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ABSTRACT

This paper deals with ranking and selection problem via
simulation.  We present an optimal computing budget
allocation technique which can select the best of k simu-
lated designs.  This approach can intelligently determine
the best simulation lengths for all simulation experi-
ments and significantly reduce the total computation cost
to obtain the same confidence level.  Numerical testing
results are included.  Also we provide the results of
analysis for some parameters which affect the perform-
ance of our approach.  Besides, we compare our method
with traditional two-stage procedures.  Numerical results
show that our approach is much faster than the tradi-
tional two-stage procedures.

1  INTRODUCTION

In order to design and efficiently manage large man-made
systems such as communication networks, traffic sys-
tems, and automated manufacturing facilities, it is often
necessary to apply extensive simulation to study their
performance since no closed-form analytical solutions
exist for such problems.  Unfortunately, simulation can
be both expensive and time consuming.  Suppose we
want to compare k different system designs.  We conduct
N simulation replications for each of the k designs.
Therefore, we need kN simulation replications.  The
simulation results become more accurate as N increases.
If the accuracy requirement is high (N is not small), and
if the total number of designs in a decision problem is
not small (k is large), then kN can be very large, which
may easily make total simulation cost extremely high
and preclude the feasibility of simulation approach.  The
effective reduction of computation costs while obtaining
a good decision is crucial in simulation.
Dudewicz and Dalal (1975) develop a two-stage proce-
dure for selecting the best design or a design which is
very close to the best design.  In the first stage, all de-
signs are simulated with n0 replications.  Based on the
results obtained from the first stage, the number of addi-
tional simulation replications is determined for each de-
sign in the second stage to achieve the desired confidence
level.  Rinott (1978) presents alternative way to estimate
the number of required simulation replications in the
second stage.  Many researchers have extended this idea
to more general ranking and selection problem in con-
junction with new developments (Charnes, 1991,
Matejcik and Nelson, 1993, Bechhofer, Santner, and
Goldsman, 1995, and Hsu, 1996).

To further reduce the overall computation cost, Chen
(1995) formulates the procedures of selecting the best
design as another optimization problem.  The ideas are as
follows. Intuitively, some inferior designs can be dis-
carded at an early stage of simulation.  As the simulation
proceeds, some designs can be further ignored when
higher simulation accuracy for the remaining designs is
obtained.  This procedure is repeated until a desired confi-
dence level is achieved.  Proceeding in this fashion, little
effort is wasted on simulating inferior designs; the over-
all simulation time is hence reduced.  Then the question
is how to systematically do this? When? And which de-
signs? Ideally, we want to optimally choose the number
of simulation replications for all designs to minimize the
total simulation cost, while obtaining the desired confi-
dence level.  In fact, this question is equivalent to opti-
mally decide which designs will receive additional com-
puting budget for continuing simulation or to find an
optimal way to reach an optimal design.

Chen et al. (1996) provide an approach to solve such
an optimization problem.  They use Chernoff bounds to
estimate the gradient information and then apply steepest
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descent method to solve this optimization problem.
While this approach can effectively solve the optimal
computing budget allocation problem, the complexity of
In this paper, we present another simple way of
estimating gradient information.  From numerical results
we observe that the performance of this new approach is
even better than that in Chen et al. (1996).  Additionally,
we compare our approach with the traditional two-stage
procedures by conducting a numerical experiment.
Numerical results show that our approach is more than
ten times faster than the two-stage procedures.

Since our approach is based on the Bayesian model
presented in Chen (1995), we will give an overview of
that model for selecting the best design in the next Sec-
tion.  In Section 3, we define the “optimal computing
budget allocation“ problem and propose a sequential ap-
proach.  We also demonstrate the numerical testing in a
simple example.  Section 4 discusses two crucial factors,
initial simulation length and one-time incremental com-
puting budget.  Section 5 gives a brief review of tradi-
tional two-stage procedure and compares our method with
the two-stage procedure.  Section 6 concludes this paper.

