
 

Abstract—This paper introduces a new design methodology for 
impact angle control guidance (IACG) laws. The proposed 
methodology can extend any proven homing guidance laws to 
their impact angle control versions if the expressions of the 
estimated terminal flight path angles under those guidance laws 
are given. The time derivatives of the estimated terminal flight 
path angles are obtained as functions of the guidance commands. 
The IACG versions of the homing guidance laws are derived from 
those functions and the desired error dynamics of the estimated 
terminal flight path angle. The guidance law of each IACG 
version has two terms: The first term maintains the 
characteristics and capturability of the original guidance law and 
the second term drives the estimated terminal flight path angle to 
converge to the specified flight path angle. When a 
well-understood homing guidance law for a certain combination 
of target and missile models is given, an IACG law for that 
combination is easily derived without reformulating the guidance 
problem again. The usefulness of the proposed method is 
demonstrated by several examples, deriving new IACG laws for 
various target and missile models. 

Index Terms— Missile Guidance, Impact Angle Control 
Guidance, Velocity-varying Missile, Maneuvering Target, 
Accelerated Target 

I. INTRODUCTION

NTI-TANK missiles are most effective when the terminal 
impact angles are orthogonal to the target armor. Anti-ship 

missiles must control their terminal impact angles to avoid ship 
defense systems, like CIWS (close-in weapon system). The 
infrared seekers of anti-aircraft missiles are effective when 
tracking the jet flame of a target at its rear. 

To attack these various types of targets efficiently, impact 
angle control guidance (IACG) laws have been developed over 
several decades to address these unique conditions. The IACG 
laws for stationary targets have been detailed in previous 
studies [1-10]. Various control and guidance theories, like 
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optimal control [1-3,6,7], proportional navigation guidance 
(PNG) law [4] and its biased form [5,10], time-to-go 
polynomial guidance [8], and sliding mode control [9], have 
been applied to solve the problem. Moving targets with 
constant velocity are handled by synthesizing PNG algorithm 
[11] and applying the time-varying biased PNG algorithm [12]. 
The IACG algorithms in [13-20] deal with maneuvering targets. 
Nonlinear control theories, such as backstepping control [13], 
optimal control [14], differential game theory [14], and sliding 
mode control [15-20], are utilized in those references. A 
general form of IACG law is devised in [21]. This form is based 
on the optimal control theories and handles first-order lag 
systems. However, when defining the general dynamics model 
in [21], targets are assumed to be stationary and the velocity of 
missile is constant. The meaning of ‘general’ in [21] is that the 
proposed IACG law design methodology deals with the 
minimization of control effort weighted by a generalized time- 
to-go function. 

In these previous studies, the authors applied the following 
design strategy when developing their own IACG algorithms. 
First, the engagement dynamics for a certain class of target and 
missile motions under consideration is set up. Then, the 
traditional homing guidance problem is reformulated in 
conjunction with additional terminal constraints on the impact 
angle, considering the engagement dynamics. 

Accordingly, this design approach has some fundamental 
drawbacks. First, the IACG law obtained by this approach is 
only applicable to the certain class of target and missile motions 
under consideration. Hence, if we want to extend the capability 
of an already designed IACG law to a different class of target 
and missile motions, it must be reformulated with different 
engagement dynamics. Second, even in the case where a user 
has a capturability-proven homing guidance law for a certain 
set of missile and target motions, the user has to reformulate 
guidance law design problem with a terminal impact angle 
constraint and solve it to get IACG law. Generally, the linkage 
between the pre-existing homing guidance law and the newly 
designed IACG law diminishes in this kind of approaches. 
Therefore, the obtained IACG law can also be regarded as a 
totally new one, which departs from the pre-existing homing 
guidance law. This requires additional efforts to fully 
understand the characteristics of the obtained IACG law, even 
though there is a continuation of the guidance characteristics. 

The IACG law design approach of this paper is motivated by 
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the impact time control guidance law design technique 
proposed by [22], which explicitly uses the time-to-go 
prediction formula to derive a class of impact time control 
guidance law. In this paper, we apply this technique for impact 
angle control by deriving the expressions of the terminal impact 
angles for various target and missile models. 

