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ABSTRACT. The objective of the present paper is to investigate the decay of solutions for a laminated
Timoshenko beam with interfacial slip in the whole space R subject to a thermal effect acting only on one
component modelled by either Fourier or Cattaneo law. When the thermal effect is acting via the second
or third component of the laminated Timoshenko beam (rotation angle displacement or dynamic of the
slip), we obtain that both systems, Timoshenko-Fourier and Timoshenko-Cattaneo systems, satisfy the
same polynomial stability estimates in the L2-norm of the solution and its higher order derivatives with
respect of the space variable. The decay rate depends on the regularity of the initial data. In addition,
the presence and absence of the regularity-loss type property are determined by some relations between
the parameters of systems. However, when the thermal effect is acting via the first comoponent of
the system (transversal displacement), a new stability condition is introduced for both Timoshenko-
Fourier and Timoshenko-Cattaneo systems. This stability condition is in the form of threshold between
polynomial stability and convergence to zero. To prove our results, we use the energy method in Fourier
space combined with judicious choices of weight functions to build appropriate Lyapunov functionals.
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1. INTRODUCTION

In this paper, we investigate the decay properties of a thermoelastic laminated Timoshenko beam with
interfacial slip in the whole space R where the thermal effect is modelled by Fourier law or Cattaneo law.
The first system we consider is the coupling of a laminated Timoshenko system with a heat conduction
described by Fourier law and given by

o1 — k1 (pz + ¢ +w)e + 11y = 0,

Vi — ko Vag + k1 (0o + 0 +w) + T2y, =0,
wy — k3 Weo + k1 (o + 0 +w) + 1391, =0,
Nt — kaNee + (TPt + ToPur + T3war) = 0,

(1.1)

and the second system of interest is the coupling between a laminated Timoshenko system with a heat
conduction described by Cattaneo law and given by

ot — k1 (pz + ¥ + W)y + 11N = 0,

¢tt - k2 www + kl (Spw + ’@[] + ’U}) + T2V N2 = 07
(1.2) Wy — k3 Waa + k1 (2 + ¢ +w) + 1370, =0,

N + kaqe + Y(T10at + ToVat + T3Ws) = 0,

qt + ksq + kan, =0,
where ki, ka, ks, ki, ks, 7 > 0, ¢ = (2, 1), § = $(z,£), 7 = n(z,t) and g = q(z,t) denoting the transversal
displacement and the rotation angle of the beam, the temperature and the heat flow, respectively, w =
w(x,t) is proportional to the amount of slip along the interface, so the third equation in (L)) and (2]
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describes the dynamics of the slip, € R and ¢t > 0. The termal effect yn, is acting only on one equation
of the laminated Timoshenko system, so

(13) (T17T27T3) S {(17070)7(07170)7(07071)}
Systems (L) and (L2) are, respectively, subject to the initial conditions

(14) (%%waﬁ)(%o) = (@Oalbo,wo,no)(x),
(e, Yr, we) (@, 0) = (o1, 91, w1)(2)

and

(1.5) {(%Mw,n,q)(a@,O) = (0, %0, wo, M0, q0) (),

(¢, Y, we) (,0) = (1, Y1, w1)(2).

The main purpose of this paper is to investigate the capacity of the dissipation, generated by the heat
conduction 1, via only one equation of the laminated Timoshenko system, to stabilize (ILT]) and (L2),
and to determine its influence on the decay rate of solutions. We will show that the two cases

(Tl, T2, T3) = (1, 0, O) and (Tl, T2, T3) S {(0, 1, 0), (O, 0, 1)}
are completely different in the following sense:
Case (11,72,73) = (1,0,0): systems (ILI)) and (2] are stable if and only if
(1.6) ko # ks,

and when ko # ks, the following polynomial stability result holds true for (ILI) and (L2): for any
N, ¢ eN* with ¢ < N, j€{0,..., N—{} and Uy € H¥(R) N L}(R), there exists ¢y > 0 such that

(L7)  ||O3U] 2wy < co (14 6) 7Y 279/8Ug || Lagy + co (1 + )2 (|02 U0 2y, VE € Ry,

_ o
where ) = 5,

Case (71,72,73) € {(0,1,0),(0,0,1)}: when the three speeds of wave propagations of the laminated
Timoshenko system are equal; that is

(1.8) fey = kg = ks,

and U and Uy are defined in section 2.

systems ([LI) and (2) are stable with the following decay rate: for any N, ¢ € N* with ¢ < N, j €
{0, ..., N =} and Uy € HY(R) N L*(R), there exists cg, ¢ > 0 such that

(1.9) 102U || L2qry < co (1+) Y379/ ||U|| 1wy + coe ™ |02 Up|| p2ry, Yt € Ry
If (L)) is not satisfied, then the following estimate holds true for (LI) and (L2):
(1.10) 109U || p2qry < co (1 +8) Y379/ ||Up]| prmy + co (1 + )~ |03 Up | p2my, Yt € Ry

It is well known in the literature that the behavior of the Fourier transform of U in the low frequency
region determines the rate of decay of U, while its behavior in the high frequency rigion imposes a
regularity restriction on the initial data known as the regularity-loss property; see [6] 14} [15] 24} [26] 27].
It seems that the dissipation generated by the heat conduction is so weak in the high frequency region
that it leads to the regularity-loss property in the estimates (7)) and (II0). On the other hand, the
restriction (6 and the fact that the decay rate in (7)) is smaller than the one in ([C9) and (TI0)
indicate that the effect of the heat conduction is better propagated to the whole system from the second
or third equation of the laminated Timoshenko system than from the first one.

A model describing laminated Timoshenko beams with interfacial slip based on the Timoshenko theory
(see, for example, [12] [13] [I8]) is given by

o — k1 (e +0 +w), =0,
(1.11) Vit — k2 Yua + k1 (02 + ¢ +0) =0,
Wit _kamm+kl(<Pm —|—1/)—|—’UJ) =0
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and can be derived from the following more general model of Bresse-type:

it — k1 (0o + + lw)w - ZkB(w:E - i@) =0,
(1.12) Vit = k2 Yuz + k1 (Yo + 10 +1w) =0,
Wy — kg (Wg — @)z + k1 (pz + ¢ + lw) =0,

where [ and [ are positive constants. The system ([I2) coincides with (TII) when [ = 1 and [ = 0.
When w =1 =1=0, the system ([L.I2) is reduced to the following Timoshenko-type system:

(1.13) {@tt — k1 (pz + ) =0,

Vit — k2 Ype + k1 ((Pm +'¢) =0.

The well-posedness as well as the stability questions for (ILIIl), (II2) and (I.I3]) have been the subject
of various studies in the literature, where different controls (dampings, memories, heat conduction, ...)
and/or boundary conditions (Dirichlet, Neaumann, mixed, ...) have been used to force the solution to
converge to zero when time t goes to infinity, and get information on its speed of convergence.

In case of bounded domains, we refer the reader to, for example, [11 2] 3], [4] [8] [9] 10 [T, 17, 18] 19, 20,
21 22| 29] and the refereces therein.

In case of unbounded domains, the stability of (LI2]) and (I3 has been also treated in the literature
for the last few years. In this direction, we mention the papers [5l [7, 15 16l 23, 25] (see also the
references therein), where some polynomial stability estimates for L?-norm of solutions have been proved
using frictional dampings, heat conduction effects or memory controls. In some particular cases, the
optimality of the decay rate was also proved.

