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NEW DESIGX  METHOD OF PERMAVENT MAGNSTS 9Y USING THE FINITE ELEMENT METHOD 

T.Nakata  and  N.Takahashi 

ABSTRACT 

A new method for   determining  the  shapes  and  s izes  
of  magnets which  produce the   p re sc r ibed   f l ux   dens i t i e s  
by us ing   the   f in i te   e lement  method has been developed. 

I n   t h i s   p a p e r ,   t h e  new technique is  explained 
b r i e f l y ,  and  then  the  f ini te   e lement   formulat ion  for  
non-l inear   analysis  is derived.   Final ly ,   the   usefulness  
of  the  technique i s  shown by apply ing   th i s  method t o  
the   des ign  of magnet ic   c i rcu i t s .  

1. INTRODUCTION 

We have  already  reported  the method f o r  
determining  the  lengths  of  magnets which  produce 
p resc r ibed   f l ux   dens i t i e s  Ill, [ 21  [31 .  A new technique 
for   determining  not   only  the  lengths   but   a lso  the 
widths and shapes of  magnets  has  been  developed. The 
non-linear  magnetic c i rcui t  composed of  several  magnets 
can  be  designed  numerically by u s i n g   t h i s  method 
without any experience.  

2 .  OUTLINE OF NEW METHOD 

A magnetic f i e l d  produced by permanent  magnets i s  
con t ro l l ed  by changing (1) the   shapes,  ( 2 )  s i z e s ,  ( 3 )  
p o s i t i o n s ,  ( 4 )  direct ions  of   magnet izat ion  or  (5) 
materials  of  magnets.  ( 3 )  t o  (5 )  a re   usua l ly   g iven  i n  
p rac t i ca l   des igns .   The re fo re ,  it is necessa ry   t o  
determine  the  shapes  and sizes of  magnets  which  produce 
t h e   p r e s c r i b e d   f l u x   d e n s i t i e s   a t   s p e c i f i e d   p o i n t s .  
When the   shapes   o r   s i ze s  of  magnets a r e  unknown 
variables,   the  Rayleigh-Ritz  matrix  equation  for  the 
magnetic f i e l d  becomes non-l inear .   Therefore ,   the  
equation  cannot be eas i ly   so lved .   Th i s   d i f f i cu l ty  is  
avoided by a newly  developed  method. The out l ine   o f   the  
method i s  explained by the  following two t y p i c a l  
examples: (1) rec tangular  magnet  which i s  simple  and 
the  most  popular,  ( 2 )  quadrangular magnet  which is  
fundamental  for an a r b i t r a r y  shaped  magnet. 

2 . 1  Rectangular  magnet 

Let u s  consider   to   determine  only one  dimension, 
namely, the  width W o r   t h e   l e n g t h  L of  a magnet shown 
in   F ig .1 .  The f lux   dens i ty  B o  in   the  direct ion  denoted 
by arrow a t  a po in t  P is prescr ibed.   Figure 1 (a )  shows 
an  example adjust ing  the  width W so a s   t o  produce €30 
a t   p o i n t  P. The length  L i s  f ixed.   Figure 1 (b) shows  a 
model ad jus t ing   the   l ength  L. The width W is  f ixed .  
The material  of  magnet i s  given  and  the  directi.on of 
magnetization is  chosen t o  be the  same a s   t h a t  of t h e  
f l ux   dens i ty  Bo. 

The width W o r   l eng th  L of the  magnet is s u i t a b l y  
presumed. The f lux   dens i ty  B produced by the  presumed 
magnet a t   p o i n t  P i s  usua l ly   d i f f e ren t  from B o .  A 
' r ec tangular   addi t iona l  magnet denoted by the  hatched 
p a r t   i n   F i g . 1  i s  in t roduced   in   o rder   to   ad jus t   the  
d i f f e rence  (B-Bo) o f   f lux   dens i ty .  