The proposed IACG law consists of two terms: The first term 
is for maintaining the characteristics of the original guidance 
law and guaranteeing capturability. The second term is for 
impact angle control, which diminishes to zero at the terminal 
time so as not to interfere with the capturability of the original 
guidance law. In the proposed design approach, any existing 
homing guidance laws for various kinds of target motions can 
still be utilized. Also, the proposed design methodology is able 
to consider various missile motions during the design step, 
constant velocity as well as varying velocity, when the missile 
velocity profile is given. 

Consider the advantages of the IACG law design 
methodology of this paper, which simply derives a new IACG 
law from a given homing guidance law. First, the obtained 
IACG law could directly inherit the characteristics of the 
original guidance law. Also, since the IACG laws converge to 
their original versions as the terminal impact angle error 
diminishes to zero, the continuities between the two versions 
are remained. If characteristics of the homing guidance law are 
known, there would be no need to devote extra effort to 
understand those of the obtained IACG law. Second, a large 
number of existing homing guidance laws could be used to 
devise IACG laws for various target and missile motions. 

In order to demonstrate these characteristics, in this paper, 
several IACG laws are extended from homing guidance laws 
for various target motions, including stationary targets, 
constant turn-rate targets and constant axial-acceleration targets. 
Numerical simulations are conducted to show the 
characteristics and the performances of the devised IACG laws. 

This paper is organized as follows: Section II introduces the 
relative dynamics between missile and target. The IACG law 
design methodology is addressed in Section III and the IACG 
law design samples are given in Section IV. Simulation results 
showing the validity of the sample guidance laws are presented 
in Section IV. The concluding remarks are given in Section V. 

II. SYSTEM MODELING

This section describes the derivation of engagement 
dynamics between missile and target. As shown in Fig. 1, two 

frames are utilized in this study: ( ), ,I I IO X Y  is the inertial 

frame, and ( ), ,R R RO X Y  is the reference frame obtained by 

rotating ( ), ,I I IO X Y  by angle θ  with its origin at the initial 

target position. The purpose of introducing the reference frame 
is to linearize the nonlinear engagement dynamics in this frame. 

In Fig. 1, the missile and target are denoted by M  and T , 
respectively. The relative distance and the line-of-sight (LOS) 

angle between them are represented by R  and σ , 

respectively. The notations MV , Mγ , MA , and Mu  represent 

the velocity, the flight path angle, the axial acceleration, and the 

maneuver acceleration of the missile, respectively. In the 

missile system, Mu  is the control input which changes Mγ . TV , 

Tγ , TA , and Tu  are defined for the target in a similar way. 

Additionally, in ( ), ,R R RO X Y , the angles are defined as, 

( ) ( )γ γ θ
⋅ ⋅

= − (1.a) 

σ σ θ= − (1.b) 

( )⋅  is a subscript; it becomes M  when a variable or parameter 

is related to missile, and it is substituted by T  for target cases. 

Then, the system dynamics are expressed in ( ), ,R R RO X Y . 

( ) ( ) ( )siny V γ
⋅ ⋅ ⋅

= (2.a) 

( ) ( ) ( ) ( ) ( )cos sinv u Aγ γ
⋅ ⋅ ⋅ ⋅ ⋅

= + (2.b) 

( ) ( )V A
⋅ ⋅

= (2.c) 

where ( )y
⋅

 and ( )v
⋅

 are the lateral position and the velocity of 

the missile or target along the RY -axis. 

From Eqs.(2.a)-(2.c), we can obtain the linearized 

engagement dynamics when the reference frame with θ  is 

defined to make Mγ , Tγ , and σ  small enough. 