Our results in the present paper give extensions from the bounded to the unbounded domain case. The
proof is based on the energy method combined with the Fourier analysis (by using the transformation in
the Fourier space) and well chosen weight functions.

The paper is organized as follows. In Section 2, we formulate (LI) and (L2)) as first order Cauchy
systems and give some preliminaries. In Sections 3 and 4, we prove our polynomial stability estimates
for (1) and (L2), respectively. We end our paper by some general comments and other related issues
in Section 5.

2. FORMULATION OF THE PROBLEMS

To formulate (1)) and ([2) in abstract first order systems, we introduce the new variables
(21) U = Pt y:wta ezwtv U:¢I+¢+wa Z:Z/Jz and ¢:wm
Then, the systems (L)) and ([C2]) can be rewritten, respectively, in the forms

Vg — Uy —y — 0 =0,
Uy — k1 vy + 1171 =0,

2t — Yp =0,
(2.2) Ye — ko 2 + kv + oy, =0,
¢t - 9:6 = 07

Oy — k3 g + k1 v+ 1371, =0,
M — kafze + Y(T1Uz + Toys + T305) = 0.
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and
v —uy —y—60=0,
up — k1 vy + 11y =0,
2t — Yz =0,
(2.3) yr — k2 2 + k1v + 12y ne = 0,
¢r — 0 =0,
Or — k3 ¢z + k1 v + 137m, = 0,
Nt + kaGe + 7 (T1Uz + T2ye + 1305) = 0,
qt + ksq + kang = 0.

Now, we define the variable U and its initial data Uy by

U — (U, u7 Z7 y7 ¢7 97 n)T for m)’ a,nd UO — (U7 u7 27 y7 ¢7 97 n)T(.7O) for m7
(v, u, 2,9, ¢, 0,m,9)7  for [ZJ) (v, u, 2, ¥, ¢, 0,m,¢)7(-,0) for ).

The systems (2:2) and [23) with the initial conditions ([A]) and ([IH), respectively, are equivalent to

(2.4) Up(x,t) + AsUyy(z, t) + AUy (2, t) + AgU (2, t) = 0,
' U(z,0) = Uo(x),
where, for ([Z.2)),
0 — Uy —y—0
0 _kl Vg + T1Y Nz 0
0 — Yz 0
(2.5) AUy = 0 , AU, = — ko zp + ToVNe and AU = kiv ,
0 — 0, 0
0 — kg (bz + T3V Nz kl v
_k47711 ’7(7—1”1 + T2Yx + 7—39:6) 0
and for (2.3)
— Uy —Yy—- 9
- kl Vg + T1Y Nz 0
- yz O
— k2 2 + T2YN2 kyv
(26) A2 = 0, AlU = and A()U =
—0, 0
— k3 ¢y + T3V k1w
k4¢]m + W(Tlum + T2Yz + 7_39:6) 0
kans ksq

For a function h : R — C, Reh, Imh, h and h denote, respectively, the real part of h, the imaginary
part of h, the conjugate of h and the Fourier transformation of h. Using the Fourier transformation (with
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respect to the space variable x) to transform (Z4]) in the Fourier space, we obtain the following first order
Cauchy system:

@ Ui(€, 1) — 2 AU(E, ) +iEATU(E )+ AU(E, 1) =0, E€R, >0,

U(f? 0) - UO(&)? é. eR.
The solution of (Z7) is given by
(2:8) U(g, 1) = e & AtiedtAnt Gy (),
The energy E associated with @) is defined by

~ 1 =N =N N =N ~ ~ =N
(2.9) (&, t) = 5 [k [0 + [l + ko [27 + [51% + kol 0l + 01 + 7]
in case ([22), and
~ 1 =N =N N =N ~ ~ =N

(2.10) B(E, 1) = 5 [ka [0 + @2 + ko [2° + [51° + k|12 + 1012 + 171 + 1312

in case ([23). System (27 is dissipative, since

d ~ ~
(2.11) 9B, 1) = ki
in case ([22), and
(212) CB(E 1) = ~kslal”

dt
in case (Z3)). Indeed, first, we remember the following two trivial identities which will be frequently used
in this paper: for any two differentiable functions h, d : R — C, we have

(2.13) %Re (hd) = Re (hyd + d;h)
and
(2.14) %Re (ihd) = Re [i(hd — d;h)] .

In case ([2.3), the first equation in (Z7) is equivalent to
b —ifi—5—0=0,
uy — k1 §0 +imy €N = 0,

Et — ng - 0,
(2.15) Ur — ko€ Z + k10 + ity £ = 0,
¢r — €0 =0,

0, — ks £+ k1 D+ ity &7 = 0,
Mt + ka&27 + ivE(T10 + 127 + 730).

Multiplying the equations in @IH) by k10, 4, k22, 7, ksb, O and 7, respectively, adding the obtained
equations, taking the real part of the resulting expression and using ([2I3]), we obtain (ZTIT]). Similarily,
in case ([26), the first equation of (7)) is reduced to

B —ili—-5—0=0,

U — k1§04 imy N =0,

/Z\t - 15@\: 07
(2.16) gzt — i'kgAfé'\—l— k10 + iy € = 0,
¢r — 1860 = 0,

0, — iks €6+ k1 D+ ity €7 = 0,

M+ iky £+ ivE (MU + 2y + 36) =0,
Gt + ksq +iks EN = 0.
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Multiplying the equations in (Z16) by k10, @, k22, 7, kgg/b\, 5, 7 and g, respectively, adding the obtained
equations, taking the real part of the resulting expression and using (2.13)), we get (212).

It is clear that the energy E is equivalent to |U|? defined in case (ZI%) by

U 01> = [0 + [a” + 21 + 91> + o] + 6] + 7],
and in case (ZI6) by
U P =0 + [al® + 21 + [ + o]* + |6]* + |7]* + [a1*.

Since, for ay = %min{kl, ko, ks, 1} and ag = %max{kl, ko, ks, 1}, we have
(2.17) a|U(E )P < B 1) <aalUE D, VEER, VEERy.

We finish this section by proving two lemmas, which will be also frequently used in the proof of our

stability results.

Lemma 2.1. Let o, p and r be real numbers such that o > —1 and p, r > 0. Then there exists Cyp, > 0
such that

1
(2.18) / e dE < Copr (1 +1)" /P ViR,
0
Proof. For 0 <t <1, (ZI]) is evident, for any C,, , > 2(::;/?. For t > 1, we have

1 1 1
/ ¢ e TtE” d¢ = / §U+1*p e Tt 510*1 d¢ = / (gp)(oﬂfp)/p e Tt gpfl de.
0 0 0
Taking 7 = rt&P. Then

- and @ lde = ar
rt prt

Substituting in the above integral, we find
1 rt o+1—
/ (gn)lrrimmiremrt et grldg = / ) e e
0 0 rt prt
9(c+1)/p
pr(0+1)/17

1

—+o0
(o+1=p)/p ,— T
= p(rt)(U-i'l)/P/O T € dr <

Cop (t + 1)7(U+1)/p7

where
—+oo
Cop = / rlotl=p)/p =7 dr,
0

which is a convergent integral, for any ¢ > —1 and p > 0. This completes the proof of (ZI8) with

o(c+1)/p  9(e+1)/p
Cg’p’r - max{ o—+1 7p’r(a’Jrl)/P Cg’p}
O
Lemma 2.2. For any positive real numbers o1, oo and o3, we have
(2.19) sup [€]77 e 2 HETT < (14 0y /(0005))7 7 (1 4+4) 77 Wt e R,
l€1>1