The width Dwa o r  length DLa of the   add i t iona l  
magnet,  which is  small enough  compared with  that   of   the  
presumed  magnet, is  assumed adequately.  The 
magnetization Nwa o r  Mta of  the  additional  magnet i s  
ca l cu la t ed  as the  so-called  inverse  problem C11. A s  t he  
number of the   g iven   f lux   dens i ty  i s  only  one,   the 
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number of unknown va r i ab le ,  namely, t he  number  of t he  
magnetization of add i t iona l  magnet  must  be  only  one. By 
the  way, the  values  of  magnetizations M i n   t h e  
presumed  magnet a r e   n e a r l y   a l l   t h e  same with  the mean 
value E of them. A s  both  the presumed  magnet and the  
add i t iona l  magnet  should be e s s e n t i a l l y  made of t he  
same mater ia l ,   the   magnet izat ion Mwa o r  MLa m u s t  be 
nea r ly   t he  same with 5i. For   t h i s   r ea son ,   t he   add i t iona l  
magnet i s  replaced by a rectangular  equivalent  magnet 
of  which the  magnet izat ion is  and  produces  the same 
f lux   dens i ty  a t  po in t  P as the   add i t iona l  magnet. The 
width Dw or   l ength  DL of  the  equivalent  magnet i s  
ca l cu la t ed  by the  fol lowing  equat ions:  

Dw=-Dwa Mwa , DI,=+DLa (1) 
M 

These  equations  are  derived on the  assumption  that   the 
width or  length  of  the  magnet which produces  the same 
f lux   dens i ty  i s  i n v e r s e l y   p r o p o r t i o n a l   t o   t h e  
magnetization  as shown in   F ig .2 .  

The modif ied  s ize  W* o r  L* of   the  magnet  which 
produces B o  i s  ca l cu la t ed  from 

W*=W+Dw , L*=L+DL (2 )  

Because  of  the  assumptions  that   the  distribution 
of  magnetization  in  the magnet i s  uniform  and  the 
dimension  of  the  magnet is  inverse ly   p ropor t iona l   to  
the  magnet izat ion,   the  magnet obtained by t h e  above 
procedure  does  not  usually  produce  the  prescribed  f lux 
dens i ty  Bo p rec i se ly .   The re fo re ,   i t e r a t ions   a r e  
necessary  unt i l   the   desired  accuracy i s  obtained by 

PRESUMED 

(3-4-8-7-3) 
I 

( a )  model adjust ing  width  (b) '  model ad jus t ing   length  

Fig.1  Design  of  rectangular  magnets. 

L 

width length  

width and magnetization length  and  magnetization 
( a )   r e l a t ionsh ip  between  (b)  relationship  between 

Fig.:! Relationships  between  size  and 
magnetization which  produce the  
same Flux  density.  
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modifying  the  size  of  the  magnet. 
The procedure  of  determining  the  width  of  magnet 

shown i n   F i g . l ( a )  is  denoted i n  Fig.3. 
0 : The width W of magnet i s  presumed  taking  into 
account   the   g iven   f lux   dens i tyBo . The width Da of  the 
add i t iona l  magnet i s  assumed corresponding t o   t h e  width 
W. 
9 : The in i t i a l   va lues   o f   vec to r   po ten t i a l s{A) in   t he  
whole region and the  magnetization Ma of the   add i t iona l  
magnet a r e  set. 
0: The increments{GA}and 6Ma can  be ca l cu la t ed  by 
the  Newton-Raphson i t e r a t i o n  scheme tak ing   in to   account  
the   non- l inear i ty  of t h e  presumed  magnet. 
@ : .  The  mean value M of the  magnetizations i s  
ca l cu la t ed  from the   vec to r   po ten t i a l s  {A} i n  t he  

@ : The width D of the   equiva len t  magnet is ca l cu la t ed  
presumed  magnet. 

from (1). Some i t e r a t i o n s   a r e   n e c e s s a r y  u n t . i l  t he  
accurate   width which produces  the  given  f lux  densi ty  
can be obtained. 

Though t h e  number of unknown va r i ab le  is only  one 
in   F ig .1 ,  t h i s  method  can a l s o  be appl ied  when the  
number is increased .  The d e t a i l s   f o r   p l u r a l   c a s e s  will 
be explained  in   the  fol lowing  sect ion.  

- 

0- PRESUMPTION OF W,Da 

1 T f l I T I A L  VALUES OF I I 
I ( A I r  Ma J 

NEWTON RAPIISON ITERATIOb 
I 

.~ STOP 

Fig.3 Flow cha r t .  