( ) ( ) ( ) ( )y V vγ
⋅ ⋅ ⋅ ⋅

=  (3.a) 

( ) ( ) ( ) ( )v u A γ
⋅ ⋅ ⋅ ⋅

= + (3.b) 

( ) ( )V A
⋅ ⋅

= (3.c) 

The angle θ  is a design parameter, which is chosen by users to 

simplify and linearize the engagement dynamics into a simple 

form. θ  is usually chosen as the line-of-sight angle at the 

beginning of the homing phase. In most cases, the engagement 
geometry at the beginning of the terminal homing phase is 
controlled during the midcourse guidance phase to enhance the 
capturability of the missile. Also, the terminal homing phases 
are usually short. Those statements imply that the trajectory 
changes of missile and target are small during the terminal 
homing phase, and the missile and target are expected to 
gradually get closer in this phase. Thus, it is assumed that users 
can choose a proper θ  for small angle approximation. Those 

small angle approximations and θ  are usually applied in the 
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previous missile guidance law studies. Moreover, although the 
IACG design methodology proposed in this paper is based on 
those approximations, the simulation results in this paper show 
that the guidance laws derived with this methodology are 
applicable for nonlinear engagement cases. In the linearized 

engagement dynamics, σ  is approximated as below: 

( )T My y

R
σ

−
 (4) 

From the dynamics in Eqs.(3.a)-(3.c), the interception 
condition is given by 

0
f fT My y− = (5) 

where 
fTy  and 

fMy  are the target and missile lateral positions 

at the final time ft , respectively. Since the missile approaches 

target during terminal homing phase, ft  is defined as the time 

when T Mx x= . For the impact angle control problem, the 

aspect angle Γ  is another important parameter to be controlled, 

which is defined as T Mγ γΓ − . If a desired Γ  is given as dΓ , 

the condition of impact angle control can be written as, 

f fd T Mγ γΓ = − (6) 

where 
fTγ  and 

fMγ  are the final values of the target and 

missile flight path angles, respectively. 

III. IACG LAW DESIGN METHODOLOGY

In this section, we introduce the design methodology for 
impact angle control guidance. In the proposed method, the 
existing guidance laws for the interception can be simply 
extended to their impact angle control versions using the 
expressions of the estimated terminal flight path angles. 

In order to do that, we first derive the general expression of 
the estimated terminal flight path angle when a capturability 
-proven missile guidance command for a certain class of target 

motion (i.e., Cu ) is applied to the missile systems, such as 

M Cu u= . Then, in that case, the estimated value of lateral 

velocity at the terminal time (i.e., ˆ
fMv ) is obtained from the 

dynamics given in Eq.(3.b). 

( ) ( ) ( ) ( )ˆ
f

f

t

M M C M Mt
v v t u A dτ τ γ τ τ= + +  ∫ (7) 

Eqs.(1.a) and (3.a) result in the following relationship. 

( )ˆ ˆˆ
f f fM M Mv V γ θ= − (8) 

where ˆ
fMV  represents the estimated terminal missile velocity, 

which is given from Eq.(3.c). 

( ) ( )ˆ f

f

t

M M Mt
V V t A dτ τ= + ∫ (9) 

Then, by combining Eqs.(7) and (8), we can determine the 

estimated terminal flight path angle, ˆ
fMγ . 

( )
1

ˆ
ˆf

f

M M

M

v t
V

γ η θ= + +   (10) 

where 

( ) ( ) ( )
ft

C M Mt
u A dη τ τ γ τ τ= +  ∫ (11) 

Note that ˆ
fMγ  is given by the function of Cu  and Mv . Most 

capturability-proven missile guidance commands are generally 
given by functions of the relative dynamics information, such 

as σ  and R . For some cases, the target information is also 

used for the guidance command, if the target information is 
available by means of estimation. Also, from Eq.(3.a), we can 

observe that ( )v
⋅

 is given as the function of ( )V
⋅

 and ( )γ
⋅

, 

respectively. Therefore, in general, ˆ
fMγ  can be expressed by 

the functions of all those state variables, as discussed above. 

( )ˆ , , , , ,
fM M M T Tf R V Vγ σ γ γ= (12) 

Accordingly, we can generally express the time derivative of 
ˆ

fMγ  using the partial derivatives of those parameters. 