Proof. Tt is clear that (ZI9) is satisfied for t = 0. Let t > 0 and h(z) = x~ 7 e~ 72t 7 for x > 1.
Direct and simple computations show that

W(z) = (0903t~ —gy)a~ 71 Lemo2te ™,
If t > 01/(0203), then
hz) < h(((0203t) /1)) = ((0203) /oy) /736~ 71/75 (1 4 1/£)71/73 (1 4 ¢)~ 71/
< (o203 /o) 717 (1+ (o200) 1)/ (140)7 7% = (14 0 (o200)) ™% (1 1)1/
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which gives [2I9) by taking z = [¢]. If 0 < ¢ < 01/(0203), then
h(x) < h(1) = e (L4 )77 (14 6)7 /7 < (14 01/(0203))7 /7 (14+8)” /7,
which implies (219), for « = [¢]. O

3. STABILITY: FOURIER Law (L))

This section is dedicated to the investigation of the asymptotic behavior, when time ¢ goes to infinity,
of the solution U of (24) in case of Fourier law (II)). We will prove (7)), (LI) and (CI0) by showing,
first, that |U|? converges exponentially to zero with respect to time ¢. Then, we prove that the solution
23) of 1) does not converge to zero when ¢ goes to infinity if (71,72, 73) = (1,0,0) and ko = k3.

In this section and in the next one, C' denotes a generic positive constant, and C. denotes a generic
positive constant depending on some positive constant €. These generic constants can be different from
line to line. Before distinguishing between the three cases ([L3]), we prove several identities, which will
play a crucial role in the proofs.

Multiplying I8, and @I5)3 by i £ Z and —i £ 7, respectively, adding the resulting equations, taking
the real part and using ([2I4]), we obtain

d A= ~ ~ . A= A=
(3.1) ERe (zfyz) =¢2 (|y|2 - k2|z|2) — k1 Re (zfvz) + 797€% Re (77 z) .
Multiplying (ZI5), and @IH); by i£0 and —i &4, respectively, adding the resulting equations, taking
the real part and using (Z14)), we find

d ~N= ~ —~ RN L= ~=

(3.2) ERG (iﬁuv) =¢2 (|u|2 - k1|v|2) — Re (zfyu) — Re (l{ﬁu) + 117€% Re (nv) .
Multiplying ([2T8)s and @I5)5 by ¢ 6 and —i €0, respectively, adding the resulting equations, taking
the real part and using [2I4), we get

d e 2 (1912 2 - 2 =
(3.3) —Re (i€06) = & (1012 = kalol? ) — ki Re (1€5) + 7a7€” Re (719) -
Multiplying @IH)¢ and @IH); by —£27 and —¢&2 0, respectively, adding the resulting equations, taking
the real part and using ([213]), we have

%Re(—§2§5) - ¢ (k1|a|2—|§|2)—§236(i5a5)—kgnge(ig(%)

(3.4) —£? Re (ﬂg) +137€% Re (z{ﬁ?) )

Multiplying @I8)4 and @IH); by —£27 and —£2 7, respectively, adding the resulting equations, taking
the real part and using (2ZI3]), we infer that

%Re (—52 gﬁ) = & (k[0 - [7) — € Re (zgaﬁ) — ks €2 Re (2'525)
(3.5) —€%Re (55) + 1y €2 Re (igﬁﬁ) .

Multiplying (2.I5)5 and ZIH)e by z{g\ and —i £ 2, respectively, adding the resulting equations, taking
the real part and using [2.I4]), we entail

(3.6) %Re (igﬁ) — € Re (ﬁ) + ks €2 Re (%5) + ki Re (i@?) — 74762 Re (ﬁ?) .

Miltiplying I5)5 and @IH)4 by i £ and —i & o, respectively, adding the resulting equations, taking the
real part and using (214, we arrive at

(3.7) %Re (ig&@) — ¢ Re (5 ﬂ) 4k €2 Re (23) + k1 Re (igaZ) — 77€2 Re (ﬁg)
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Multiplying ZIH), and @ZIH)s by — z and — @, respectively, adding the resulting equations, taking the
real part and using [2I3), it follows that

d ~ — _
(3.8) ~Re ( ) — —k\ Re (igaz) ~ Re (zgga) + iy Re (zfﬁ?) .
Finally, multiplying 2I5), and (2I5)5 by —E and — 1, respectively, adding the resulting equations,
taking the real part and using (2.13), it appears that

d = o= - =™
(3.9) aRe ( ugb) = —k1 Re (z{v gb) — Re (z{@u) + 7177 Re (z{n gb) .

1. Case 1: (71,72,73) = (1,0,0). We start by presenting the exponential stability result for (2.1) in
the next lemma.

Lemma 3.1. Assume that ks # ks. Let U be the solution ) of @X). Then there exist ¢, ¢ > 0 such
that

(3.10) U, ) <ce FONT(E))?, VEER, VteRy,
where

56
(3.11) f(&) =

L4+E2+ 84465+ 68

Proof. Multiplying ZI5)2 and ZI5)7 by i €7 and —i €@, respectively, adding the resulting equations,
taking the real part and using [2I4), we get

(3.12) %Re (z§un) —7&% (1% = @) + ka€2 Re (zgﬁﬁ) — k12 Re (aﬁ) :

Similarily, multiplying (ZI5)s and (ZI5)7 by 7 and 5, respectively, adding the resulting equations, taking
the real part and using [213)), we find

(3.13) %Re (ﬁ?) — ~Re (i ( ﬁ) — ka2 Re (ﬁ?) + k3 Re (igaﬁ) — kiRe (ﬁ) .

Also, multiplying (ZI5)4 and @IH); by 7 and 7, respectively, adding the resulting equations, taking the
real part and using ([2I3), we obtain

(3.14) %Re (ﬁﬁ) — —~Re (zgaﬁ) ~ k€2 Re (ﬁ?) + ko Re (igzﬁ) ~ kiRe (ﬁﬁ) .
We define the functional Fj as follows:

Fo(&,t) = Re [ig (A1§§+A3§$+M4§§5—

)

M+ Dk = (A +1)ks ~=

Ao+ Dka o5 (A + Dks 37
ko — k3 ko — k3

(3.15) +Re (—52 T+ X ga%) :

where A1, A2, A3 and A4 are positive constants to be defined later (Fy is well defined since ko # k3). By

multiplying - , an V A1, A2, A3, A4, an , respectively, adding
Itiplyi d by A1, Az, Ag, Ay, —GrER apg Gatlh ively, addi
the obtained equations and adding (1)), we deduce that

d N ~ N ~ I
EFO(& ) = =¢& (k2)\1 212+ ksds [B]* + (1= A1) 717 4+ (Aa — A3) 6] + (kide — kida — ky) |U|2>
1) Re(i€03) + Iy Re(i€0 §) + €2 [A2|u|2 Re (ig (A4a5+ a;))}
(3.16) “XoRe [ ( T+0u+ mgﬁﬁ)} ,
where
9 (Mg + 1)k1ko 9 Ay + 1)k1ks
I = k& —kiA — ———————= and Iy = ks & — kids + ————.
kg — k3 k? - kS
We put