2 .2  Quadrangular  magnet 

By expanding  the  above-mentioned  procedure,  the 

p re sc r ibed   f l ux   dens i t i e s  B1q t o  B 3 0  a t  poin ts  P1 toP3, 
shape  and s i z e  of  a quadrangle  in  Fig.4 ,which  produces 

can be  determined.  In t h i s  c a se ,   t he   ma te r i a l  and the  
direct ion  of   magnet izat ion  are   given.  The s ide  1-4 is 
f ixed  and  the  s ide 1-2-3-4 i s  ad jus t ab le .  The shapes of 
the  additional  magnets  denoted by t h e  hatched  par ts  i n  
F i9 .4   a re   t rapezoids .  The widths Dal t o  D a g  of 
additional  magnets  are  adequately  assumed, and the  
widths D l .  t o  D3  of the  equivalent   magnets   are  
c a l c u l a t e d   i n   t h e  same way as Section  2.1. 

The shape  of  the  modified  magnet is uneven  near 
t h e   c o m e r s  Dland Dgof t h e  presumed  magnet.  Therefore, 
f o r  example, a new point   14 is  d e f i n e d   a t   t h e   c e n t e r  
po in t  between po in t s  10 and 11. Thus  a new shape 
(9-14-15-13-9) is obtained. Some i t e r a t i o n s   a r e  
necessary   un t i l   the   des i red   accuracy  can be obtained by 
se t t ing   the   addi t iona l   magnets  on the   s ides   o f   the  
magnet.   In  this  case,   because of the  mutual   inf luences 
of  magnets,  the number o f   i t e r a t i o n  i s  l a rge r   t han   t ha t  
in   Sec t ion  2 .l. 

PRESUMED MAGNET 
(1-2-3-4-1) 

ADDITIONAL MAGNET 
(2 -6 -7 -3 -2 )  : 

t r apezo id   ,w id th  Da 2 

EQUIVALENT MAGNET 

t r apezo id ,wid th  D Z  

' FINAL  SHAPE 

(2-11-12-3-2)  : 

(9-14-15-13-9) 
Fig.4  Design of an a r b i t r a r y  shaped  magnet. 

It  is  a l so   poss ib le   to   de te rmine   the   shape  of t he  
Polygonal  magnet by us ing   the  same method. I f   t h e  
sur face  Of t he  magnet is  curved,   the   shape,  of t h e  
magnet  can be determined by approximating  the  curve  as 
polygon. 

The  number of the  addi t ional   magnets  must  be the  
same a s   t h e  number  of t he   p re sc r ibed   f l ux   dens i t i e s .  
Here l e t  u s  consider   the number  of f l u x   d e n s i t i e s .  The 
f lux   dens i ty  i s  a vector.   Therefore,   the  value  and  the 
d i r e c t i o n ,   o r  t w o  components, f o r  example,  the x-  and 
y- components are usually  defined.  Then, two unknown 
dimensions  are  determined  corresponding  to  each  point a t  
which the   f l ux   dens i ty  is prescr ibed .  But sometimes we 
need  specify  only one  component , f o r  example,  the 
x- component  and  need  not  control  the  other  one.   In 
such a case ,  'one unknown dimension is  determined 
corresponding t o  each  point .  

3. FINITE ELEMENT FORMULATION 

3.  1 Rayleigh-Ritz  matrix  equation 

The pa r t i a l   de r iva t ive   o f   t he   ene rgy  x of an 
element e i n   t he   add i t iona l  magnet i s  given  as  [4] 

ax 
&Ii 

-= V 0 U 1 - . l , i  (3) 

where A i  i s  the   vec to r   po ten t i a l   o f  node i. For  the 
f i rs t -order   f ini te   e lement   method,  U i  and J m i  a r e  
wr i t ten   as   fo l lows:  

3 
u . ;  1: S ' .  & .  ' j=, 1.1 3 (4 1 

T a i  = d i c o s D - c j s i n 0  ( 7 )  

Where Ace) and vo denote  the  area  of  element e and the  
r e l u c t i v i t y  of a i r ,   r e s p e c t i v e l y .  Ma i s  the  
magnetization of the  addi t ional   magnet .  e i s  the   angle  
which  shows the  direct ion  of   magnet izat ion and i s  
measured  from the   x -ax is .   c i ,d i   a re   denoted   as   fo l lows:  

ci = y j  - 
d i  = Xk - x j  

y!c 1 (8) 

with   the   o ther   coef f ic ien ts   ob ta ined  by a c y c l i c  
permutat ion  of   subscr ipts   in   the  order  i ,  j ,  k. 

