Optimization Accuracy. In this section,
we compare the performance of the DA with the BA, the
EFWA, and the PSO in terms of optimization accuracy.

Table 3 shows the optimization accuracy of the four algo-
rithms on twelve benchmark functions, which are averaged
over 51 independent runs. It can be seen that the proposed
DA clearly outperforms among BA, EFWA, and PSO onmost
functions. In the function Six-Hump Camel-Back, the four
algorithms almost achieve the same accuracy.

3.2.2. Comparison of Convergence Speed. Besides optimiza-
tion accuracy, convergence speed is quite essential to an
optimizer. To validate the convergence speed of the DA, we
conducted more thorough experiments. Figure 2 shows the
convergence curves of the DA, the BA, the EFWA, and the
PSO on twelve benchmark functions averaged over 51 runs.
From these results, in the function Six-Hump Camel-Back,
the four algorithms have the same convergence speed, except
for the fact that, in the other functions, we can arrive at a
conclusion that the proposed DA has a much faster speed
than the BA, the EFWA, and the PSO.

3.3. Discussion. As shown in the experiments, we can see that
the proposed algorithm DA is a very promising algorithm.
It is potentially more powerful than bat algorithm, particle
swarm optimization, and enhanced 
reworks algorithm.�e
primary reason lies in the following two aspects.

(1) In the DA, the dandelion population is divided
into two separate populations: core dandelion and
assistant dandelion, and these two types of dandelion
are applied in di	erent ways to sow seeds. �e two
dandelion populations complement each other and
coevolve to fully extend the search range, which
increases the probability of 
nding the optimal loca-
tion.

(2) Two types of seeds are generated to avoid falling into
local optimal and keep the diversity of seeds, and
the selection strategy is a mechanism for keeping
diversity. �erefore, the DA has the capability of
avoiding premature convergence.
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Figure 2: Continued.
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Figure 2: Convergence curves of the DA, the BA, the EFWA, and the PSO on twelve benchmark functions. (a) Sphere function; (b) Schwefel
function; (c) Rosenbrock function; (d) Ackley function; (e) Griewank function; (f) Rastrigin function; (g) Penalized function; (h) Six-
Hump Camel-Back function; (i) Goldstein-Price function; (j) Scha	er function; (k) Axis Parallel Hyper Ellipsoid function; (l) Rotated Hyper
Ellipsoid function.
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Table 2: Twelve benchmark functions utilized in our experiments.

Function Range Optimal value Dimension

Sphere [−100, 100] 0 30

Schwefel [−100, 100] 0 30

Rosenbrock [−30, 30] 0 30

Ackley [−32, 32] 0 30

Griewank [−600, 600] 0 30

Rastrigin [−5.12, 5.12] 0 30

Penalized [−50, 50] 0 30

Six-Hump Camel-Back [−5, 5] −1.032 2

Goldstein-Price [−2, 2] 3 2

Scha	er [−100, 100] 0 2

Axis Parallel Hyper Ellipsoid [−5.12, 5.12] 0 30

Rotated Hyper Ellipsoid [−65.536, 65.536] 0 30

Table 3: Mean value and standard deviation achieved by DA, BA, EFWA, and PSO (accurate to 10−6).

Function
BA

mean (Std)
EFWA

mean (Std)
PSO

mean (Std)
DA

mean (Std)

Sphere
0.001277
(0.000144)

0.079038
(0.010276)

0.09323
(0.053308)

0.000000
(0.000000)

Schwefel
0.00417

(0.000856)
0.310208
(0.082243)

0.551331
(0.382977)

0.000000
(0.000000)

Rosenbrock
26.94766
(1.396553)

97.43135
(86.30464)

117.0419
(100.6725)

15.88892
(0.262501)

Ackley
2.175684
(0.386022)

11.67335
(9.79794)

6.062462
(1.350912)

0.000000
(0.000000)

Griewank
0.000069
(0.000009)