(3.17) Fi(e, t) =€ [Fo(g, £) — kilRe (11 W+ I ag)] .
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Multiplying B8] and (39]) by ,ﬁ—ll and é—i, respectively, adding the obtained equations, adding ([B.I6]) and
multiplying the resulting formula by &4, we arrive at

d ~ ~ - ~ Iy
ZF(E D) = =€ (koA B 4 kada 0 + (1= M) 1§12 4+ Oa = a) 10 + (ki de — ki ha — ko) [92)
I = =
(3.18) + 02882 + 7€' Re {15 < Lh74 T n¢> + A€27) } + &' Re (213§u9 —I—ZI4§uy)
where

1 1
I3 =Moo+ —1y — )\452 and Iy =X+ —11 — 52.
kl kl

Let A5 > 0 and
_ 1 = 1 _
— 4 SN - 4 -~ - 4 PN
(3.19) F(E, 1) = FL(£, 1) + \s€'Re (zfun) + I Re (n 9) + L' Re (ny) .

Multiplying 312), 13) and @I4) by As5&4, %1354 and %1454, respectively, adding the obtained equa-
tions and adding (BI])), we see that

d ~ ~ ~ - ~
ZFE 1) = =€ (koA B2 + kada |87 + (1= M) [712 + O = Aa) [0 + (kde — kida — ko) [017)
—(7As = A2)E°al* + yAsE°(]? + AsE° Re (ik4§ﬁ5 - kﬁﬁ)
1 4 . T= 2~ ~= 1 4 . ~A= 2A~A= A=
215 Re (iko€ 07— ka0 — ky07) + " Re (ko 27— ka7 — 1a77)
(3.20) +~&*Re [z{ ( L5% k 77(;5> il v} .

Applying Young’s inequality for the terms depending on 7 in ([320), it follows that, for any g9 > 0,

%F(fa ) < —(kahy —0)E 2% — (kshs — £0)€8 9] — (1 — Ay — 0) €% |72

— (= = 20) €107 — (kada — Fada — by — 0)€° [0 — (745 — A2 — €0) €° [af?
(3.21) FCog a0 (1 + 2+ 68+ 60 4 )20
We choose 0 < Ay <1, Ao > 1, )\5>%)\2,0<)\3<)\4<)\2—1and

0 < ep < min {kz)\l,k3)\3, 1= A, — A3, k10 — ki g — kl,’}/)\5 — )\2}

Hence, using the definition (Z9) of E, (321 leads to, for some positive constant c;,

d ~
(3.22) TFE D < —afBE ) +C (1+€ +6+8+¢) EmP.
Now, we introduce the Perturbed Energy L as follows:

~ 1

3.23 L& t)=AE(E t)+ F(g,t),
(323) (€)= AB(E )+ rararrae 60

where A is a positive constant to be fixed later. Then from [ZTI1)), 3222) and B2Z3) we have
d = ,\
(3.24) L&) < —af(OEE 1) = (ka A = O) €[,

where f is defined in II). Moreover, using the definitions Z3), BIJ) and B2Z3) of E, F and L,
respectively, we get, for some c2 > 0 (not depending on \),

- c2 (&' + 1€° +€°%)

Therefore, for A large enough so that A > max{%, 302}, we deduce from ([B.24) and (3.25)) that

E(§7 t) S 302 E(§7 t)

(3.26) DL 1)+ e 7€) Ble, <0
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and
(3.27) cs E(¢, 1) S L(E 1) < et E(§, 1),

where ¢g = A — 3¢a > 0 and ¢4 = A + 3¢ > 0. Consequently, a combination of (26 and the second
inequality in ([B:27)) leads to, for ¢ = &

ca’

d
(3.25) 9 Len+ef©LE n<o
Finally, by integration (28] with respect to time ¢ and using 2I7) and E27), GI0) follows with
c= 4 O

cgan”

Theorem 3.2. Assume that ko # ks. Let N, £ € N* such that £ < N,

Up € HY(R) N L (R)
and U be the solution of ZA4). Then, for any j € {0, ..., N — £}, there exists co > 0 such that
(3.29) 103U || 2@y < co (14 8) 127378 Ul r gy + co (1 + )72 (|07 Vol 2y, VE € Ry

Proof. From (BI1]) we have (low and high frequences)

$€0 it g <L,
(3.30) (&) =
16720 ¢ > 1.

Applying Plancherel’s theorem and (BI0), we entail

_ 2 L~
331) 020 = [0 0| = [e10te o
L2(R) R
<z / €20 =IO Ty (6) [2dg
R
< z/ €27 eSO |ﬁo<s>|2ds+’5/ €23 1O Ty de = Ty + Ja.
[¢1<1

1€]>1

Using 2I8) (with o = 2j, 7 = £ and p = 6) and (.30, it follows, for the low frequency region,

(3.32) J1 < C|Tol13 =z / £29em 80 de <O (1+) 302D || Ug |24 ).
[€1<1

For the high frequency region, using ([330), we observe that
O/ €27 e 81 T (€, 0)[ de
|€1>1

¢ sup {Jel2 811} [ 100 Ge, o) e,

1€1>1

Jo

IN

IN

then, using I9) (with oy = 2[, 02 = £ and 03 = 2),
(3.33) S < C (41" [0 Vo |72y,
and so, by combining (31)-B33)), we get (329)). O

We finish this subsection by proving that the condition ks # ks is necessary for the stability of (271
in case (28] with (71,72, 73) = (1,0,0).

Theorem 3.3. Assume that ko = k3. Then |[7(§, t)| doesn’t converge to zero when time t goes to infinity.
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Proof. We show that, for any ¢ € R, the matrix
(3.34) A= —(—€2Ay + €A + Ap)
has at least a pure imaginary eigenvalue; that is
VEeR, INeC: Re(\) =0, Im(\)#£0 and det(A\]—A)=0,
where I denotes the identity matrix. From (Z38]) with (71,72, 73) = (1,0,0) and kg = k3, we have

A —iE 0 —1 0 —1 0
—iki& A 0 0 0 0 i€
0 0 A —iE 0 0 0
(3.35) M-A=| Kk 0 —iko& A 0 0 0
0 0 0 0 A —ig 0
ki 0 0 0 —iko& A 0
0 i€ 0 0 0 0 ki&2+ A
A direct computaion shows that
det\L — A) = 2k A% + Ek2€2) [N + ka?) +72€7]
(3.36) +(A% + k28%)? [N (AN + £a€) +97E%) + k(A + ki)

It is clear that, if £ £ 0, then A = i\/ko& is a pure imaginary eigenvalue of A. If £ = 0, then \ = i/2k;
is a pure imaginary eigenvalue of A. Consequently, according to (Z8]) (see [28]), the solution of (Z1)
doesn’t converge to zero when time ¢ goes to infinity. 0

3.2. Case 2: (11,72,73) = (0,1,0). We present, first, our exponential stability result for ([27]).
Lemma 3.4. Let U be the solution &8) of @X). Then there exist ¢, ¢ > 0 such that 1) is satisfied
with

54
(3.37) 1) = {1%2{1

if k1 = ko = ks,
if not.