By rep lac ing  Ma i n  ( 6 )  with Mat and s u b s t i t u t i n g  
(4)  and ( 6 )  i n t o  ( 3 )  and  expanding it i n  a 

mult idimensional   Taylor 's   ser ies  i n  increments o f  
and GMat, the  following  equation  for  the'Newton-Raphson 
i t e r a t i o n  scheme i's obtained. 

% 

Where  Mat i s  the  magnetization of t h e   t ' t h   a d d i t i o n a l  
magnet.  (9)  can  be  rewritten as follows: 

v o S i j s h , - ~ T e i G M a t = - V g U i f ~  TeiMat (10.) 
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I f  & M a t  i n  (10) is t r e a t e d  as an unknown va r i ab le ,   t he  
mat r ix   equat ion   for   the  whole region  containing  magnets 
i s  obtained as follows: 

where n is  t h e  number,  of nodes  .of which the   vec to r  
p o t e n t i a l s  are unknown,  and r is the  number of unknown 
magnetizations  of  additional  magnets.  [H] i s  t h e  
so -ca l l ed   coe f f i c i en t   ma t r ix .  Its element  Hij i s  
c a l c u l a t e d  by 

(additional  magnctor a i r )  

containing node i. [Cl i s  the   coe f f i c i en t   ma t r ix   o f  
[6Ma}.For example, t h e   c o e f f i c i e n t  C i t  corresponding 
t o  6Mat  i s  denoted  by 

C i t = -  I: a ~ e i  6i 2 (13) 
R i  

where 6 i  i s  u n i t y  when t h e  node i is i n  t h e   t ' t h  
a d d i t i o n a l  magnet  and zero  when t h e  node i i s  outs ide  
o f   t he   t ' t h   add i t iona l   magne t .  Q is  a funct ion of 
equiva len t   magnet ic   cur ren t   dens i t ies  151 of  presumed 
magnet  and t h e  known vec to r   po ten t i a l s  on t h e   D i r i c h l e t  
boundaries. Qi is denoted by 

A s  t h e  number of   the  equat ions i s  n,  and t h e  number 
of   the unknown v a r i a b l e s  i s  ( n + r ) ,  (11) cann@t be 
solved.   Therefore ,   the   fol lowing  re la t ionships  among 
t h e   v e c t o r   p o t e n t i a l s  and f lux   dens i t ies   should   be  
introduced. 

3.2 Relat ionships  among v e c t o r   p o t e n t i a l s  and f l u x  
d e n s i t i e s  

In  the  design  of  permanent  magnets  the  following 
f lux   dens i t i e s   a r e   u sua l ly   p re sc r ibed :   ( a )   t he  x-and 
y-components Bxg and By0 o f   t he   f l ux   dens i ty   a t  a 
spec i f i ed   po in t ,  (b) t h e  component Bko i n  an a r b i t r a r y  
d i rec t ion   of   . the   f lux   dens i ty .  T'he r e l a t i o n s h i p s  among 
v e c t o r   p o t e n t i a l s  and f l u x   d e n s i t i e s   f o r   t h e   c a s e   ( a )  
are already  discussed  in  Reference [l] . The 
r e l a t i o n s h i p s   f o r   t h e  l a t t e r  case a re   i nves t iga t ed   i n  
th i s   pape r .  

Figure 5 shows a f i r s t -order   t r iangular   e lement  e .  
The f lux   dens i ty  Bkg a t  p o i n t  P in   the  e lement  is 
prescr ibed.  a i s  the   ang le  measured  from the  x-axis .  