ˆ
fM M M T T

M M T T

f f f f f f
R V V

R V V
γ σ γ γ

σ γ γ

∂ ∂ ∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂ ∂ ∂
     (13) 

Among the terms in Eq.(13), the time derivative of Mγ  is given 

by /M M Mu Vγ =  from the dynamics relation. Then, applying 

this relation to Eq.(13) and rearranging the result, we have 

ˆ
fM Muγ α β= + (14) 

where 

M T T

M T T

f f f f f
R V V

R V V
α σ γ

σ γ

∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂
    (15) 

1

M M

f

V
β

γ

∂
=

∂
(16) 

Note that the above equation provides the direct relationship 

between the control input Mu  and the time derivative of ˆ
fMγ . 

This result implies that ˆ
fMγ  can be controlled by imposing Mu

when / 0Mf γ∂ ∂ ≠ . This fact is the key point in developing the 

proposed design methodology. 

Hereafter, the proposed guidance command Mu , which 

drives ˆ
fMγ  to a desired value dγ , will be determined. For 

convenience of the derivation, we assume that the proposed 

guidance command Mu  consists of two terms, as below: 

0 1Mu u u= + (17) 

where 0u  is defined as the term which maintains the change of  

ˆ
fMγ  as zero (i.e., ˆ 0

fMγ =  ). In other words, ˆ
fMγ is not altered 

by 0u . And, 1u  is defined as an additional command term to 

achieve the desired value of ˆ
fMγ . By definition, substituting 

0u  into Eq.(14) gives 

0 0uα β+ = (18) 

Then, 0u  is obtained from Eq.(18). 

0u
α

β
= − (19) 

Interestingly, as proven in Lemma 1, the obtained guidance 

command 0u  becomes the original guidance law Cu . 

Therefore, we can predict that 0u  retains the characteristics and 



capturability of the original guidance law. 

Lemma 1. The guidance command 0u  as given in Eq.(19) is 

identical to the original guidance law Cu . 

Proof) From Eq.(10), ˆ
fMγ  is determined as follows: 

( )
1

ˆ
ˆf

f

M M

M

v t
V

γ η= +  
  (20) 

The following equations are obtained from Eq.(3.b) and 
Eq.(11). 

( ) ( ) ( ) ( )M M M Mv t u t A t tγ= + (21) 

( ) ( ) ( )C M Mu t A t tη γ= − +   (22) 

ˆ
fMγ  is rewritten by substituting Eqs.(21) and (22) into Eq.(20). 

( ) ( )
1

ˆ
ˆf

f

M M C

M

u t u t
V

γ = −  
 (23) 

0Mu u=  is the guidance command to maintain ˆ 0
fMγ = by 

definition. Therefore, imposing this condition on Eq.(23) gives 

( ) ( )0 Cu t u t= (24) 

which completes the proof.                       ■ 

Next, 1u  is designed to accomplish dγ . In order for that to 

occur, let the impact angle error γε  be first defined. 

ˆ
fd Mγε γ γ= − (25) 

We choose the desired error dynamics of γε  as follows: 

0, for 0
go

k k
t

γ

γ

ε
ε

 
+ = >  

 
 (26) 

where k  is the design parameter. got  is the time-to-go, which 

is defined as, 

go ft t t− (27) 

In order to achieve dγ  at ft , γε  should converge to zero 

during the interception. The finite time convergence of γε  can 

be proven in Lemma 2. 
Lemma 2. Under the error dynamics shown in Eq.(26), the 

impact angle error γε  goes to zero as 0got → . 

Proof) The differential equation given in Eq.(26) is a sort of 
Cauchy-Euler equation. It can be converted into an ordinary 
differential equation by introducing a new independent variable 

ζ , which is defined as below: 

got eζ= (28) 

Eq.(26) is rewritten by applying Eq.(28). 

0
d

k
d

γ

γ

ε
ε

ζ
− = (29) 

The solution of Eq.(29) is obtained as, 
kKe ζ

γε = (30) 

where K  is a constant. By substituting Eq.(28) into Eq.(30), 
the following equation is derived. 

k
goKtγε = (31) 

K  is obtained from the initial value of γε  and Eq.(31). 

0

k
f

K
t

γε 
=  

  
(32) 

where 
0γε  is the initial value of γε  and  ft  denotes the 

terminal time. γε  is obtained from Eq.(31) and Eq.(32). 