Proof. Multiplying ZI5)4 and ZI5)7 by i &7 and —i €7, respectively, adding the resulting equations,
taking the real part and using (2I4), we get

d . A= A~ A~ . A= A= P NN
(3.38) e (léyn) =& (171> = [91?) + ka&® Re (Zﬁny) — ko&® Re (z 77) — k1Re (Z&v 77) :
Similarily, multiplying ZI5)2 and (ZI5)7 by 7 and @, respectively, adding the resulting equations, taking
the real part and using ([21I3)), we find

d = . A= A= PN

(3.39) ERE (ﬂn) = —~Re (z{yu) — k4€? Re (un) + k1 Re (z{v 77) .
Also, multiplying (ZI8)7 and (I8¢ by ifg\ and —i&7, respectively, adding the resulting equations, taking
the real part and using ([2I4]), we obtain

d A P P TR L
(3.40) ERG (z{n 9) =v¢&?Re (y 9) — k4€? Re (z{n 9) + k3£? Re ((;5 77) + k1 Re (z{v 77) .
Let us define the functionals
(3.41) Fo(€, 1) = Re [ig (A@?— P TRIpW 55) M€ 0T e gﬁ} ,
k _
(3.42) Fi(&, 1) = (kﬁg? + /\1> Re (az) :
1

ko 2 o o= ks =
(3.43) Fy(¢, t):%(kg)%{ — k1)3) Re zﬁzﬁ—uz—zk—2§¢y
and

(3.44) Fy(6, 1) = =32 (A& + Xo) Re (2'525— aF-iBegpe b a?) :
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where A1, A\a, A3 and A4 are positive constants to be fixed later. Multiplying BI)-B3) by A1, —A2, A3,
A4 and —1, respectively, and adding the obtained equations, it follows that

d —~ ~= e~ . = =
(3.45) P& 1) =00+ DEGI® + Re ((1 —M)EOT + (€2 — No)iluy — & + v\ 02

N————

_¢? ((k1 ~ ke — kA1 + kA E? + O — Aa) |12 + Aofdl? + k3A3|$|2)
+ (ka2 + kA ) Re (igzﬁ) + (ksM€2 — kiAs) Re (ig@?) + (ME2+ Ay) Re (ig@ﬁ) .

Multiplying (38) by — (%52 + )\1), we entail

d = k =
(3.46) SR t) = — (ko€ + k1)) Re (igzv) (2240 ) Re (Z{yu) .
dt k1
Multiplying (8.7) by —#2, adding (3.6) and (3.8), and multiplying the obtained equation by
k
Py GROSCROR
we arrive at
d ko kg = ’Yks P
an(@ t) = T (k3sAa&® — k1As) R [<k_2 - 1> 50 —ifyu + k—2§277 ¢]
(3.47) — (ks\a€® = ki )s) Re ( 30 ¢)

Similarily, adding (B:'_ﬂ) and (B39), multiplying by —k—3 adding (30) and (BJ), and multiplying the
obtained formula by —22 ()\452 + )\2) we deduce that

d k ~
GBE D = (M€ + ) Re K ) £90-+ig77 - 220 ¢]
(3.48) — (M€ + Xy) Re (igea).
Now, let us introduce the functional F}
(349) F4(§7 t) = FO(&? t) + Fl(§7 t) + F2(§7 t) + F3(§7 t)
By combining (B.45)-([B4]), we deduce that
d N =N —~ =N —~
EFA&’ t)y = =& ((kl — k1da — k1 Aa) [0 + k2 A1 |27 + (A — A)[0]* + Az [ul® + ks/\3|¢|2)
(3.50) +F5(8, 1),
where
(3.51) Fy(¢, t) = Re (€250 + B¢y T — 15276 — €70 + g7 %) + (\ + DEGP,
k2 kS 2 k2 2 k2
L =1- — —1)(k —k — -1 — -1
1 g+ Trks </€2 > ( 3/\45 1)\3) + (kg ) /\45 + Jos Ao,
ko ko ko 2 ko ko
L=|——--—= — -1 — +1 —=
2 [(ks k1>/\4 " ]5 +)\1+<k3+ >)\2+k3)\3
and

k
Ig =7 (1 — k—j> A4€2 +"Y()\2 + Ag)

Let XA and A5 be positive constants, and F' and L be the functionals

_ 1 =) 1 _
3.52 F(E, 1) = Fy(€, t) + A\sRe (i€5n) — —I Re (i€70) + ~LRe (un
(3.52) (€, t) = Fu(§, t) + As (§yn) h (577>+72 (n)
and
~ 52
(3.53) L t)=AE( t) + F(& 1),

iG]
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where
S 1+§2+§4 it by = ko = ks,
(3.54) f&) = {1 F 240168 if not.

Multiplying (33]), (339) and B40) by s, %Ig and —%Il, respectively, adding the obtained equations
and adding ([B.50)), it appears that

Lren = - (O = Fude = BB + BoAa 22 + (\a = As) B + el + ks sl )
(3.55) =€ (s = (M + 1) [7 + Fo(&, 1),
where
F(& 1) = o€l + €2 Re (YA E — v — Bijo + ko€ G — kaAsii2) — kasRe (i€07)
(3.56) —%IlRe (k3§2$ﬁ+ ik 0T — ik4§3ﬁ5) + %IgRe (iklgaﬁ— mg%ﬁ) .

Noticing that, if k; = ko = k3, then I, I> and I3 are constants. Otherwise, I, I3 and I3 are of the form
const €2 + const. Then, by applying Young’s inequality, we see that, for any €9 > 0, we have

(3.57) Fy(6, ) < eo? (|92 + 01 + [0l + |82 + [0 + 22) + Cep a2 FE
Therefore, we conclude from ([B.53) and (B31) that

d S~ b
(358) EF(gu t) < CEO,>\17"' ,ksf(§)|n|2 - 52 (7)‘5 - )\1 —1- 80) |y|2

—¢? ((k1 — kada — ks — 20) |01 + (koA — 0)|12 + (M — As — £0)[8]2 + (A2 — e0) | + (ksAs — go)|$|2) .
We choose 0 < A\, 0 <X <1,0< A3 < Mg <1—NXo, Ay > = ()\1—|—1) and

0 <eg <min{ky —kiAa — k1 Ay, ka1, Aa — A3, Ao, kg A3, vAs — Ay — 1}
Thus, using the definition ([Z9) of E, B58)) leads to, for some positive constant ¢y,

(3.59) D 1) < —erB(E, 1)+ OO
Then, from (ZI1)), B53) and B53), we infer that
(3.60) LLE 1) < e fQB(E 1)~ (ka A — ) 1P,

where f is defined in [B37). On the other hand, the definitions ZJ), B5J) and @53) of E, F and L,
respectively, imply that there exists co > 0 (not depending on A) such that

52 P +E+IEP 5
1G)

So, we choose A > max{k—i,élcz}, we get [3.26) and B21) with c3 = X — 4z > 0 and ¢4 = A + 4cg > 0.
The proof can be ended as for Lemma 311 O

GHEPGHIES: B(&, 1) < 4e2B(&, 1)

Theorem 3.5. Let N, £ € N* such that { < N,
Up € HY(R) N LY(R)

and U be the solution of [Z4). Then, for any j € {0, ..., N — {}, there exist ¢, ¢9 > 0 such that, for
anyt € Ry,