A s  Bko is  the   p ro j ec t ion  of the   vec to r  of f lux  

y h  A3e 

- 
0 

Fig.5  Relationships among v e c t o r   p o t e n t i a l s  
and f lux   dens i ty  Bko . 

d e n s i t y  a t  p o i n t  P, it is denoted  by 

Tak i s  obtained by r ep lac ing   t he   subsc r ip t  0 of T g i  in 
( 7 )  with a. Replacing  the  difference of the   r i gh t -  and 
left-hand  sides  of  (15)  by Q ,  and  expanding q i n  a 
mult idimensional   Taylor 's   ser ies   in   the same way a s  
(91, the  following  equation  can  be  obtained: 

By s u b s t i t u t i n g  Q i n t o  (16) ,  one  obtains 

If t h e r e   e x i s t  r independent   p rescr ibed   f lux   dens i t ies ,  
r r e l a t i o n s h i p s  similar t o  (17) can  be  obtained  as 
follows: 

€or  example, Fij is  t h e   c o e f f i c i e n t   o f  EAj and K j  i s  
the   r igh t -hand  s ide   o f  ( 1 7 ) .  

3 .3  Matrix  equation  for-  inverse  problem 

If (11) i s  combined with (18), t h e  number of 
unknown v a r i a b l e s  becomes e q u a l   t o   t h e  number of 
equations.   Therefore,   the  increments  of  the unknown 
vec tor   po ten t ia l s   and   the   magnet iza t ions   o f   the  
additional  magnets  can be d i r ec t ly   ca l cu la t ed  by the  
following  equation  obtained from (11) and (18): 

The values  {D] of  modification  can  be  calculated from 
the  obtained  I t la)  by using (1). 

4. EXAMPLES 

4 . 1  Determination  of maqnet widths and lengths  

Figure 6 shows a magne t i c   c i r cu i t   w i th  t w o  magnets 
of  which  the  widths  and  lengths  are unknown. The 
magnets a r e   u n i a x i a l l y   a n i s o t r o p i c  and magnetized  in 
t h e  y- d i r e c t i o n .  They a r e  made of f e r r i b s  
(Br=0.38 ( T )  ,Hc=0.25x106(A/m)). The x- and y- 
d i r e c t i o n a l  f l u x  d e n s i t i e s  B x ~ o ,  Byla, Bx20 and By2c 
are s p e c i f i e d   t o   b e  -0 .02 ,  0 .1 ,  G.06 and 0.06 (T)  , 
respec t ive ly .  

The est imated  widths   are  l S ( m m )  and est imated 
lengths  are 20(mm). The widths and lengths  of magnets@ 
and@,  which  produce  Bxlo,  Bylo, Bx20 and By20 a t  
po in ts  61 and Pa above  the  upper  sides of magnets,   are 

B X ~ O  = 0.06 (T) 
By20 = 0.06 (T)  

: PRESUMED  MAGNETS 

a : ADDITIONAL  MAGNETS 

0 : OBTAINED  MAGNETS 

Fig. 6 Vodel  used i n   t h e   a n a l y s i s .  
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s i ze   o f  magnet  of  which t h e   e r r o r s   a r e   w i t h i n  2 . 0 ( % )  is 
o b t a i n e d   a f t e r   1 8   i t e r a t i o n s .  

I t  i s  c l e a r   t h a t   o u r  method  can  be a p p l i e d   t o  
determining  the  curved  shape  of  magnet. 

5 ITERATION 

0 0  

La- 
. .  

Fig.9  Shape  of  magnet a t  each   i t e r a t ion .  

Table 2 E r ro r s   o f   f l ux   dens i t i e s .  

ERRORS OF FLUX DENSITIES ( % )  NUMBER OF1 

c a l cu la t ed  by set t ing  the  addi t ional   magnets   denoted by 
the   ha tched   par t s  on the   s ides   o f   the  presumed  magnets 
denoted by the   do t ted   par t s   in   F ig .6 .  The dimension  of 
each  additional  magnet is  5(mm) dur ing   the   repe t i t ions  
of  modifying  the  widths  and  lengths  of  magnets 0 and 

The calculated  widths  and lengths   are   26.9,   10.5,  
33.2 and  13.0(mm), r e spec t ive ly  and are  den6ted by 
th i ck   l i nes   i n   F ig   . 6 .  