2  PROBLEM FORMULATION AND CON-
FIDENCE LEVEL QUANTIFICATION

Suppose that our goal is to select a design associated
with the smallest mean performance measure among k
designs with unknown variances that are not necessarily
equal. Further assume that the computing budget is lim-
ited and the number of designs is large.  Denote

k :  the total number of designs,
X ij :  the j th i.i.d. sample of the performance measure

from design i,
Ni :  the number of simulation replications for design i,

µ i :  the sample mean for design i, µ i = 1
Ni

Xij
j=1

Ni

∑ ,

µ i :  the mean performance measure; µ i  = E(Xij),

σ 2 :  the variance for design i.

When N’s are large, µ i  can be a good approximation
for µ i , since, according to the law of large numbers,
P{µ i → µ i} → 1, as Ni → ∞ . Batch means method
(Schmeiser 1982) can be used if the simulation samples
from any design are not independent.  Given the fact that
we can conduct only a finite number of simulation repli-
cations, µ i  is simply an approximation to µ i .  Using
the approximation results to select the best design we
have to access the probability of correct selection
(without loss of generality, we consider minimization
problems in this paper; thus, the “best” design means the
design with the smallest µ i ).  Correct selection can be
Chernoff bounds becomes a major obstacle to include
some second-order optimization techniques, such as New-
ton’s method, to achieve a faster convergence rate.  
defined as a design with the smallest sample performance
measure which is actually the best design.  In the re-
mainder of this paper, let “CS” denote “correct selection“

There exists a large literature on selecting the best
design.  Goldsman and Nelson (1994) provide an excel-
lent survey on current approaches (e.g., Goldsman,
Nelson, and Schmeiser, 1991, Gupta and Panchapakesan,
1979, and Law and Kelton, 1991) to estimating simula-
tion confidence level.  In addition, Bechhofer, Santner,
and Goldsman (1995) give a systematic and more detailed
discussion on this issue.  These approaches are mainly
suitable for problems having a small number of designs
(e.g. Goldsman and Nelson (1994) suggest 2 to 20
designs).  However, for real-life problems, the number of
designs can easily grow extremely large.  Chen (1996)
provides an effective way to quantify confidence level
when the number of designs is large. From Chen (1996)
we have

P{CS}
    =P{ a design with the smallest sample mean perform-

ance is really the best design}

= P{µ̂ b <
i=1
i≠b

k

∏ µ̂ i}= APCS                                      (1)

where index b designates the design having the smallest
sample mean performance and µi is the posterior distribu-
tion which consists of information from both prior dis-
tribution and the samples {Xij, j = 1,2,...,Ni}.  Under the
assumption of normality,

µ̂ i ~ N(
1
Ni

Xij ,
σ i

2

Nij=1

Ni

∑ )   for  i  = 1,2,...,k.

We refer to this lower bound of the correct selection
probability as the Approximate Probability of Correct
Selection (APCS)  While P{CS} is very difficult to ob-
tain, APCS can be computed easily.  We will use APCS
to approximate P{CS}. Numerical testing in Chen
(1996) shows that it can provide reasonably good ap-
proximation.  Furthermore, the sensitivity information
of the confidence level with respect to simulation replica-
tions can be easily obtained when the approach in Chen
(1996) is applied, which provide the basis to determine
the allocation of the computing budget in this paper.
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3  GRADIENT APPROACH FOR OPTIMAL
COMPUTING BUDGET ALLOCATION

We wish to minimize the total computation cost while
obtaining a desired confidence level in selecting the best
system out of k competing designs.  If simulations are
performed on a sequential computer, the computation
cost can be approximated by   N1 + N2 +L +Nk .  Ideally
we want

min(  N1 + N2 +L +Nk )                       (2)
s.t. APCS ≥  P*

where P* is a user-defined confidence level requirement.
Note that N1, N2,,..., Nk are integers and APCS(N1,
N2,..., Nk) can be computed only after exhausting the
total simulation budget,   N1 + N2 +L +Nk . Solving this
problem can be difficult, especially when k is extremely
large.  Since the purpose of solving (2) is to reduce
computation cost with a desired confidence level, we
should not spend too much effort solving (2) during
simulation.  Otherwise, the additional cost of solving (2)
will overwhelm the benefits of the computing budget
allocation.  Hence, we need to solve (2) very efficiently,
even if this means obtaining a sub-optimal solution.
Efficiency is more crucial than optimality in this setting.

