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New Developments in d = 4, N = 2 Superconformal Field Theories

Yuji Tachikawa

School of Natural Sciences, Institute for Advanced Study,
Princeton, New Jersey 08540, USA

Recent developments in the understanding of the dynamics of N = 2 superconformal
field theory in four dimensions are reviewed.

§1. Introduction

As we all know and love, N = 2 supersymmetric gauge theories have proved to be
a most effective playground to better understand various non-perturbative dynamics
of strongly-coupled gauge theory, since the seminal work pioneered by Seiberg and
Witten.1),2) One of the curious byproducts of this line of research was the discovery
of a new class of N = 2 superconformal field theories (SCFTs), first by Argyres and
Douglas3) in 1995 and later elaborated by many groups, Argyres-Plesser-Seiberg-
Witten,4) Eguchi-Hori-Ito-Yang,5),6) and Minahan-Nemeschansky,7),8) among oth-
ers. These SCFTs are characterized by simultaneous existence of mutually non-local
massless states. The very fact that the scaling dimensions of operators of such a mys-
terious system could be determined highlights the power of the approach of Seiberg
and Witten, but relatively little has been uncovered for about ten years since then.

Things started to change in the autumn of 2007 by the appearance of the work9)

by Argyres and Seiberg, in which a new type of S-duality between N = 2 SCFTs
was found. It enabled the prediction of the conformal central charges a and c of the
N = 2 SCFTs with flavor symmetry E6,7. This work was remarkable in that it was
the very first determination of the central charges of Argyres-Douglas-type SCFTs.
A holographic method to obtain the central charges was soon developed by Aharony
and the author,10) and then a general method applicable to any N = 2 SCFTs was
devised by Shapere and the author11) based on the topological twisting and holo-
morphy. The prediction from the S-duality was beautifully confirmed, and moreover
for the USp(2N) gauge theory with Nf fundamental quarks and one antisymmetric
hypermultiplet, the central charges were calculated both via the holography,10) and
via the topological twisting11) with perfect agreement. Here we would like to review
these recent developments.

§2. Basics of N = 2 SCFTs

Let us start by recalling how the superconformal point can be reached in the
SU(2) gauge theory with Nf = 1 quark of bare mass m.4) The moduli space of vacua
is parametrized by u = 〈trφ2〉 constructed from the complex adjoint scalar field φ,
and there are three special values u = u1,2,3 where a quark, a monopole or a dyon
becomes respectively massless. u1,2,3 depends on the bare mass m, which can be
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d = 4, N = 2 SCFT 177

carefully chosen so that u1 = u2. When we set the moduli u to be u1 = u2, one finds
that there are both massless quarks and massless monopoles. The Seiberg-Witten
curve close to this point is given by

y2 = x3 − 2(δm)x− δu (2.1)

with the Seiberg-Witten differential

λSW ∼ (δu)dx/y. (2.2)

The scaling of the curve determines the ratio of the dimensions of operators to be

D(x) : D(y) : D(δm) : D(δu) = 2 : 3 : 4 : 6. (2.3)

Now the dimension of the differential D(λ) should be one because it gives the scaling
of the masses of BPS states. Thus we know

D(δm) = 4/5, D(δu) = 6/5. (2.4)

The number of U(1) fields which couples to mutually non-local states is called the
rank of the theory. Thus the rank of the SCFT point reviewed above is one.

This construction was soon generalized to the N = 2 supersymmetric QCD.5),6)

It was soon noticed also that the rank 1 SCFTs including the example just dis-
cussed can be realized in terms of a D3-brane probing an F-theory 7-brane, and
it led to the discovery of the rank 1 SCFTs with flavor symmetry E6,7,8.7),8) The
scaling dimensions of operators were determined in the original papers, and various
other properties were soon studied: e.g. behavior of the beta functions near SCFT
points,12),13) more examples using M/F-theory,14) detailed construction of the mass
deformations,15) and the BPS spectrum.16),17)

The subject lay dormant for a while, apart from sporadic works e.g. Refs. 18) and
19) by staunch adherents, despite a great advance in the understanding of N = 1
SCFTs initiated by Ref. 20). To understand the situation let us review how the
central charges can be calculated.