0.139219
(0.027736)

0.020483
(0.019879)

0.000000
(0.000000)

Rastrigin
29.47549
(7.795089)

130.8502
(22.96112)

63.04136
(15.74571)

0.000000
(0.000000)

Penalized
0.673172
(0.804593)

0.002687
(0.001646)

17.48197
(11.78603)

0.001939
(0.00423)

Six-Hump Camel-Back
−1.03163

(0.000000)
−1.03163

(0.000000)
−1.03163

(0.000000)
−1.03163

(0.000000)

Goldstein-Price
13.05883
(18.67556)

3.000000
(0.000000)

6.176471
(15.87918)

3.000000
(0.000000)

Scha	er
0.004731
(0.006673)

0.000000
(0.000000)

0.005302
(0.00666)

0.000000
(0.000000)

Axis Parallel Hyper Ellipsoid
0.023513
(0.004702)

0.00306
(0.000568)

1.743886
(1.521884)

0.000000
(0.000000)

Rotated Hyper Ellipsoid
0.024743
(0.005611)

0.490085
(0.073349)

1.30426
(2.23374)

0.000000
(0.000000)

4. Optimization for Extreme Learning
Machine with DA

4.1. Brief Introduction of Extreme LearningMachine. Extreme
learning machine (ELM) is a neural network algorithm,
which is proposed by Huang [21]. �e biggest feature of ELM

is faster and has better generalization performance than the

traditional neural network learning algorithm (especially the

single hidden layer feed-forward neural network).

For � arbitrary samples (��, ��) and �� = [��1, ��2, . . . ,��	]T ∈ �	, �� = [��1, ��2, . . . , ��	]T ∈ �	. �e output of the



Computational Intelligence and Neuroscience 9

feed-forward neural network with * hidden layer nodes and
the stimulus function -(�) can be expressed as

�∑
�=1

�� ⋅ - (�� ⋅ �� + ��) = !�, B = 1, . . . , �, (10)

where �� is the single hidden layer input weight, !� is the
single hidden layer output weight, and �� is the single hidden
layer bias.

�epurpose of neural network training is tominimize the
error of the output value:

�∑
�=1

�����!� − ������� = 0. (11)

From (11), we can see that there are ��,��, �� that make the
following formula set up.

�∑
�=1

�� ⋅ - (�� ⋅ �� + ��) = ��, B = 1, . . . , �, (12)

expressed by the matrix as

C� = D. (13)

In the extreme learning machine, once the input weight�� and the hidden layer bias �� are randomly determined, the
output matrix C of the hidden layer is uniquely determined.
�en the training single hidden layer neural network is
transformed into solving a linear equation C� = D, and the

output weights can be determined, � = C−1D.
4.2. Optimization for Extreme Learning Machine with DA.
In ELM, the single hidden layer input weights and bias are
randomly generated based on the number of hidden layer
nodes and neurons and then calculate the output weight
matrix. Randomly generated input weights and bias are only
a few of which are superior. And even part of the input weight
and bias is 0, which leads to the result that the hidden layer
node is invalid directly.

In order to solve the above problems of ELM, a new
dandelion algorithm is proposed to optimize the ELM (DA-
ELM). DA is a new evolutionary algorithm with strong
advantages in accuracy and convergence performance. �e
DA chooses the best input weight and bias matrix by the
iteration.�emost suitable input weight and bias form a new
matrix, and then the output weight matrix is calculated.

�e speci
c steps of the DA-ELM algorithm are as
follows.

Step 1. Set the initial parameters of the ELM, including the
number of hidden layer nodes * and the stimulus function-(�).
Step 2. Initialize the parameters of the DA (refer to Table 1).

Step 3. Initialize the dandelion population and randomly
generate the initial solution. �e dimension of each solution
is * × (� + 1) (� is the number of neurons). * × � dimension
represents the input weight, and the remaining * dimension
represents the hidden layer bias.