We now present a sequential approach to determine the
number of simulation replications.  Before conducting
the simulation, there is neither knowledge about APCS
nor an idea about how to allocate budget, therefore all
designs are simulated with n0 replications, and the poste-
rior distribution for design i is

N(
1
n0

Xij ,
σ i

2

n0

)
j=1

n0

∑

We use this statistical information to decide on further
allocation.  In other words, after running n0 replications
for each design, we have a basic idea about each design
and can decide which designs are worthy of being
allocated more of the computing budget.  Furthermore,
let ∆ i be the additional computing budget allocated to
design i in each step (∆ i is a non-negative integer).  In
order to effectively allocate the computing budget for
further simulation, it is necessary to know how APCS
would be affected if further replication ∆ i is added
independently to each design i.  Under a Bayesian model,
it is convenient to use the statistical information at Ni to
estimate APCS at Ni + ∆ i by using an approximated
posterior distribution

N(
1
Ni

Xij ,
σ i

2

Ni + ∆ i

)
j=1

Ni

∑   for design i
We refer this approximation to EAPCS (Estimated
Approximate Probability of Correct Selection). We as-
sume that ∆i is not large and Ni is close to N i + ∆ i; oth-
erwise EAPCS is not a good estimator for APCS.  Note
that Ni can be replaced by n0 for each design when poste-
rior distribution is approximated at n0 + ∆i.

We hope that APCS becomes larger as simulation
proceeds; we sequentially add computing budget by ∆
each time until that APCS achieves a satisfactory level

P*.  In order to minimize the total computation cost,
this budget ∆ should be allocated among designs so as to
maximize the EAPCS.  Thus, at step l, l = 1,2,...,

max
∆1

l , ⋅⋅⋅, ∆k
l

EAPCS(N1
l + ∆1

l , N2
l + ∆ 2

l +⋅ ⋅ ⋅+ Nk

l + ∆ k

l )

s.t. ∆ i

l = ∆ and
i=1

k

∑ ∆ i

l ≥ 0  for all i.                       (3)

We assume the system parameter are continuous so
that the gradient method (Luenberger 1984) is applied to
approximately solve (3).  A major issue for using the
gradient method is the estimation of gradient informa-
tion.  Chen et al. (1996) apply Chernoff bounds to esti-
mate the gradient information and provide an effective
solution to (3). However, the complexity of Chernoff
bounds becomes a major obstacle for applying some
second-order optimization techniques, such as Newton’s
method, to achieve a faster convergence rate.  In this
paper, finite differencing, we approximate the gradient
using a straightforward formula:

∂
∂Ni

EAPCS

= APCS(N1, N2 ,L , Ni + τ,L Nk ) − APCS(N1, N2 ,L , NiL , Nk )
τ

where τ  is a small number.  To avoid spending too
much time in iteratively finding the solution for (3), we
only execute a small number of iterations (e.g. 2 times)
when applying the gradient method.  In summary, we
have the following algorithm:

 A Sequential Algorithm for Optimal
Computing Budget Allocation (OCBA)

Step 0. PERFORM  SIMULATION with  n0 replica-
tion for all designs,
l  ←   0,

  N1
l = N2

l =L = Nk

l = n0 .

Step 1. If APCS(  N1
l , N2

l ,K , Nk

l ) ≥ P∗ , stop, 

otherwise, go to Step 2.
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Step 2. Solve (3),
Ni

l+1 = Ni

l + ∆ i

l , for i  = 1,...,k.  

l ← l +1.
Step 3. PERFORM SIMULATION until 

(  N1
l , N2

l ,K , Nk

l ); go to Step 1.

Numerical Testing
To compare the method provided in this paper with our
previous approach (Chen et al. 1996), we test a simple
G/G/1 queue (k = 10).  There is one server with uni-
formly distributed service times and customer interarrival
times are also distributed uniformly.  In this single-node
example, all designs have the same arrival time uni-
formly distributed over [0.1, 1.9], and service time in
design i is uniform[0.1, 1.3 + 0.05i], i = 1, 2, ..., 10.
We want to find a design with minimum average system
time for customers served in the first 10 time units
(terminating simulation).  Obviously, higher service rate
results in shorter system time in this example, therefore,
design 1 is the true best design.  In the numerical ex-
periment, we compare the computation costs and the
actual convergence probabilities P{CS} for different ap-
proaches.