0 k
gok

f

t
t

γ

γ

ε
ε

 
=  

  
(33) 

It is observed from Eq.(33) that γε  converges to zero as 

0got →  in 0k >  cases, which completes the proof.          ■ 

The main reason to introduce this error dynamics is to drive 

γε  to zero within a finite ft . Also, since the trend of γε  with 

this error dynamics becomes Eq.(33), which is a got

polynomial form, the users are able to easily predict the shape 

of γε  decrement. Due to those two advantages, the desired 

error dynamics in Eq.(26) is utilized in this paper. This error 
dynamics is also utilized in [23], which deals with the impact 
time and angle control guidance law design. 

Then, 1u  is derived from Eqs.(14), (17), (19) and (26) under 

the assumption that dγ  is constant. 

1

go

k
u

t

γε

β

 
=   

 
(34) 

Finally, the IACG law denoted by Mu can be obtained by 

combining Eqs.(19) and (34). 

ˆ
fd M

M

go

k
u

t

γ γα

β β

− 
= − +   

 
(35) 

Note that the second term of Eq.(35) converges to zero at the 
terminal time as proven in Lemma 2. Therefore, we can infer 

that the IACG command converges to 0u  as 0got →  and that it 

possess the same characteristics as Cu , which means the 

capturability of Mu  is guaranteed. 

Also, it is shown from Eqs.(9) and (10) that ˆ
f fM Mγ γ→  as 

ft t→ . This can be rewritten from Eq.(27) that ˆ
f fM Mγ γ→  as 

0got → , meaning that ˆ
fMγ  becomes more accurate as the 

missile approaches the target. Since Lemma 2 shows that  

ˆ
fM dγ γ→  as 0got → , from these observations, we can finally 

predict that 
fM dγ γ→  as 0got → . 

The above result shows that the design methodology of this 

paper is able to generate a IACG law with just the ˆ
fMγ  of a 

capturability-proven guidance law. Namely, if the expressions 

of  ˆ
fMγ  are known for any capturability-proven guidance laws 

for various missile and target motions, they can be simply 
extended to their impact angle control versions using Eqs.(15), 
(16) and (35). Therefore, if we already have capturability- 
proven guidance laws, we do not need to reformulate the 
guidance problem and start all over again to obtain IACG laws. 



IV. EXAMPLES OF IACG LAW DESIGN

In this section, some sample cases will be provided to help 
readers better understand how our design methodology works. 
In order to demonstrate the effectiveness of the proposed design 
methodology, we consider caputrability-proven guidance laws 
for various missile and target motions, as discussed below. 

A. Constant Speed Missile & Stationary Target 
First, we consider a constant speed missile and a stationary 

target. It is well-known that the pure proportional navigation 
(PPN) guidance law is effective for this missile and target 
motion. PPN guidance command is given by 

C Mu NV σ=  (36) 

where N  is the navigation constant. According to [4], it is 

already known that ˆ
fMγ  for PPN is obtained as, 

1
ˆ

1 1fM M

N

N N
γ σ γ= −

− −
(37) 

Then, α  and β  are calculated by applying Eqs.(15) and (16) 

to Eq.(37). 

1

N

N
α σ=

−
 (38) 

( )
1

1MV N
β = −

−
(39) 

Finally, the impact angle control version of PPN is simply 
determined by substituting Eqs.(38) and (39) into Eq.(35). 

( ) ( )
1

ˆ
f

M

M M d M

go

kV N
u NV

t
σ γ γ

−
= − − (40) 

Note that the first term in Eq.(40) is identical to the original 
homing guidance law in Eq.(36) and this result matches with 

Lemma 1. Also, in the case of 1k = , Eq.(40) is equal to the 

IACG law as obtained in [10]. If 2N n= +  and 1k m= +  for 

0n m> ≥  are chosen, then the above guidance command can 

be converted to TPG (time-to-go polynomial guidance) as 
detailed in [8]. Therefore, we can predict that the proposed 
method is a more general approach to designing IACG laws. 

B. Constant Missile Axial-Acceleration 
& Constant Target Turn-Rate 
In this example, the target is assumed to perform maneuvers 

with a constant turn-rate (i.e., 0Tu = ) and the missile is 

assumed to have a constant axial acceleration (i.e., 0MA = ).  