Step 4. Perform the dandelion algorithm to 
nd the optimal
solution, and the root mean square error (RMSE) calculated
from the training sample is taken as the 
tness function of the
dandelion algorithm.

Step 5. Determine whether the DA has reached the maxi-
mum number of iterations, and if it is satis
ed, go to Step 6;
otherwise return to Step 4 to continue the algorithm.

Step 6. �e optimal input weight and the hidden layer bias
can be obtained by the returned optimal solution.

Step 7. Use the input weight value and the hidden layer bias
to train the ELM.

4.3. Performance Evaluation

4.3.1. Parameter Settings. In order to measure the relative
performance of the DA-ELM, a comparison among the DA-
ELM, ELM, PSO-ELM, BA-ELM, and EFWA-ELM is con-
ducted on the biomedical datasets.�e algorithms compared
here are described as follows.

(1) ELM: basic ELM with randomly generated hidden
nodes and random neurons

(2) PSO-ELM: using PSO to optimize for extreme learn-
ing machine

(3) BA-ELM: using BA to optimize for extreme learning
machine

(4) EFWA-ELM: using EFWA to optimize for extreme
learning machine

In this simulation, the performance of DA-ELM is eval-
uated on 4 real biomedical datasets classi
cation problems
from the UCI database, namely, the EEG Eye State dataset
(EEG), the BloodTransfusion Service Center dataset (Blood),
the Statlog (Heart) dataset (Statlog), and the SPECT Heart
dataset (SPECT). �e following lists a detailed description of
these 4 biomedical datasets.

(1) EEG: the dataset consists of 14 EEG values and a value
indicating the eye state.

(2) Blood: the dataset is taken from the Blood Transfu-
sion Service Center in Hsin-Chu City in Taiwan.

(3) Statlog: this dataset concerns the presence of heart
disease in the patient by using 13 attributes.

(4) SPECT: data on cardiac Single Proton EmissionCom-
puted Tomography (SPECT) images, each patient
classi
ed into two categories: normal and abnormal.

�e speci
cation of these 4 datasets is shown in Table 4.
All the attributes (inputs) have been normalized to the range
of [−1, 1] in our simulations and, for each trial of simulations,
the training set and testing set are randomly generated
from the whole dataset with the partition number shown in
Table 4.

�e parameters of the BA, the EFWA, the PSO, and the
DA are setting as Table 1, and the algorithms all have 1000
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Table 4: Biomedical datasets.

Datasets
Data

Type Attributes Classes
Training Testing

EEG 7490 7490 Classi
cation 14 2

Blood 374 374 Classi
cation 4 2

Statlog 135 135 Classi
cation 13 2

SPECT 133 134 Classi
cation 44 2

Table 5: Results comparisons for biomedical classi
cation.

Datasets Algorithms
Training Testing

Rate (%) Dev Rate (%) Dev

EEG

DA-ELM 69.78 0.0052 70.22 0.0062

ELM 63.51 0.0167 63.74 0.0139

PSO-ELM 69.64 0.0069 70.06 0.0064

BA-ELM 68.19 0.0098 68.79 0.0078

EFWA-ELM 68.76 0.0068 68.82 0.0072

Blood

DA-ELM 79.81 0.0140 81.68 0.0133

ELM 80.64 0.0162 78.64 0.0133

PSO-ELM 80.83 0.0131 80.40 0.0141

BA-ELM 79.97 0.0174 80.16 0.0159

EFWA-ELM 80.70 0.0175 79.39 0.0154

Statlog

DA-ELM 86.22 0.0216 88.15 0.0175

ELM 87.11 0.0286 80.52 0.0268

PSO-ELM 86.74 0.0285 88.07 0.0228

BA-ELM 84.96 0.0257 87.26 0.0167

EFWA-ELM 87.11 0.0264 86.37 0.0177

SPECT

DA-ELM 81.35 0.0255 85.22 0.0243

ELM 80.68 0.0313 80.75 0.0245

PSO-ELM 81.95 0.0271 85.00 0.0370

BA-ELM 80.00 0.0286 84.25 0.0250

EFWA-ELM 80.98 0.0292 84.33 0.0354

function evaluations. In our experiments, we set the the
number of hidden layer nodes * = 20 and set the stimulus
function as “sigmoid,” and the experimental results are the
average of the algorithm running 10 times.