In two dimensions, the conformal central charge c is proportional to the trace
anomaly in a curved background

〈Tμ
μ 〉 = −

c

12
R. (2.5)

Similarly, in 4D conformal field theories the trace anomaly depends on two constants,
a and c:

〈Tμ
μ 〉 =

c

16π2
(Weyl)2 − a

16π2
(Euler) , (2.6)

where Weyl is the Weyl tensor and Euler stands for the Euler density. For supercon-
formal theories, the supersymmetry relates the definition above to the anomalous
conservation of the R-current, which is given by

∂μRμ
N=1 =

c− a

24π2
RμνρσR̃μνρσ +

5a− 3c

9π2
FN=1

μν F̃μν
N=1 (2.7)
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178 Y. Tachikawa

for N = 1 SCFTs.21) Here, FN=1
μν is the field strength of the external gauge field

coupling to the U(1)R,N=1 current. This relation allows us to calculate a and c when
the U(1)R current can be uniquely identified in the ultraviolet, with the help of ’t
Hooft’s anomaly matching. When there are extra U(1)’s in the ultraviolet which
can mix with the U(1)R symmetry, the a-maximization procedure can be used to fix
which linear combination of U(1) symmetries becomes the infrared superconformal
R-symmetry,20) which ignited a great revolution in the study of the N = 1 SCFTs.
Unfortunately this method is not applicable for most of the N = 2 SCFTs, because
usually there is no continuous U(1) symmetry at all in the ultraviolet.

§3. New S-duality

The breakthrough came from an unexpected direction which was the study of
the weak-strong coupling duality of another class of N = 2 SCFTs. Consider SU(Nc)
gauge theory with Nf = 2Nc massless quarks. The one-loop beta function can be
easily seen to vanish. Supersymmetry then guarantees that the theory is conformal
to all loop order. Study of the Seiberg-Witten curves22),23) indeed suggests that
these theories are conformal even non-perturbatively, and the theory comes in a
one-parameter family labeled by the complexified gauge coupling

τ =
θ

π
+

8πi

g2
. (3.1)

For Nc = 2 and Nf = 4, it was uncovered in one of the original papers of Seiberg
and Witten2) that there is a duality group sending

τ → τ + 1, τ → −1
τ
, (3.2)

which is the well-known action of SL(2, Z). The existence of the symmetry τ → τ +1
rests on the fact there is no distinction of the doublet and the anti-doublet of SU(2).
For Nc ≥ 3, the duality group becomes instead

τ → τ + 2, τ → −1
τ
. (3.3)

The fundamental regions of two duality group actions are depicted in Fig. 1. The
nontrivial strong-weak duality τ → −1/τ exists for Nc ≥ 3, but it is not enough to
eliminate the infinitely strongly coupled point τ → 1 from the fundamental region.

The main objective of the work9) was to understand the physics close to the
infinitely strongly-coupled point for Nc = 3. Their proposal is the S-dual description
which is an SU(2) gauge theory with Nf = 1 quark at a weak coupling τ ′ = 1/(1−τ),
which is also coupled to the strongly-coupled rank-1 SCFT with flavor symmetry E6.
We denote this duality schematically as

SU(3) with 6× (3 + 3̄) ←→ SU(2) with 2× 2 and SCFTE6 . (3.4)

The best evidence for this duality comes from the detailed study of the Seiberg-
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SU(2) with Nf = 4 quarks SU(3) with Nf = 6 quarks
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Fig. 1. Fundamental region of the coupling constant τ .

Witten curves.9),∗) Here we present two simple consistency checks.
First is the matching of the global symmetry. The flavor symmetry on the LHS

is the unitary group which rotates 6 flavors, U(6) ∼ U(1) × SU(6). On the RHS,
there is an O(2) symmetry which rotates two doublets. The E6 flavor symmetry at
first seems too big to match the SU(6) part, but the duality posits that a subgroup
SU(2) ⊂ E6 is gauged by the gauge group SU(2). Therefore, the flavor symmetry
which remains is the maximal commuting subgroup which is SU(6). Thus the global
symmetries match.

Second is the matching of the central charge of the global symmetry just de-
termined. The conformal symmetry restricts the two-point functions of conserved
currents to be of the form

〈Ja
μ(x)Jb

ν(0)〉 = 3kG

4π4
δab x2gμν − 2xμxν

x8
+ · · · . (3.5)

kG is normalized9) so that a hypermultiplet in the fundamental representation of
SU(N) contributes 2 to it.