We set ∆ = 12 and n0  = 10 in this example.  To avoid
spending too much time in solving (3), we only do two
iterations in the gradient method.  10,000 independent
experiments are performed so that the average computa-
tion cost and P{CS} can be estimated.  Different confi-
dence level requirements are also tested.  Table 1 contains
the test results using a Chernoff bound approach (Chen
et al. 1996).  Table 2 shows the results using the ap-
proach presented in this paper.

Table 1. Average total number of simulation replications
and P{CS} by using Chernoff bounds ( n0  = 10 and ∆  =
12).

P* With Chernoff
Bounds

P(CS)

60% 190.15 0.722
80% 352.73 0.89
90% 541.37 0.962
95% 764.58 0.982

Table 2. Average total number of simulation replications
and P{CS} for OCBA application ( n0  = 10  and ∆ = 12).

P* With OCBA P(CS)
60% 196.47 0.722
80% 344.31 0.866
90% 523.64 0.963
95% 735.43 0.981
From Table 1 and Table 2, we observe that the per-
formances of the two approaches are not much different
for small P* (e.g., ≤ 80%). while the new approach is
faster when the confidence level requirement P* is high
(e.g., > 90%).

4  SELECTION FOR n0 AND ∆

To apply our approach, we need to select the initial
simulation replication n0  and one-time increment of
computing budget ∆ .  These two parameters may affect
the performance of our approach.  In this section we give
recommendations for selecting these two parameters,
although a good choice can be problem-specific.

Initial Simulation Replication Number n 0

We test the example presented in Section 3 for differ-
ent values of n0.  Figure 1 shows the numerical results
with respect to different confidence level requirements
P∗ .  It is well understood that n0  can not be too small;
otherwise, the estimates of mean and variance may be
very poor, resulting in poor computing budget alloca-
tiontion.  On the other hand, if n0  is too large, we may
waste our computation time to reach a confidence level
which is much higher than the desired level. Intuitively
such an effect is less significant when P∗  is large.  

The computation cost vs. n0  for different confidence
level requirements is shown in Figure 1. From Figure 1,
we observe that the computation cost is not sensitive to
n0 when P∗  is greater than 90%.  For the cases that P∗

is less than 80%, which is not common in real-life ap-
plications, a good choice for n0 is a number between 10
and 20 based on our empirical experiences.

One-time Incremental Computing Budget ∆
Again, the selection of ∆  is problem-specific.  Gener-

ally speaking, large ∆  may result in wasting computa-
tion time to obtain an unnecessarily high confidence
level.  On the other hand, if ∆  is too small, we need to
solve the budget allocation problem many times, dilut-
ing the benefit of this approach.  We test the same ex-
ample for different selections of ∆.  To have a fair com-
parison, instead of comparing the simulation replication
numbers, we compare total CPU time, which consists of
simulation time (the CPU time for simulation only) and
optimization time (the CPU time to solve budget alloca-
tion by applying the gradient method).  Figure 2 shows
the numerical results with respect to P∗= 80%.  The
optimization time for large ∆  is much smaller than that
for small ∆ .  Conversely, the simulation time for large
∆  is larger than that for small ∆ .  We observe that a
good selection of ∆  for a 10-designs problem is a num-
ber between 15 and 30 based on our empirical experi-
ences.
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5  COMPARISON WITH OTHER METHODS  

In this section we compare our approach with two-stage
procedures given by Dudewicz and Dalal (1975) and
Rinott (1977) by using the example presented in Section
3.  Unlike our Bayesian approach, these two-stage
procedures are developed based on classic statistical
model.  It is convenient to let (1),...,(k) denote the
unknown indices such that

  µ (1) ≤ µ (2) ≤L ≤ µ (k)

The goal in two-stage procedures is the same as ours:
to select a design with the smallest mean, µ (1) .  Based on
the “indifference-zone” idea we may be willing to choose
design (2) if µ (1)  and µ (2)  are very close (e.g.
µ (2) − µ (1) ≤ d ∗ , where d ∗ is the indifference-zone).  By
doing so, the procedure can avoid making a large number
of simulation replications to separate small difference.
More specifically, we intend to determine the number of
simulation replications to ensure