All these simulations are conducted in Matlab R2014a
so�ware on a PC with a 3.2 GHz CPU (Intel Core i5-3470),
and 4GBRAM, and Windows 7 (64 bit).

4.3.2. Optimization of ELM by Dandelion Algorithm for
Biomedical Classi
cation. In this section, we propose a new
method to optimize the extreme learning machine by using
the DA.�e DA is used to optimize the input weight and the
hidden layer bias of ELM. Combining the advantages of DA
and ELM, the algorithm of DA-ELM is proposed.

�e averaging classi
cation results of multiple trials for
all these four datasets are shown in Table 5. �e one with the
best testing rate or the best deviation is shown in boldface.
We can easily 
nd that the DA-ELM has higher classi
cation
accuracy and better stability among 
ve algorithms in the
biomedical classi
cation problems.

4.3.3. Comparison between DA-ELM and Fusion Classi
ers
for Biomedical Classi
cation. In order to further improve
the accuracy and stability of the classi
cation, we combine

ve classi
ers to form a fusion classi
er. �ere are some
fusion methods available, such as majority voting method
[22],maximummethod [22],minimummethod [22],median
method [22], a new method for fusing scores corresponding
to di	erent detectors [23], and fusion of nonindependent
detectors [24]. Here we select some simple and e	ective
fusion methods to form fusion classi
ers. �e classi
ers
compared here are described as follows.

(1) Max-ELM: fusion of DA-ELM, PSO-ELM, ELM,
EFWA-ELM, and BA-ELM to form a fusion classi
er
and the fusion classi
er to make decisions with
maximummethod

(2) Min-ELM: fusion of DA-ELM, PSO-ELM, ELM,
EFWA-ELM, and BA-ELM to form a fusion classi
er
and the fusion classi
er to make decisions with
minimummethod



Computational Intelligence and Neuroscience 11

Table 6: Results comparisons between DA-ELM and fusion classi
er for biomedical classi
cation.

Datasets Algorithms
Training Testing

Rate (%) Dev Rate (%) Dev

EEG

DA-ELM 69.78 0.0052 70.22 0.0062

Max-ELM 70.13 0.005 70.58 0.0053

Min-ELM 68.97 0.0087 69.72 0.0062

Med-ELM 69.93 0.0063 70.42 0.0059

MV-ELM 69.14 0.0091 69.13 0.0056

Blood

DA-ELM 79.81 0.0140 81.68 0.0133

Max-ELM 81.63 0.0138 81.96 0.0125

Min-ELM 80.56 0.0139 81.73 0.0142

Med-ELM 80.79 0.0142 81.81 0.0131

MV-ELM 79.06 0.0168 81.04 0.0125

Statlog

DA-ELM 86.22 0.0216 88.15 0.0175

Max-ELM 87.16 0.0208 89.95 0.0137

Min-ELM 86.56 0.0213 88.62 0.0142

Med-ELM 86.75 0.0218 88.16 0.0151

MV-ELM 88.74 0.0209 87.56 0.0143

SPECT

DA-ELM 81.35 0.0255 85.22 0.0243

Max-ELM 81.56 0.0209 86.83 0.0226

Min-ELM 81.73 0.0226 86.52 0.0235

Med-ELM 81.25 0.0237 85.69 0.0239

MV-ELM 80.68 0.0213 84.48 0.0232

(3) Med-ELM: fusion of DA-ELM, PSO-ELM, ELM,
EFWA-ELM, and BA-ELM to form a fusion classi
er
and the fusion classi
er to make decisions with
median method