If the duality is true, the central charges of two subgroups SU(2)× SU(6) of E6

should be the same. The SU(6) central charge can be determined on the LHS of
the duality, where we can tune τ to go to the free field limit. There, we have three
hypermultiplet in the fundamental of SU(6), which gives kSU(6) = 6. The SU(2)
central charge can be read off from the RHS, by assuming the SU(2) gauge group
factor is conformal. When SU(2) is weakly coupled, the contribution to the one-loop
beta function is given by the current two point functions (3.5). We know that the
vector multiplet contribution is canceled by 〈Ja

μJb
μ〉 from Nf = 4 quarks, which have

k = 8. In this case we only have Nf = 1 quarks, which contribute 2 to k. Thus we
conclude the coupling of the SU(2) gauge multiplet to the SCFT of type E6 should
contribute kSU(2) = 8 − 2 = 6. Therefore, having kE6 = 6 explains both the SU(6)
flavor central charge and the finiteness of the dual SU(2) gauge group simultaneously.
This can also be thought of as the prediction of the E6 symmetry central charge of
this mysterious theory.

∗) Recently the agreement of the Higgs branches of both sides of the duality was demonstrated

in Ref. 40), which also provided a non-trivial check.
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180 Y. Tachikawa

Table I. Central charges calculated from the new S-duality.

G D4 E6 E7 E8

kG 4 6 8 12
24a 23 41 59 95
6c 7 13 19 31

Assuming that this duality is correct, we can compute a and c of the E6 SCFT
by calculating those of the SU(3) gauge theory and subtracting those of the SU(2)
gauge theory (including the hypermultiplet contributions) on the right hand side,
because we can tune the coupling constant τ or τ ′ in either side to the weak coupling
region. The contribution of a free hypermultiplet is

a = 1/24, c = 1/12 , (3.6)

while for a vector multiplet it is

a = 5/24, c = 1/6. (3.7)

To get a and c of the E6 theory, we recall that on the LHS we have 8 vectors and
18 hypers, while we have 3 vectors and 2 hypers on the RHS in addition to the E6

SCFT. Thus we find
a = 41/24, c = 13/6. (3.8)

Another duality was discussed in the work,9) which is schematically

USp(4) with 12× 4 ←→ SU(2) with SCFTE7 . (3.9)

The global symmetry of both sides is SO(12), and the flavor central charge is seen
to be k = 8. a and c can be obtained just as before. Later, the rank one isolated
SCFT with E8 flavor symmetry was found24) as a sector of the S-dual of rank three
perturbative gauge theories, e.g.

USp(6) with 14 + 11× 6 ←→ USp(4) with SCFTE8 . (3.10)

Again, the central charges a, c, kG can be calculated in a similar manner.∗)
One amazing aspect of these new dualities is that they are the first purely field-

theoretical construction of these strange SCFTs with flavor symmetry E6,7,8, which
was only known from F-theoretic construction.7),8) From that perspective, the SU(2)
gauge theory with Nf = 4 quarks whose global symmetry group is SO(8) = D4

naturally sits in the family. The central charges of these theories are tabulated in
Table I for convenience.

∗) The author recently learned that kE8 = 12 was already calculated in 1997 in an almost

neglected work by Cheung, Ganor and Krogh,25) both from field theory and from string theory.

Their methods are not applicable to a and c, but as for kG theirs are of the same flavor as the ones

explained below in §§4 and 5.
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d = 4, N = 2 SCFT 181

Table II. Properties of F-theory singularities.

G A0 A1 A2 D4 E6 E7 E8

n7 2 3 4 6 8 9 10
D 6/5 4/3 3/2 2 3 4 6

§4. Holographic realization

4.1. F-theory construction

The SCFTs for which the central charges were predicted from the S-duality is ex-
actly the one which can be realized using F-theory. In this section we describe10) how
we can use string theoretical methods to obtain the central charges, thus providing
a cross-check of the duality.