(3.61) 109U || p2(ry < co (14 8) Y379/ ||Up|| 1wy + coe ™ |02 Uo | p2my  if b = k2 = ks,
and

(3.62) 03U | p2my < co (14 ¢) Y39/ Up| | prmy + co (1 + )~/ * |03 Vs | 2y if not.
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Proof. From ([B31) we have (low and high frequences)

¢ g <,
(3.63) f(&) = if by = ko = ks,
o if ¢ >1
and
s¢ g <1,
(3.64) f(& > if not.
s i ¢ >1
The proof of (B62) is identical to the one of Theorem by using [B64) and applying (ZI8) (with
o=2j,r= ¢ and p=4) and I9) (with o1 = 2[, 02 = £ and 03 = 4). To get ([B.6I), noticing that the
low frequencies can be treated as for (3.62). For the high frequencies, we have just to remark that [B.63))
implies that

/ €29 et O T (€, 0)? de < / €27 e~ 54U (¢, 0)]? de
[€1>1 [€]>1

A

< sup {Je 25 [P0 T (E o) dg
|€[>1 R
< e U 172wy
so ([B.61) holds true with ¢ = §. O

3.3. Case 3: (11,72,73) = (0,0,1). In this case, we prove the same stability results for (Z71) and (Z4)
that given in Subsection 3.2, and moreover, the proofs are very similar.

Lemma 3.6. The result of Lemma[3) holds true also when (11,72,73) = (0,0,1).

Proof. Multiplying I8¢ and &I5); by &7 and —i & 0, respectively, adding the resulting equations,
taking the real part and using (2I4), we get

d o~ ~ =) ~— —
(3.65) - Re (igeﬁ) — 2 (|77|2 - |9|2) 1 ki€ Re (ifﬁ@) ~ k3€2 Re (¢ﬁ) — k1 Re (ig@ﬁ) .
Similarily, multiplying (ZI5)2 and (ZI5)7 by 7 and 4, respectively, adding the resulting equations, taking
the real part and using (ZI3)), we find

(3.66) %Re (aﬁ) — —yRe (i§§ ﬁ) ~ ku€? Re (aﬁ) + ki Re (i@ﬁ) .

Also, multiplying Z15)7 and @I8)4 by i€y and —ién, respectively, adding the resulting equations, taking
the real part and using ([ZI4]), we obtain

d LN T= LR A= LR
(3.67) ERe (2577 y) =~v¢?Re (9 y) — k4€? Re (1577 y) + kot? Re (z 77) + k1Re (z{v 77) .
After, we define the functionals
(3.68) Fo(€, t) = Re [ig (Algﬁ— Ao T + A3 52) FAE2 0D e g/]ﬂ ,
k =
(3.69) R, 1) = (k—3)\4§2 n )\3> Re (u ¢) ,
1

1 2 oo k3 = k3 =
(3.70) Fy(&, t) = —— (k2 — k1 \1) Re (i 20 —i—Eoy+ U ¢

kl k2 k?
and

(3.71) Fy(€, t) = (€2 + \g) Re (ig%?— i%g«?@r %ag— a?) :
2 2
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where A1, A\a, A3 and A4 are positive constants to be fixed later. Multiplying BI)-@4) by A1, —A2, A3
and —\4, respectively, adding the obtained equations and adding (1)), we infer that

d . = . P T= . ~=
(372 ZF(E 1) = Re [ig (A = M%) 0T — 69297 6) + (\a = 1€20F — inha 0|
+(Xs + A)E2B2 — €2 ((kl)\4 — k1dy = kD)[B]? + k2 212 + (1= A)[F? + Xofaf® + k3A3|$|2)
(k€2 — k1 \1) Re (igﬁ) + (ksha€2 + ki) Re (igg%) (€2 4 \o) Re (zgﬁ) .
Multiplying 39) by — (ﬁ—f)\4§2 + )\3), we arrive at
d 2 __ .
(3.73) LR t) = (20,624 03 ) Re (igou) — (ksM&% + Ky \s) Re (z§¢v) .
dt ko
Adding (37 and (B3), multiplying the obtained equation by —Z—z, adding (B:6) and multiplying the
reuslting equation by — (2—352 - )\1), it follows that
d _ k2 2 . k3 T = . A= kS 2=
thQ(f, t) = (klf )\1) Re [zf ( k26‘u wfnz) + (1 k2>§ Hy}
(3.74) ~ (k€ = ki\1) Re (i€7%).

Similarily, adding 1) and (329), multiplying the obtained equation by —Z—z, adding (3:6) and B8], and
multiplying the reuslting equation by €2 + Ao, we entail

d k = LA k T=
SR 1) = (€4 X)Re i€ [ 20T+ ivenZ ) + (2 —1)¢%07
dt ko ks
(3.75) — (€2 + A9) Re (zgﬁ) .
Let Fy the functional defined by (349). A combination of [B.72)-(B7H) implies that
d ~ N R R ~
Gl ) = -&° ((k1>\4 — k1o — k) [0 + koM Z12 + (1= 2[5l + Aeful® + k3/\3|¢|2)
(3.76) +E5(E 1),
where
(B.77)  F5(€ 1) = Re (ih€0T — %%+ BE0T — ivA€ i + 1Aa€%0) + (s + M0,
k3 ks k3| .o ks k3
L=(2_1 o m L
1 [</€2 >/\4+/€2 k1]§ —|—k2/\1+ k2+ Ao + s,
k
IQ =7 |:<1——2) §2+A1+>\2:|
Ky
and

I3 = (Z—z—l> (524—)\2)4—(1—];—2) (%52—)\1>+)\4—1-

Let A and )5 be positive constants and L be the functional defined by [3353), where f is defined by (B54)
and F' is given by

(3.78) F(&, t) = Fu(€, t) + A\sRe (ig@ﬁ) n %IlRe (aﬁ) - %Ig,Re (zgﬁﬁ) .

Multiplying [B.63)-B.67) by As, %Il and —%Ig, respectively, adding the obtained equations and adding
B1G), we find

d N N R R -~
ZFE ) = ¢ ((km — k1dz — k)02 + koM 212 4 (1= M) (G2 + Xefal? + k3A3|¢|2)
(3.79) — (A5 = Aa — M) E210)2 + Fi(€, t),
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where
Fy(6,t) = A€l — €2Re (L% + iyt — 1\ail 6 — ihaAs&i0 + ksdsd7) — ki ds Re (i€07)
(3.80) —;IlRe (k4§277u —ik1&v 17) + ;IgRe (zk4§377y — ko£207 — zkﬁvn) .

We remark that, if k1 = ko = k3, then Iy, Is and I3 are constants. Otherwise, I, I and I3 are of the
form const £2 + const. Then, by applying Young’s inequality, we see that, for any £y > 0, we have

(3.81) Fo(6, £) < o€ (1912 + 1012 + a2 + 182 + [0 + 22) + Ceg s, 2 FOII,
where f is defined in (Z54). Therefore, we conclude from [B79) and B8] that

d . .
(3.82) PRl (SRR Ceonr M SOOI = (PAs — A3 — Ay — 20) €0

€2 ((kaha = kido = by = 2092 + (kzhu = 20)| 312 + (1= Ay = )l + (A2 = 20) l? + (kaa — 20)[9I?)
We choose 0 < A3, 0 < A1 <1, My >1,0< o< Ny —1, A5 > %()\34—/\4) and
0<eg< min{kg/\g,AQ, 1— /\1,]€2>\1, ki — k1o — kl,"y>\5 — )\3 — /\4}

Then, using the definition (Z3) of £, (82 imlies (353), and then (F60) holds true. Consequentely, the
proof can be ended as for Lemma [3.4] O

Theorem 3.7. The stability result given in Theorem [T is satisfied when (11,72, 73) = (0,0,1).