P{µ (1) < µ (i) ,∀ i ≠ 1µ (i) −µ (1) ≥ d ∗} ≥ P∗

The procedure is as follows. Before performing the
simulation we specify three parameters: the confidence
level requirement P∗ , the simulation replication in the
first stage n0 , and indifference zone d ∗.  Let h solve
Rinott's or Dudewicz’s integral given P∗ , n0, and k (h
can also be found from the tables in Wilcox (1984) for
Rinott’s procedure, and those in Gibbons (1977) for
Dudewicz’s procedure).  In the first stage, all designs are
simulated with n0 replications.  Based on the resulting
variance estimate obtained from the first stage, we deter-
mine how many additional simulation replications for
each design should be conducted in the second stage in
order to reach the desired confidence level:

Ni = max(n0 , (hSi / d * )2 ) , for i = 1, 2,…, k.

  where •   is the integer “round-up” function.  

Bigger d ∗ means larger indifference zone, resulting in
lower simulation cost.  In our previous testing, we are
interested in finding the design with smallest mean µ (1) .
To have a fair comparison, d ∗ can not be greater than
µ (2) − µ (1) which is around 0.059, estimated by using
simulation.

Two confidence levels P∗= 0.9, 0.95 and initial sam-
ple replication n0  = 10 and n0  = 20 have been tested.  In
these tests, we have 2 iterations in each sequential opti-
mization step when using OCBA to solve (3) solved.
For the case of OCBA we apply one-time incremental
computing budget ∆ = 12.  When applying Rinott’s and
Dudewicz’s procedures, we set the indifference zone d ∗ =
0.059 ( µ (2) − µ (1) ≤ 0.059).  In both cases 10,000 inde-
pendent experiments are run to evaluate the computa-
tional efficiency and to estimate the actual convergence
probabilities P{CS}.  The computation cost and P{CS}
are given in Table 3 and Table 4 corresponding to n0  =
10 and n0 = 20, respectively.  From Table 3, significant
speedup is observed for our method over both two-stage
procedures, while the actual convergence probabilities for
all approaches are no less than the desired levels.  The
average speedup is approximately 13.74 times and 12.48
times over the Rinott‘s and Dudewicz’s procedures, re-
spectively, when P∗  = 95% and  n0  = 20.

Figures 3 and 4 show the average Ni for all i over the
10,000 experiments using our approach and Rinott’s
procedure respectively ( P∗= 90% and n0 = 10).  From
these two figures, we observe that the budget allocation
using our approach is quite different from that using
Rinott’s procedure.  Two-stage procedures determine the
number of simulation replications for all designs using
only the information of sample variances.  The informa-
tion on their sample means is not utilized.  On the other
hand, our approach exploits the information of both
sample means and variances, achieving much faster per-
formance.

Table 3.  Average total number of simulation runs and
the probability of correct selection as n0 = 10.

   n0   = 10   
P*=90% P(CS) P*=95% P(CS)

OCBA 523.64 0.962 755.23 0.989

Dudewicz's 8059.97 0.984 11023.2 0.995

Speedup 15.39 14.6

Rinott’s 9479.37 0.986 12646.2 0.995

Speedup 18.1 16.5

Table 4.  Average total number of simulation runs and
the probability of correct selection as n0 = 20.

   n0    = 20   
P*=90% P(CS) P*=95% P (CS)

OCBA 557.64 0.974 738.6 0.989

Dudewicz's 6832.02 0.975 9152.33 0.989

Speedup 12.25 12.48

Rinott’s 7978.62 0.99 10150.56 0.995

Speedup 14.31 13.74
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6  CONCLUDING REMARKS

In this paper we present an optimal computing budget
allocation technique that can select the best of k simu-
lated designs.  We also compare our approach with tradi-
tional two-stage procedures by conducting a numerical
experiment.  Preliminary numerical testing shows that
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our approach is more than ten times faster than two-stage
procedures.  Further testing and analysis of our approach
is under way.  Also the development of a more efficient
budget allocation technique which utilizes methods with
higher convergence rate, like Newton’s method, is one of
our research topics.
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