The e r r o r   o f   t h e   f l u x   d e n s i t y   a t   e a c h   p o s i t i o n  is 
l i s t ed   i n   Tab le  1. The e r r o r  E is  defined by the  
following  equation: 

0. 

where B @  is  the   p re sc r ibed   f l ux ,dens i ty  and Bn i s  the  
o b t a i n e d   f l u x   d e n s i t y   a t   t h e   n ' t h   i t e r a t i o n .  The e r r o r s  
a f t e r  4 i t e r a t i o n s   a r e   w i t h i n   2 . 0 ( % ) .  

Table 1 Errors   o f   f lux   dens i t ies .  

NUMBER OF' 

€ X I . .  I &y 1 1 Ex2 I c y 2  ITERATION 
ERRORS OF FLUX DENSITIES ( % )  

0 1-220.0 I -38.0 1-65.2 I 30.5 i 1 'i.! I 2:; 1 i;; I I ' i i i  
-1 ;6  

1.5 -0.7 0 . 2  2.0 

EX~,Ey~:errors of 6x10 and B y l o  

c'X2,EY2ierrors of B X Z O  and By20 

4.2 Determination of the  shape  of a cu rv i l i nea r  magnet 

An example determining  the  curved  shape of a 
magnet  which  produces a p re sc r ibed   f l ux   d i s t r ibu t ion  is  
analyzed.  Figure 7  shows the  analyzed  model. The f lux  
d i s t r i b u t i o n  on the  circumference A-A' i s  p r e s c r i b e d   t o  
be s p a t i a l l y   s i n u s o i d a l   a s  shown in   F ig .8 .  The 
magnet i s  made of   the same mater ia l   as   tha t   in   Sec t ion  
4 . 1  and i s  magnetized  uniformly i n  t h e  y- d i r e c t i o n .  

The presumed  magnet i s  divided  into  seven 
quadrangles. The addi t iona l   magnets   a re   se t  on t h e  
upper  side  of  the  magnet.  

The presumed  shape  of  the  magnet is denoted by 
dashed l i n e s  and the   f i na l ly   ob ta ined  one is  denoted by 
th i ck   l i ne   i n   F ig .7 .  The shape a t  each   i t e r a t ion  is  
shown in  Fig.9.  The e r r o r  o f   t he   f l ux   dens i ty   a t   each  
pos i t i on  is  l i s t e d   i n  Table 2 .  The desired  shape and 

Y 
+ m  

Boundary cond i t ions  
a-8 : Dir ich le t   boundary  
a-y-6-8  : Neumann boundary 

Fig.7  Analyzed  model. 

P O S I T I O N  ( m m )  

F ig .8   Prescr ibed   f lux   d i s t r ibu t ion  
on the  circumference A-A'. 

I T E ~ I O ~  ~ € 2  1 € 3  1 € 4  ~ € 5  1 E; 

-19.4  -17.4 -13.3 -7.0 -1.6 12.8 

1 0  
-9.2 

-1.5 -1.2  -0.8 -0 .3 1.4 17 ~ -1.6 

-1.7 -1.4 -0.9 -0.3 1.6 16 1 -1.8 

-2.6 -1.6 -1.0 -0.2 1.8 15 ~ 1::; 
-8.4 -6.9 -3.6 -0.7 6.7 
-4.1 -3.2 -1.9 -0.0 3 . 5  

& 
21.5 
11.1 

5.7  
3.0 
2.6 
2.3 

18  1-1.31  -1 .3  I -1.0 1-0.7 1-0.3 1 1.3 I 2.0 
bi: error of f l u x  d e n s i t y  a t  p o i n t  i 

5. CONCLUSIONS 

The  new method enables u s  t o  determine  the  shapes 
and sizes  of  magnets  in a magnet ic   c i rcu i t .  

The analysis  of  the  following  problems w i l l  be 
repor ted  later: 
(a )  inves t iga t ion   of   the   case  when t h e   s i z e s   a r e   n o t  
obtained; 
(b)  determination  of  positions  of  magnets; 
(c)   accelerat ion  of   the  convergence  of   s izes;  
(d)   the  optimum d i r e c t i o n s  of magnetizations;  
(e) t h e  optimum design  of  magnets  having  the minimum 
volume. 

By expanding  our  method, many e l e c t r i c a l  machinery 
and  apparatus  such a s  a magnetizer  can  also  be 
designed  [6],   [71.  
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