Proof. The proof is identical to the one of Theorem O

4. STABILITY: CATTANEO LAW (L2)

This section concerns the stability of ([24]) in case of Cattaneo law ([[L2). We will prove (7)), (T3]
and (LI0). Moreover, we prove that (27) is not stable when (71,72, 73) = (1,0,0) and ko = ks.

First, observe that (ZIH);-(@I5)s are identical to (ZI6);-(2I0)s, and ZIH)7 with ks&27 replaced
by ik4€q is equal to (ZI0)7. So BI)-(B9) are still valide. Moreover, (312)-B14), B38)-(B40) and

([3.65)- (B.67) are satisfied with ik,£q instead of k4£27). On the other hand, we prove the next expressions,
which take in consideration the last equation in (Z.14]).

Multiplying (ZI6); and (ZI6)s by i€q and —ifn, respectively, adding the resulting equations, taking
the real part and using 214, we find

d PN ~ NN ~ ~ N =
(4.1) ER‘? (2577 Q) = ks (|q° — |71?) + ks Re (z{“q 77) + 7€ Re ((Tlu + 1oy + 130) Q> :
Multiplying I8); and I8)s by i&q and —i £, respectively, adding the resulting equations, taking
the real part and using (ZI4]), we get

d A= A~ LN A= . A= ~=
(4.2) ERe (ifv q) = —¢%Re (u q) + Re (zqu + 160G+ iks&q v) — k4% Re (v 77) .
Similarily, using the multipliers ¢ and v instead of i £ ¢ and —i £, respectively, we obtain
d _ _ _ _ _
(4.3) - Re (@a) — Re (igaa) + Re (ga+ 07+ m@) 4 k4 Re (ifﬁﬁ) .

Multiplying (ZI6)5 and ZI6)s by i£q and —i & (;AS, respectively, adding the resulting equations, taking
the real part and using (ZI4]), we arrive at

(4.4) %Re (1'5255) — _¢2Re (5 E) + ksRe (i&’jg) — ka€? Re ((Eﬁ) .

Similarily, using the multipliers ¢ and (E instead of i £§ and —i & g/b\, respectively, we entail

(4.5) %Re (Zs 5) — Re (ig%) + ksRe (a@) 4 k4 Re (igaﬁ) .
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Also, multiplying (ZI6); and @I0)s by i£q and —i& 2, respectively, adding the resulting equations,
taking the real part and using (2I4), we infer that

d A= A= NN AN
(4.6) ERe (z{zq) = —¢%Re (y q) + ks Re (zfq z) — k4&% Re (z 77) .
Similarily, using the multipliers g and Z instead of i £ ¢ and —i £ 2, respectively, it appears that
d A= PN AR C NN
(4.7) ERe (z q) = Re (z{y q) + ks Re (q z) + k4 Re (z{z 77) .

4.1. Case 1: (11,72,73) = (1,0,0). Asin Subsection 3.1, we start by presenting the exponential stability
result of (7)) in the next lemma.

Lemma 4.1. The result of Lemmal3dl is satisfied in case (ZI0) when ko # ks and (11, 72,73) = (1,0,0).

Proof. We use the arguments used in Subsection 3.1. We define the functional Fj by (15) and we get
BI8) (because we used only the first six equations in ([2I5) which are the same in ([2ZI0])). We consider
Fy and F defined by BI1) and BI9), and we find (320) with k47 replaced by iksq. We put, for Ag > 0,

F(E, 1) = F(€, 1) + \eE1Re (z'gﬁé) + %4[552}26 (igaé) + %4[654}26 (03 5) + %417541% (25) :

where
_
k1

Multiplying @), @2), @E3) and @T) by As&?, é15§2, é[g{‘* and %4[754, respectively, adding the
obtained equations, adding ([B.20) and applying Young’s inequality for the terms depending on ¢, we find,
for any g9 > 0,

11% ) < —(kad —0)€8 212 — (kshs — £0)€8 B> — (1 — A — o) £° [

dt
— (A1 = A3 —0) €810 — (ko — kiha — Ky — £0)€8 [02 — (7As — A2 — 0) €9 [
(4.8) — (kare — Y5 — €0) E8 12 + Cegoay, po (1 + E + €1+ 65+ €9)|9).
We choose 0 < Ay <1, Ao > 1, )\5>%)\2,)\6>kl4)\5,0<)\3<)\4<)\2—1and

k k
Is = (YA2 — k1X5)€% — 71(13 +1y), Is Ir — 7313 and [; = lIl — —14.

0 < eo <min{kari, ksAs, 1 — A, Ay — Az, kido — ki Ag — k1, 7A5 — Ao, kadg — YAs ).

Hence, using the definition (ZI0) of £, @) leads to, for some positive constant ci,

d -~ ~
(4.9) TP 1) < —alEE )+ 0 1+ &+ + 8+ ) [al”
So we consider L given by [3:23), with F instead of F, and use ZI2) to find
d _
(4.10) L&) < —af(OEE 1) — (ks A= C) faP*,

where f is defined by (BII]). Finally, the proof can be finished exactely as in the proof of (BI0). O

Theorem 4.2. The result of Theorem [F2 is satisfied in case 2I6) when ko # k3 and (11,72,73) =
(1,0,0).

Proof. The proof is identical to the one of Theorem O

The third result of this subsection says that (Z7) is not stable if ko = kj.

Theorem 4.3. Assume that ko = k3. Then |ﬁ(§, )| doesn’t converge to zero when time t goes to infinity.
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Proof. As in Subsection 3.1, we show that, for any £ € R, the matrix (3:34]) has at least a pure imaginary
eigenvalue. From (26) with (71,72, 73) = (1,0,0) and ks = k3, we have

A o —iE 0 -1 0 -1 0 0
—iki& A 0 0 0 0 i 0
0 0 A —iE 0 0 0 0
| B 0 —ikof A 0 0 0 0
(4.11) M= A= 0 0 0 0 A =i 0 0
Ky 0 0 0 —ike6 X 0 0
0 e 0 0 0 0 X kgt
0 0 0 0 0 0 iks& ks + A
A direct computaion shows that
det(\[ — A) = 2k AN + ks) (A% + k2&2) (A2 +97€%) + AN+ ks) (A + k26%)? (W + (k1 +7°)€7)
(4.12) —ika(N? + k2&?) [ik1ka&® (N2 + ka€?) + ik N2E(N + K1) + ihoka X263 + ik1kaNE] .