(4) MV-ELM: fusion of DA-ELM, PSO-ELM, ELM,
EFWA-ELM, and BA-ELM to form a fusion classi
er
and the fusion classi
er to make decisions with
majority voting method

�e averaging classi
cation results for DA-ELM and the
four fusion classi
ers are shown in Table 6. �e one with the
best testing rate or the best deviation is shown in boldface.We
can
nd that theMax-ELM(fusion classi
er) has achieved the
higher accuracy and the smallest deviation in these datasets,
and the Max-ELM has better stability than other fusion
methods and DA-ELM.

5. Conclusions

�e major contribution of this article is to propose a new
dandelion algorithm (DA) for function optimization and
optimize the extreme learning machine for biomedical clas-
si
cation problems. From the test results, it is found that
the DA can usually 
nd solutions correctly and it clearly
outperforms the BA, the EFWA, and the PSO on twelve
benchmark functions in terms of both optimization accuracy
and convergence speed. Moreover, we use DA to handle the
ELM optimization; the results of the ELM optimization also
showed that the DA has high performance in unknown,

challenging search spaces. At last, we combine 
ve classi
ers
to form di	erent fusion classi
ers with di	erent fusion
methods, and the results show that the fusion classi
er (Max-
ELM) not only has a relatively high accuracy but also has
better stability.

For future work, we will seek a deep theoretical analysis
on theDAand try to apply theDA tomore practical engineer-
ing applications. However, the DA is proposed by this article
might not be thorough, and we hope that more researchers
can participate in the promotion and test sincerely.Moreover,
we will combine other neural networks with DA-ELM to
achieve higher classi
cation accuracy and better stability.

Appendix

�e expression of the Sphere function is

� (�) = 
∑
�=0

��2. (A.1)

�e expression of the Schwefel function is

� (�) = 
∑
�=1

( �∑
�=1

��)
2. (A.2)

�e expression of the Rosenbrock function is

� (�) = 
−1∑
�=1

(100 (��+1 − ��2)2 + (�� − 1)2) . (A.3)
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�e expression of the Ackley function is

� (�) = −20 exp(−0.2√ 1K

∑
�=1

��2)
− exp( 1K


∑
�=1

cos (2N��)) + 20 + �.
(A.4)

�e expression of the Griewank function is

� (�) = 1 + 
∑
�=1

��24000 + 
∏
�=1

cos( ��√S) . (A.5)

�e expression of the Rastrigin function is

� (�) = 
∑
�=1

(��2 − 10 cos (2N��) + 10) . (A.6)

�e expression of the Penalized function is

� (�) = 0.1 (sin2 (3N�1)
+ 
−1∑
�=1

(�� − 1)2 (1 + sin2 (3N��+1))
+ (�
 − 1)2 (1 + sin2 (2N�
)))
+ 
∑
�=1

U (��, 5, 100, 4) .

(A.7)

�e expression of the Six-Hump Camel-Back function is

� (�) = 4�12 − 2.1�14 + �163 + �1�2 − 4�22 + 4�24. (A.8)

�e expression of the Goldstein-Price function is

� (�) = (1 + (�1 + �2 + 1)2 (19 − 14�1 + 3�12
− 14�2 + 6�1�2 + 3�22)) ⋅ (30 + (2�1 − 3�2)2
⋅ (18 − 32�1 + 12�12 + 48�2 − 36�1�2
+ 27�22)) .

(A.9)

�e expression of the Scha	er function is

� (�) = sin2√�12 + �22 − 0.5
[1 + 0.001 (�12 + �22)]2 . (A.10)

�e expression of the Axis Parallel Hyper Ellipsoid
function is

� (�) = 
∑
�=0

S��2. (A.11)

�e expression of the Rotated Hyper Ellipsoid function is

� (�) = 
∑
�=1

( �∑
�=1

��2)
2. (A.12)
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