For this target and missile motion, a capturability-proven 

homing guidance law Cu  is given as, 

'

2avgC M T M M

N
u NV u Aσ γ= + − (41) 

where 

' avg

avg

M

C

V
N N

V
= (42) 

The proof of the capturability of the guidance law in Eq.(41) is 

given in Appendix. It also contains the definitions of 
avgMV  and 

avgCV  in Eq.(42). In this case, ˆ
fMγ  is given by (see Appendix) 

( )

'1
ˆ

ˆ ' 1 ' 1 ' 1

'ˆ
' 1 2 ' 1

avg

f

f

avg

f

avg

M M T
M M T

M

M M T
M

C

NV V N V

N N NV

V NV N u
V R

N N V

γ σ γ γ

θ


= − +

− − −

− 
+ + +   − −   

 (43) 

Then, α  and β  are calculated from Eqs.(15), (16) and (43) 

with small angle approximation, cos 1Tγ  . 

( )
' 1 1 1

ˆ ˆ ˆ' 1 2 ' 1 ' 1

avg

f f f

M

T M M

M M M

VN N
u A

N N NV V V
α σ γ= + −

− − −
  (44) 

1 1
ˆ' 1

fM
N V

β = −
−

(45) 

In a similar way, the impact angle control version of Cu  as 

shown in Eq.(41) is derived as, 

( )
( )

ˆ ' 1'
ˆ

2

f

avg f

M

M M T M M d M

go

V NN
u NV u A k

t
σ γ γ γ

−
= + − − −  (46) 

For a target with the constant turn rate, dγ  is given as below: 

T
d T go d

T

u
t

V
γ γ= + + Γ (47) 

Note that the first to third terms in Eq.(46) are identical to the 
original homing guidance law as we predicted from Lemma 1. 

C. Constant Missile Axial-Acceleration 
& Constant Target Axial-Acceleration
Next, both the target and missile are assumed to be boosted 

with a constant axial-acceleration (i.e., 0TA =  and 0MA = ). 

To consider those target and missile motions, a Cu  that 

guarantees capturability is given as, 
*

2avgC M T T M M

N
u NV A Aσ γ γ= + − (48) 

where 

* avg

avg

M

C

V
N N

V
= (49) 

2avg

avg

M
M M

C

A R
V V

V
= + (50) 

ˆ
f

avg

M M M

C

R
V V A

V
= + (51) 

( ) ( )( )21
2 cos cos

2avgC C C M M T TV V V A A Rγ σ γ σ= + + − − −  

(52) 

( ) ( )cos cosC M M T TV V Vγ σ γ σ= − − − (53) 

The capturability of the guidance law in Eq.(48) is able to be 
verified as the way similar to Appendix. The IACG law for the 

constant MA  and TA  case is determined from the algorithm 

proposed in Section III and Eq.(48). 



( )
( )

** ˆ 1
ˆ

2

f

avg f

M

M M T T M M d M

go

V NN
u NV A A k

t
σ γ γ γ γ

−
= + − − −

(54) 
where 

d T dγ γ= + Γ (55) 

( )

*

* * *

*

* *

1
ˆ

ˆ 1 1 1

ˆ
1 2 1

avg

f

f

avg

f

avg

M M T
M M T

M

M M T
M T

C

NV V N V

N N NV

V NV N A
V R

N N V

γ σ γ γ

θ γ


= − +

− − −

− 
+ + +  − −   

(56) 
The obtained guidance law in Eq.(54) contains its original 
homing guidance command (i.e., the first to third terms). 

D. Implementation Issues
In order to implement the guidance laws derived with the 

proposed design methodology, the obtained guidance 

commands basically require information about the R , σ , σ , 

MV , Mγ , MA , TV , Tγ , TA , or Tu . In general, those 

parameters can be measured or estimated using seeker and 
inertial navigation systems (INS). 