A rank-1 SCFT can be realized in F-theory by placing a D3-brane close to a
special type of 7-branes, close to which the dilaton is constant so that the gauge
coupling of the D3-brane is constant. Such special 7-branes were found26) using
the Kodaira classification, and are tabulated in Table II. There, G stands for the
low-energy gauge symmetry living on the singularity, and n7 is the tension of the 7-
brane measured against that of a D7-brane. As codimension-2 objects, they produce
conical singularities in the transverse space, with the total deficit angle proportional
to the number of 7-branes n7. For convenience we parametrize the deficit angle by
the change in the periodicity of the angular coordinate around the 7-brane,

2π → 2π/D. (4.1)

D is related to the tension of the 7-brane by

D =
12

12− n7
. (4.2)

Note that twelve (p, q) 7-branes produce a deficit angle of 2π, closing up the space,
while the D4 singularity may be viewed as an orientifold (reflecting the transverse
space) together with four D7-branes, so it has a deficit angle of π.

Now let us introduce N D3-branes on top of the 7-brane. The flavor symmetry
of the theory comes from the gauge symmetry G of the 7-brane. If we put the theory
at the origin of the Coulomb branch, i.e. if we put all of the D3-branes together on
top of the singularity, the theory becomes conformal. One can show that the lowest
dimension operator u which parameterizes the position on the Coulomb branch has
dimension D(u) = D, which explains our usage of the symbol D for the deficit angle.
There is also a Higgs branch emanating from the origin of the Coulomb branch, which
will not be relevant for our discussion here.

The only singularity where the value of the dilaton can be arbitrarily tuned is
the D4 singularity, which in the perturbative region may be viewed as a system
of four D7-branes on top of an O7− orientifold plane thus cancelling the dilaton
tadpole. The gauge theory on N D3-branes is an N = 2 USp(2N) gauge theory
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182 Y. Tachikawa

with four hypermultiplets in the fundamental representation, and one hypermultiplet
in the antisymmetric tensor. The hypermultiplets in the fundamental transform
as the fundamental of the D4 = SO(8) flavor symmetry. The trace part of the
antisymmetric tensor corresponds to the overall motion of the D3-branes parallel to
the 7-brane, which is completely decoupled from the rest of the theory.

The monodromy around other types of 7-branes fixes the dilaton, so these sys-
tems are inherently strongly coupled. The theories on one D3-brane near the 7-brane
of type An correspond to theN = 2 SCFTs found in the works,3),4) which were briefly
reviewed in §2.

Holographic dual description in the large N limit can be obtained by taking the
near-horizon limit of N D3-branes sitting on the 7-brane.27),28) This gives type IIB
string theory on AdS5×XD, with N units of F5 flux. Here XD is the round 5-sphere

{|x|2 + |y|2 + |z|2 = constant} ⊂ C
3, (4.3)

with the phase of z restricted to [0, 2π/D] and periodically identified. The 7-brane
of type G wraps the locus z = 0, which is a round S3. Massless gauge fields on
AdS5 arise both from the isometries of XD, and from the gauge fields on the 7-
brane. Now, the central charges can be expressed as a linear combination of ’t Hooft
anomaly coefficients as in (2.7), which in turn can be translated to the Chern-Simons
interaction in the AdS5 side. Therefore, we need to evaluate the Chern-Simons terms
in the gravity side to obtain a and c and kG. We discuss the O(N2), O(N) and O(1)
contributions in this order, and denote the O(N2) contribution to a by a(2), etc.

4.2. O(N2) contributions

The O(N2) contributions to the anomalies come only from the gravity in the
bulk, since the action of the 7-brane is of order N .29) The conformal anomalies a
and c were determined30) to be

a = c =
N2π3

4 vol(X5)
(4.4)

for general Einstein manifolds X5, where vol(X5) is the volume of X5, normalized to
have a unit radius of curvature. In our case the volume of XD is that of a 5-sphere
divided by D, so we get

a(2) = c(2) =
N2D

4
(4.5)

to this order. There is obviously no bulk contribution to the Chern-Simons term of
the G flavor symmetry, which lives only on the 7-brane. In the D4 case it is easy
to compute all of these central charges in the free field theory limit, leading to the
same results at leading order in 1/N .