We see that, if £ # 0, then A = iy/kx€ is a pure imaginary eigenvalue of A. If £ = 0, then A = iy/2k; is a
pure imaginary eigenvalue of A. Consequently (see [28]), the solution (2.8]) of ([2.7) doesn’t converge to
zero when times ¢ goes to infinity. 0

4.2. Case 2: (11,72,73) = (0,1,0). We present, first, our exponential stability result for [2.71).
Lemma 4.4. The result of Lemma[3) is satisfied in case [210) with (11, 72,73) = (0,1,0).
Proof. We addapt the arguments used in Subsection 3.2. We define Fy-F; and F' as in Subsection 3.2,
and we get ([353]), where Fg is defined by (356) with k4&n replaced by iksq. Let A\g > 0 and
= NN 1 k A~
P& 1) = EF(E 1)+ M Re (i€7T) + - (—1<11 — ) + (ks m)é) §Re (97)

]34 (Ig + —I1> &’Re (Z§¢>Q) (kz/\5 —YA\1)E2Re (zﬁz q)

Multiplying @), @3), @), @T) and G35 by

1 1

k -1
X2, — (= (Il L)+ kids — v ) €, I3 + —11 &€, —(yA1 —k2Xs5)&® and &
kg4 ks k4

respectively, addlng the obtained equations and applying Young s inequality for the terms depending on
g, we find, for any g9 > 0,

(4.13) %15(57 t) < Cegori Ae SN = (VA5 = A1 = 1= £0) 71 — (kads —7As — o) €' [l

—¢ ((k — ki da — ki — €0)[0]? + (K2t — €0)[212 + (A — As — £0)[0]2 + (A2 — eo)|@]* + (kshs — 50)|$|2) 7

Whereflsdeﬁnedln(m) We choose 0 < A1, 0 < Ao < 1,0 < A3 < Ay <1—=2Xo, A5 > ()\1—|—1)
g > 1)\5 and

0 <eo <min{ky — kiAo — k1 Aa, koA, A — Az, A2, k33, YAs — A1 — 1, kade — 7As )
Thus, using the definition of E , (ET3) implies that, for some positive constant c;,

(114) SR 1) <~ B, 1) + CF
Therefore, we introduce the functional

4.15 L&) = NE(E, 1) + — ,
(4.15) (&, 1) (& 1)+ f(&) F(& t)
and we deduce that, using (Z12)) and @I4)

(4.16) LL(E 1) < e fOBE 1)~ (s A~ ) a%

where f is defined in (83T). The proof can be ended as for Lemma 311 O
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Theorem 4.5. The result of Theorem[33 is staisfied in case (L2) with (11,72, 73) = (0,1,0).

Proof. The proof is identical to the one of Theorem O

4.3. Case 3: (711,72,73) = (0,0,1). In this case, we prove the same stability results for (27) and ([Z4)
that given in Subsection 4.2, and moreover, the proofs are very similar.

Lemma 4.6. The result of Lemma[34] holds true also in case (ZI0) with (11,72, 73) = (0,0, 1).

Proof. We define Fy-Fy and F as in Subsection 3.3 and we obtain [B79]), where Fg is defined in (B.80)
with k4&n replaced by tksq. Let Ag > 0 and

Flet) = €FE 0+ M Re (i677) + 1 (%(klfg = 1)+ (ki ds m)&) §Re (97)

1 1 2 o

T (% = has) €2 Re (if(b q) o (12 T 7213) €2Re (zfz q) .

Multiplying (1)), (4.3), @.4), @.6) and B.79) by

Ne€2, k% (%(13 — 1) — (k1 )s + 7)\4)52) &2, k% (YA3 — k3)s) €2, —k% (Iz + %13) € and €2,

respectively, adding the obtained equations and applying Young’s inequality for the terms depending on
q, we find, for any ¢ > 0,

d -~ _ ~ I
EF@’ t) < Cegag, e LA — € (WA — A3 — Aa — €0) [0]° — €* (kade — 75 — <o) |71

€% ((kiha = kada = ky = 20)[B2 + (kads — 0) 22+ (1= M = £0)[1° + (A = £0) A2 + (ks s — 20)|0)

[ is defined in B34). We choose 0 < Az, 0 < At < 1, A > 1,0 < Ay < Aa— 1, A > 2(A3 + \),
Ag > %4)\5 and
0 < eo <min{ksAz, Ao, 1 — Ai, ko, kida — kide — k1,7 As — Az — Mg, kadg — YAs ).

Then, using the definition of £, {I7) imlies (@I4), and then (ZI0) holds true. Consequentely, the proof
can be ended as for Lemma .4 O

+

(4.17)

Theorem 4.7. The stability result given in Theorem [[.3 is satisfied when (11,72, 73) = (0,0, 1).

Proof. The proof is identical to the one of Theorem O

5. COMMENTS AND ISSUES

1. The optimality of the obtained decay rates on [|02U||12(r) is an interesting open question. This
question will be the focus of our attention in a future work.

2. When (11, 72,73) € {(0,1,0),(0,0,1)} and k; = ko = ks, the function f tends to 1 when & goes to
infinity, which avoid the regularity loss property; that is, (L) with j = ¢ = 0 gives the stability of (L)
and (L.2) with a decay rate of ||U||z2r) depending only on ||Up||z1(ry and [|Upl|z2(r). However, in the
other cases, [ tends to 0 when £ goes to infinity, this means that the dissipation is very weak in the high
frequency region, which imposes the regularity loss property in the estimates because (7)) and (II0)
with j = ¢ = 0 imply only the boundedness of ||U]||.2(r)-

3. The estimate (LJ) leads to a faster speed of convergence to zero of ||[@JU||f2(r) than the one
guareented by ([’0) and (CIQ). This can be explained by the fact that the Cattaneo law generates a
dissipation stronger than the one generated by the Fourier law. On the other hand, for both laws with
(11,72, 73) € {(0,1,0),(0,0,1)}, the situation is more favorable when k; = ko = k3 than in the opposite
case.

4. From the mathematical point of view, one can take v € R* in case ([LI)), and v, ks € R* in case
([C2) (instead of 7, k4 > 0). The unique needed modifications of proofs when ~, k4 < 0 are multiplying
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BI12), B38), B.63) and @I) by —1, and using the obtained identities instead of (B12), (B3], (3.67)
and (ZI)).

5. The coupling terms
(51) TiV N and ’7(7-1 Pt + T2¢mt + TSU};Et)
in (L)) and ([T2]) are of order one with respect to x. Mathematicaly, these coupling terms can be replaced
by (order zero with respect to x)

(5.2) miyn and = y(Tipr + Totr + T3wy),

respectively, with v € R*. In this case, the terms i7;v¢7 and iv§(miU + my +730) in (Z15) and (Z10) are
replaced by 7,77 and —y (71U + 72y + 736), respectively. On the other hand, (810) holds true with

_ &
&) = 1482+ &4 +66 4¢84 €10

instead of BI)), and

6
— ) TreEtres
f&) = 8
T+E2+81+£0+£54¢10
instead of B3T), and so we get the stability estimates
102U || Loy < co (1+) 767378 | Ug || prmy + co (14 8) 202U | 2wy, ¥t € Ry
instead of (3:29),
109U || p2ry < co (1 +8) Y 1279/8 | U || 1 ry + coe ™M |02 U || p2ry  if k1 = ko = ks
instead of (B:61), and
02U || 2y < co (1+ £y~ /127916 0ol 1wy + co (1 + t)~t 103 Us || 12wy~ if not

instead of ([B62). These stability estimates show that the decay rates in case (5.2)) is smaller than the
ones obtained in case (I). Moreover, the non stability result when ks = k3 and (71, 72,73) = (1,0,0) is
still valid using the same arguments of proof, since we get [3.36) and [EI2) with v? instead of y2£2.

if ky = ko = ks,

if not
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