Also, IACG laws designed with the proposed methodology 

require got , as shown in Eq.(35). For practicality, the following 

got  estimation method is used in this study. 

avg

go

C

R
t

V
= (57) 

Note that, although the linearized engagement dynamics 
model in Eqs.(3.a)-(3.c) is utilized during the derivations of the 
guidance laws in this section, the linearized terms are 

substituted with the nonlinear variables, like σ  or Mγ , in the 

final guidance law expressions in Eqs.(40), (46), and (54). This 
implies that the sample IACG laws are applicable for the 
nonlinear guidance geometries. 

V. NUMERICAL RESULTS

Simulations were conducted to examine the performances 
and characteristics of the sample IACG laws for two scenarios: 

Scenario A – Constant MA  Missile & Constant Tu  Target 

Scenario B – Constant MA  Missile & Constant TA  Target 

The parameter settings for the simulations are addressed in 

Table 1. For each scenario, five different dγ  are defined. The 

guidance law in Eq.(46) is applied for Scenario A, and Scenario 
B is conducted with the law in Eq.(54). All the simulations are 
performed with the nonlinear dynamics model in Eqs.(2.a)
-(2.c). 

Fig. 2 and 3 show the simulation results of Scenarios A and B. 

The results without the impact angle control terms ( 0k = ) are 

also addressed. Scenarios A and B result in a significant missile 
velocity drop as shown in Fig. 2 (b) and Fig. 3 (b). Considering 
the worst case in each scenario, Case 1 of Scenario A shows 
about 37%  missile velocity drop in 15  seconds while the 

target is performing 3g  of maneuver, and Case 1 of Scenario B 

shows about 55%  missile velocity drop and almost 167%

target velocity increase in about 6.7  seconds. Moreover, since 
the simulations are conducted with nonlinear dynamics model, 
the small angle approximations are broken during the 
simulations. Fig. 2 (d) and Fig. 3 (e) show that, although 
engagement conditions are dramatically varying with time and 
small angle approximations are invalid, the IACG law for each 
scenario achieves the given terminal impact angle constraints. 

The initial value of 0u  is the same for all the cases of a 

certain scenario, as given in Eq.(19). The remaining part of the 

guidance command, 1u , is defined in Eq.(34) and it is 

proportional to γε . Since the initial value of 1u  is proportional 

to the initial γε  as shown in Eq.(34), for the same scenario, the 

differences on the initial guidance command between 0k =

case and other cases are proportional to the initial γε . Those are 

observed in Fig. 2 (c) and Fig. 3 (d). 

VI. CONCLUSION

A new methodology to design IACG laws is proposed in this 
paper. The proposed methodology enables existing homing 
guidance laws to be extended to IACG laws, while maintaining 
their original characteristics. Any kind of homing guidance law 
can be extended to IACG laws for various target motions using 
the proposed methodology, with only its estimated terminal 
flight path angle equation. In addition, cases of varying missile 
velocity can be accommodated if their profiles are known. 

The guidance law designed by the proposed methodology is 
composed of two terms: one for the objectives of the original 
guidance law and the other for impact angle control. As 
examples, guidance law designs for a stationary target, and for 
constant axial acceleration missiles against constant turn-rate or 
constant axial-acceleration targets were addressed, and the 
guidance performances were demonstrated using computer 
simulations. 

Based on the proposed methodology, IACG laws for various 
target motions and missile velocity profiles will be developed 
in future studies. 

APPENDIX

This appendix provides the proof of the capturability of the 
homing guidance law shown in Eq.(41). The capturability will 
be proven by showing that the lateral positions of missile and 

target at the terminal time are identical. First, R  is 

approximated as got  multiplied by the average closing velocity 

of missile and target in the time interval ft t   , 
avgCV . 

avgC goR V t (58) 

The derivation of 
avgCV  starts from the closing velocity at time 

t , ( )CV t , which is given by 

( ) ( ) ( )( ) ( ) ( )( )cos cosC M M T TV t V t t V t tγ σ γ σ= − − −  (59) 

Under the assumption that the variations on ( )Mγ σ−  and 



( )Tγ σ−  in ft t    are small, the time derivative of CV  is 

given as the following constant value in this time interval. 

( ) ( )( )cosC M MV A t tγ σ= − (60) 

Eq.(60) results in the relationship between ( )CV t  and 
fCV  as, 

( ) ( ) ( )( ) ( )
22 2 cos

fC C M MV V t A t t R tγ σ− = − (61) 

where 
fCV  represents the closing velocity at the terminal time. 