4.3. O(N) contributions

In the bulk there are noO(N) contributions to the central charges and anomalies,
since the one-loop corrections in the bulk are O(1). Thus, the O(N) contributions to
the anomalies come purely from the Chern-Simons interactions on the 7-brane at the
singularity, which include terms of the form C4 ∧ tr(R∧R) and C4 ∧ tr(F ∧F ). The
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d = 4, N = 2 SCFT 183

dimensional reduction of these terms gives rise to five-dimensional Chern-Simons
interactions, since the five dimensional gauge fields involving the isometries include,
in addition to the ten dimensional metric, a contribution of the form C4 ∼ AR ∧ ω
where AR is the U(1)R gauge potential on AdS5 and ω is the volume form of the
3-cycle wrapped by the singularity.

To determine the terms on the 7-brane, let us first recall that the 7-brane of type
D4 can be realized perturbatively as 4 D7-branes put on top of the O7−-plane. The
Chern-Simons coupling on the worldvolume to the four-form field C4 is known.29)

The other types of 7-branes have the dilaton pinned down to the strong coupling
region, but their Chern-Simons terms are related to the anomaly inflow and can still
be reliably determined. Each constituent (p, q) 7-brane carries the same coupling
to C4 ∧ tr(R ∧ R) (recall that all (p, q) 7-branes are related by the SL(2, Z) duality
symmetry which leaves C4 invariant), so when we bring n7 7-branes together the
strength of that term is proportional to n7. As for the coupling C4 ∧ tr(F ∧ F ), the
gauge symmetries on the worldvolume for various types of 7-branes are related by
the removal of (p, q) 7-branes one by one which enables flows between the different
theories, with a natural embedding of the (simply laced) symmetries

A1 ⊂ A2 ⊂ D4 ⊂ E6 ⊂ E7 ⊂ E8. (4.6)

Therefore, the strength of the coupling does not depend on the type of the 7-brane,
as long as we use the same normalization of the root vectors. We conclude that the
Chern-Simons terms on the 7-brane worldvolume are of the form

α n7

∫
C4 ∧ [tr(RT ∧RT )− tr(RN ∧RN )] + β

∫
C4 ∧ tr(F ∧ F ), (4.7)

with constants α and β independent of the type of the 7-brane. Here RT,N are
the curvature of the tangent bundle and the normal bundle of the 7-brane, and we
normalize the trace of the flavor symmetry so that tr(T aT b) = δab/2 independent of
the group.

These terms reduce to various Chern-Simons interactions in five dimensions after
the integral over the S3 wrapped by the 7-brane. The C4 ∧ tr(F ∧F ) term gives rise
to the U(1)RG2 Chern-Simons term on AdS5, while the C4 ∧ tr(RT ∧ RT ) term in
(4.7) produces U(1)3R and U(1)R-gravity-gravity Chern-Simons terms. Finally, the
C4 ∧ tr(RN ∧ RN ) term gives U(1)RSU(2)2R. Together, the C4 ∧ tr(R ∧ R) terms
contribute to a and c.

Again, we can easily determine the scaling with N and with the volume of XD

of the terms in the five dimensional action arising from the integration of (4.7) on
the 3-sphere and involving the U(1)R field AR. On dimensional grounds, the full
low-energy 7-brane Lagrangian density is proportional to R4

AdS ∼ N/ vol(X5). On
the other hand, the volume of the 3-sphere which the 7-brane wraps is independent
of the deficit angle D. Thus, the coefficients of the five dimensional terms we obtain
from (4.7) scale as N/ vol(X5) ∝ ND.

Therefore, we find that the O(N) correction to the various anomalies scales as

k
(1)
G ∝ ND, a(1), c(1) ∝ Nn7D. (4.8)
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184 Y. Tachikawa

The coefficients can be fixed by a careful computation, or by comparing them to the
perturbative case D4 from the known spectrum of the gauge theory. Thus we obtain
the O(N) contributions

k
(1)
G = 2ND, a(1) =

Nn7D

24
, c(1) =

Nn7D

16
. (4.9)

4.4. O(1) contributions

Relatively little is known about the O(1) corrections to the anomaly coefficients.
For the N = 4 SU(N) super Yang-Mills, Kaluza-Klein analysis in the dual AdS5×S5

background leads to a and c both proportional to N2. The O(1) correction then
accounts for the difference between the gauge group U(N) and SU(N). On the stack
of N D3-branes in a flat space, we naturally have a U(N) gauge symmetry, where
the U(1) part describes the center-of-mass motion of the D3-branes in the transverse
R

6. This overall motion decouples from the rest of the dynamics in the near-horizon
limit, and it is not the part of the theory dual to type IIB string theory on AdS5×S5.
This effect accounts for the extra (−1) in a and c.

Generalization of this effect to our setup is immediate. Here, the degrees of
freedom which decouple in the near-horizon limit correspond to the overall motion
parallel to the 7-brane, which is described by a free hypermultiplet neutral under
the flavor symmetry. Then the O(1) contributions in this case should be precisely
minus those of this free hypermultiplet, namely

k
(0)
G = 0, a(0) = −1/24, c(0) = −1/12, (4.10)

independently of the type of the 7-brane. This precisely agrees with the known result
in the D4 case, and we will see more evidence in the next section that this procedure
is correct.

4.5. Summary

Combining the results obtained so far, we obtain our final equations

kG = 2ND,

a =
1
4
N2D +

1
2
N(D − 1)− 1

24
,

c =
1
4
N2D +

3
4
N(D − 1)− 1

12
(4.11)

for the central charges. Here, we used the relation (4.2) which relates the deficit
angle and the number of 7-branes to rewrite n7D = 12(D − 1).

Based on the arguments above we believe that these formulas are exact, so we
can use them even in the case of N = 1. kG, a and c which result from this calculation
are tabulated in Table III.

We find perfect agreement for G = E6,7,8 by comparing it against Table I, which
gives us important consistency checks of both the new S-duality and the holographic
calculation. Chronologically, the last column of Table III was a prediction from
holography when the work10) was published, which was later confirmed by the field
theoretical analysis.24) This exemplifies the power of string theory to understand
field theoretical phenomena.
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§5. Holomorphy and the central charges

5.1. General methods

We have reviewed two calculations of central charges, one based on the S-duality
and another based on holography, neither of which is applicable generically. Here we
review how central charges can be calculated for arbitrary N = 2 SCFTs.11)

We begin by recalling the relation of a and c to the U(1)R-current in any N = 2
field theory:31)

∂μRμ
N=2 =

c− a

8π2
RμνρσR̃μνρσ +

2a− c

8π2
F a

μν F̃μν
a (5.1)

in the presence of a background metric and a background SU(2)R gauge field F a
μν .

In backgrounds where the SU(2)R gauge field is equal to the self-dual part of
the curvature

F a
μνt

a
ρσ =

1
2
(Rμνρσ + R̃μνρσ) (5.2)

correlation functions of physical operators depend only on the topology of the back-
ground manifold. Substituting this condition into (5.1) and integrating over the
4-manifold with the Euler characteristic χ and the signature σ, we find that the
total R-charge of the vacuum is given by

ΔR = 2(2a− c)χ + 3c σ. (5.3)

Thus to determine a and c, it suffices to be able to compute the dependence of
ΔR on the topology of the background. This information is encoded in the path
integral measure, which for a topological gauge theory takes the form

[dμ]AχBσ. (5.4)

The factor [dμ] is the measure for the r vector multiplets, which at a generic point
in moduli space are the only massless modes. The measure factors A and B de-
pend holomorphically on the Coulomb branch moduli and are associated with the
additional massless states that appear on special loci of complex codimension 1 and
higher.

The R-charge of the vacuum can then be directly read off from the measure (5.4)

ΔR = χR(A) + σR(B) +
χ + σ

2
r +

σ

4
h. (5.5)

Table III. Central charges of rank one SCFTs calculated from holography.