Then, from Eq.(61), 
avgCV  in ft t    is determined as below: 

( ) ( ) ( ) ( )( ) ( )21
2 cos

2avgC C C M MV V t V t A t t R tγ σ = + + −  
 (62) 

and 
avgCV  is set to be constant in ft t   . R  is obtained from 

Eq.(58). 

avgCR V= − (63) 

The average value and estimated terminal value of missile 

velocity, 
avgMV  and ˆ

fMV , are given from Eqs.(3.c) and (58). 

2avg

avg

M
M M

C

A R
V V

V
= + (64) 

ˆ
f

avg

M M M

C

R
V V A

V
= + (65) 

σ  is obtained from Eqs.(1.b), (3.a), (4), and (58). 

( ) ( )2

1 1

avg avg

T M T M

C go C go

v v y y
V t V t

σ = − + − (66) 

The following differential equation is given from Eqs.(3.a), 
(3.b), (41), and (66). 

( ) ( )

2

2

2

1 1
' '

1 1
'

2

M M M

go go

T T go T go

go

y N y N y

N y t v t t u t

τ τ

τ

+ +

 
= + + 

 

 

(67) 

where 

go f ft t tτ τ τ  = − ∈   (68) 

Since the above equation is given as a well-known Cauchy- 
Euler equation form, the solution of Eq.(67) is simply obtained. 

( ) ( )' 2
1 2

1

2
N

M go go T T go T goy C C y t v t t u tτ τ= + + + +  (69) 

' 1
1 2' N

M gov N C Cτ −= − − (70) 

where 

( ) ( )

( ) ( )

2
1 '

1 1 1

' 1 2
T T go T goN

go

M go M

C y t v t t u t
N t

v t t y t

  
= − − + + −  

+ + 

 (71) 

( ) ( )

( ) ( )

2
2

1 1 1
'

' 1 2

'

T T go T go

go

M go M

C N y t v t t u t
N t

v t t N y t

  
= − + + −  

+ + 

 (72) 

The terminal value of lateral position, 
fMy , is obtained by 

applying ftτ =  to Eq.(69). 

( ) ( ) ( ) 21

2f fM M f T T go T go Ty y t y t v t t u t y= = + + =  (73) 

which completes the capturability proof of Cu  in Eq.(41). 

From Eqs.(1.a), (1.b), (3.a), (4) and (69), 
fMv  of the 

guidance law in Eq.(41) is obtained as follows: 

( )

'

' 1 ' 1 ' 1 ' 1

'

2 ' 1

avg avg

f

avg

M M MM T
M M T

T

C

NV V NVV N V
v

N N N N

uN
R

N V

σ γ γ θ
− 

= − + +   − − − − 

+
−

 (74) 

Finally, the expression of ˆ
fMγ shown in Eq.(43) is obtained by 

applying the relationship in Eq.(8). 
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Table 1 Simulation Parameters 

N k
( )

0 0

T

M MX Y

( )km

( )
0 0

T

T TX Y

( )km

MV

( )/m s

0Mγ

( )
MA

( )2/m s

0TV

( )/m s

0Tγ

( )
Tu

( )g

TA

( )2/m s

( )dΓ 

Case 1 Case 2 Case 3 Case 4 Case 5 

A 3 1 ( )0 0
T

( )10 0
T

1200 0 30− 200 180 3− 0 60− 30− 0 30 60

B 3 1 ( )0 0
T

( )5 0
T

1200 0 100− 100 135 0 25 0 45 90 135 180

Fig. 2 (a) Trajectory Fig. 2 (d) Aspect Angle Fig. 3 (c) Target Velocity 

Fig. 2 (b) Missile Velocity Fig. 3 (a) Trajectory Fig. 3 (d) Maneuver Acceleration Command 

Fig. 2 (c) Maneuver Acceleration Command Fig. 3 (b) Missile Velocity Fig. 3 (e) Aspect Angle 

Fig. 2. Results of Scenario A Fig. 3. Results of Scenario B 
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