G A0 A1 A2 D4 E6 E7 E8

kG 12/5 8/3 3 4 6 8 12
24a 43/5 11 14 23 41 59 95
6c 11/5 3 4 7 13 19 31
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186 Y. Tachikawa

Here R(A) and R(B) denote the R charges of A and B. The last two terms are the
contributions from r free massless vector multiplets and h free massless hypermulti-
plets which exists at generic points of the moduli space. Comparing with (5.3), we
find the following general expressions for a and c:

a =
1
4
R(A) +

1
6
R(B) +

5
24

r +
1
24

h, c =
1
3
R(B) +

1
6
r +

1
12

h . (5.6)

Thus, finding a and c is reduced to calculating the R-charge of the functions
A(u) and B(u). In general, these functions are believed to take the form32)–36)

A = α

[
det

∂ui

∂aI

]1/2

, B = βΔ1/8 (5.7)

for generic gauge theories. Here, ui are gauge- and monodromy-invariant coordinates
on the Coulomb branch, aI are special coordinates, and Δ is the physical discriminant
of the Seiberg-Witten curve. α and β are prefactors independent of the ui which
can in principle depend on the mass parameters. The functions in (5.7) are readily
computable in the vicinity of many superconformal points of N = 2 gauge theories.

5.2. Application

Let us apply this method to the theories we studied using holography in §4.1.
We start by placing an O7-plane and Nf parallel D7-branes in a flat 10d spacetime.
If probed by a single D3-brane, the gauge group on it is SU(2) and there are Nf

hypermultiplets in the doublet of the gauge group. The geometry transverse to the
D7-branes can be identified with the u-plane,37) where as usual u is a gauge and
modular invariant complex coordinate on the Coulomb branch of the gauge theory,
identified with 〈trφ2〉 in the |u| → ∞ limit, and the relative positions of the D7-
branes determine the mass parameters of the hypermultiplets.

When we probe the 7-brane system by N D3-branes, the quantization of open
strings gives us the gauge group USp(2N) with Nf massive hypermultiplets in the
fundamental 2N -dimensional representation and one massless hypermultiplet in the
antisymmetric tensor. The Coulomb branch can be parameterized by the locations
of D3-branes in the u-plane, ui (i = 1, . . . , N). The D3-branes are indistinguishable,
so the coordinates ui are identified under interchanges ui ↔ uj for each pair i < j.38)

For Nf = 4, this is the D4 theory in §4.1. For Nf < 4, the O7-plane splits into
two 7-branes nonperturbatively, which correspond to the monopole and the dyon
points of the u-plane. The 7-brane of type ANf−1 in §4.1 is realized by placing Nf

7-branes on top of the monopole point. Thus the tension is given by n7 = Nf + 1.
The dimension D(u) of the Coulomb branch operator is then related to the deficit
angle (4.2). Probing with multiple D3-branes gives rank-N versions of these SCFTs.

R(A) and R(B) can be extracted by analyzing the singularities in moduli space.
First let us recall the Coulomb branch of the theory more fully, for the case N = 1.
For generic hypermultiplet masses ma (a = 1, . . . , Nf ), there are 2+Nf singularities
on the u-plane at u = uα(m1, . . . , mNf

), (α = 1, 2, . . . , 2 + Nf ), which are given by
zeros of the discriminant

Δ ≡ Δ1(u; m1, . . . , mNf
). (5.8)
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As such, the functions uα(m1, . . . , mNf
) have monodromies exchanging them, and

there are no absolute distinctions among them. Still, if ma � Λ, there are two zeros
with u ∼ O(Λ) and Nf zeros at u ∼ m2

a. The former are the points where a monopole
or a dyon becomes massless, and the latter are where the quarks become massless.
For N > 1 the Coulomb branch is parameterized by u1, . . . , uN , identified under
the exchanges ui ↔ uj . Monodromy invariant coordinates are given by the k-th
symmetric polynomials u(k) of the ui, in correspondence with the Casimirs 〈trφ2k〉
of the USp(2N) gauge group.

The factor A is then given by

A =

[
det

∂u(k)

∂ai

]1/2

. (5.9)

The physical discriminant is

Δ =
∏
i>j

(ui − uj)6
∏
i,α

(ui − uα(m1, . . . , mNf
)) (5.10)

≡
∏
i>j

(ui − uj)6
∏

i

Δ1(ui; m1, . . . , mNf
) , (5.11)

where the first factor accounts for the enhancement of a single U(1) vector multiplet
to an N = 4 SU(2) multiplet when ui = uj , i.e., when two D3-branes collide, and
the second factor accounts for the appearance of one massless hypermultiplet when
ui = ua(m1, . . . , mNf

). It is also easy to see that Δ is, as required, a polynomial in
the gauge invariant coordinates u(k) and the masses mi.

A superconformal point is reached if we tune m1, . . . , mNf
so that the Nf “quark”

zeros of the discriminant collide with the monopole zero. We shift u by a constant
so that the multiple zero is at u = 0. Then the discriminant becomes

Δ =
∏
i>j

(ui − uj)6
∏

i

ui
1+Nf . (5.12)

Therefore
R(Δ) = 2D(u) [(1 + Nf )N + 3N(N − 1)] . (5.13)

R(A) is also easy to determine, because D(u(k)) = kD(u) and all of the ai behave
as dimension-1 operators. Thus we have

R(A) =
∑

k

(kD(u)− 1) =
1
2
N(N + 1)D(u)−N. (5.14)

Finally we need the number r of free vector multiplets and the number h of free
hypermultiplets at generic points of the moduli space, which are easily found to be
r = N and h = N − 1. Combining the data, we have

a =
1
4
DN2 +

1
24

(1 + Nf )DN − 1
24

, (5.15)

c =
1
4
DN2 +

1
12

[(Nf − 2)D + 3] N − 1
12

, (5.16)
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where we have abbreviated D(u) as D. Using the relation (4.1), these equations
become

a =
1
4
DN2 +

1
2
(D − 1)N − 1

24
, c =

1
4
DN2 +

3
4
(D − 1)N − 1

12
. (5.17)

Now, the result (5.17) completely reproduces the central charges (4.11) calcu-
lated using the gravity dual. The agreement is indeed quite nontrivial. In the
holographic approach, the O(N2), O(N) and O(1) terms arose as contributions due
to classical bulk gravity, branes, and one-loop effects, respectively, whereas in our
present approach a and c were calculated nonperturbatively and received contribu-
tions from completely different sources, R(A) and R(B). Furthermore, our formula
(5.17) also reproduces the central charges of rank-N versions of the En theories if
we use the corresponding dimensions D(u). These mysterious theories have yet to
be realized in a purely field-theoretical language, but our result strongly suggests
that their gravitational measure factors A and B should still be given by the general
formulas (5.9), (5.11).

5.3. Flavor symmetry

Let us calculate the central charge of the flavor symmetry of the USp(2N) theory
for Nf = 2, 3. The flavor symmetry acting on the hypermultiplets in the fundamental
is U(Nf ) = U(1)× SU(Nf ) when we take all of the masses to be equal, m = m1 =
· · · = mNf

. We study the response of the gauge theory to the introduction of an
external gauge field for the flavor symmetry, for a generic value of m, which can be
expressed as an extra factor in the low energy path integral (5.4)

[dμ]AχBσCn (5.18)

where n is the instanton number of the external SU(Nf ) field. Repeating the argu-
ment in §5.1, one finds the relation

kG = −R(C). (5.19)

We begin with the case N = 1. As we have discussed, if the masses are generic
and unequal, there are 2 + Nf singular points in the u-plane which are given by the
zeros of the discriminant Δ1. When we take m = m1 = · · · = mNf

, the discriminant
has a zero of order Nf ,

Δ1(u; m, . . . , m) = Δ(u, m)(u− uq(m))Nf . (5.20)

Here Δ(u, m) is a quadratic polynomial whose zeros give the points where a monopole
or a dyon becomes massless. u = uq(m) is the point where a hypermultiplet in the
fundamental representation of SU(Nf ) appears. It is important to note that uq(m)
is a polynomial in m and has no monodromy. The physical reason is that there
is an (Nf − 1)-dimensional Higgs branch emanating from u = uq(m), so that the
singularity there can be clearly differentiated from the monopole and dyon points.

Let us now turn to the rank-N version of the theory, parameterized by u1, . . . , uN

with the identification ui ↔ uj . When ui = uq(m), one free massless hypermultiplet
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in the fundamental of U(Nf ) appears, so C ∼ (ui − uq(m))−1. Thus

C =
∏

i

(ui − uq(m))−1. (5.21)

It correctly reproduces the semiclasical behavior when all ui are large. The super-
conformal system can then be reached by choosing m so that uq(m) collides with
another zero of the discriminant, which we take to be at u = 0. We then have

C =
∏

i

u−1
i (5.22)

which means that
kG = 2ND(u) (5.23)

at the superconformal point. It again reproduces the holographic result (4.11).
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