
Although numerous new methods for the analysis of longitu-
dinal data have been developed in recent years, traditional
panel designs remain popular and offer basic answers to ques-
tions that new methods do not directly address. The motiva-
tion for this article is to provide a detailed exploration of key
issues that apply to panel designs. In addition, we incorporate
recent advances in general applications of structural equation
modeling (SEM). Although our discussion of these issues is
conceptual in nature, real data examples are available at
Quant.KU.edu.

This article addresses issues related to latent variable SEMs
to longitudinal data. We do not elaborate on key issues such as
the need for well-articulated theory, age-appropriate measures,
or a requisite match between the statistical model and the
theoretical questions (Collins, 2006; Embretson, 2007; Little,
Bovaird, & Slegers, 2006). Instead, we discuss applications of
traditional panel designs in contexts where the theory,
measurement, and design issues are appropriately matched.

Longitudinal confirmatory factor
analysis of panel data

The confirmatory factor analysis (CFA) model is a special case
of SEM. For many applications, CFA represents the end point
of one’s analysis. For many other applications, however, CFA
is the starting point for more elaborate model testing (Brown,
2006). In this regard, CFA is used to assess the adequacy of
the measurement model so that the hypotheses pertaining to
the structural relations among the constructs defined by the
CFA can be tested with SEM. In longitudinal research, the
CFA, or measurement, model answers basic questions about
the nature of the constructs and the patterns of individual

differences. Specifically, the longitudinal CFA addresses the
questions: (1) Are the constructs measured equivalently across
time? (2) Are the individual-differences standings in the
constructs stable (or unstable) across time? (3) Are the within-
and cross-occasion relations among the constructs stable or
changing systematically over time (e.g., differentiation)? (4)
Are the means and/or variances of the constructs stable or
changing systematically over time?

In short, the longitudinal CFA addresses a number of
validity-related issues, and because the constructs of interest
are repeatedly assessed, these validity issues are more rigor-
ously evaluated than is the case with cross-sectional data. Here,
the content validity of each construct is addressed by examin-
ing the patterns and magnitudes of the factor loadings and
intercepts as well as measurement equivalence over time. The
criterion validity of each construct is addressed in a number
of ways. First, the concurrent patterns of relations among the
constructs within each time point are examined. This form of
validity is generally established by evaluating whether the
relations are consistent with an expected pattern and whether
these concurrent relations replicate (if expected to do so) or
change in an expected manner (e.g., differentiate, dedifferen-
tiate) over time. Criterion validity is also addressed by exam-
ining the cross-time associations and determining if they
conform to the expected a priori pattern (e.g., a simplex
pattern). Although not usually described as criterion validity,
expected similarities and differences in the mean structures of
the constructs can also be evaluated to support the validity
profile of the constructs. Finally, overall construct validity is
evaluated deductively based on how well the content and
criterion validities are supported by the data and the degree to
which the patterns replicate the behavior of similar constructs
in the literature.
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Clearly, CFA can be used to address important questions
and provide a wealth of information about the sample and the
constructs; however, to obtain these answers there are a
number of modeling issues that should be considered and
addressed.

Scale setting

The first issue that should be considered in fitting a longitudi-
nal CFA concerns the scale(s) that should be used for the
latent variables, a decision necessary in order to estimate the
parameters of the model. This may seem trivial to many users
of SEM, but in fact, scaling issues are critical (Blanton &
Jaccard, 2006; Embretson, 2007; Gonzalez & Griffin, 2001;
Little, Slegers, & Card, 2006). Users of SEM have overwhelm-
ingly relied on the marker variable method of scaling
constructs, perhaps by tradition or because many SEM
software packages default to this approach. Briefly, the method
consists of choosing one indicator of a construct and
constraining its factor loading to 1.0 (and its intercept to 0 if
mean structures are included). Not only does this serve as an
identification condition (necessary to provide unique estimates
of other model parameters), but it also equates the scale of the
construct to that of the marker variable. As is well known, the
choice of which marker variable to use is arbitrary, and the
resulting scale of a given construct is, therefore, also arbitrary.
That is, the scale of the construct is the scale of the arbitrar-
ily chosen marker variable (Bollen, 1989). Similarly, fixing the
latent variance to 1.0 and the latent mean to 0 (an approach
that is often used in psychometrics research) loses any inherent
meaning for the scale because the construct is scaled in a stan-
dardized (z-score) metric.

Little et al. (2006) introduced the effects coding identifi-
cation method for situations in which the indicators of a
construct are drawn from a pool of possible indicators that
are measured on the same scale (i.e., essentially congeneric).
This method is similar to the marker variable approach, but
rather than fixing the loading and intercept of one indicator,
one imposes the constraint that the average of the factor
loadings is 1.0 and the average of the indicator intercepts is
0. When the scale mean and standard deviation of a construct
have inherent meaning and would be of substantive interest,
then the effects coding constraints provide a meaningful
metric for the latent constructs. Estimating the parameters of
constructs (variances, means, and covariances) in a meaning-
ful metric provides estimates that are free of measurement
error, readily interpretable, and generalizable/comparable
across replications using the same constructs and indicators
(Little et al., 2006).

Longitudinal factorial invariance

The factorial invariance literature is still quite active and
various procedures and recommendations have been offered
for establishing the tenability of invariance constraints (G.W.
Cheung & Rensvold, 1999, 2002; Little, Card, Slegers, &
Ledford, 2007; Vandenberg & Lance, 2000). Applying the
logic of factorial invariance typically used in cross-group
comparisons to the longitudinal case is relatively straight-
forward. The basic question here is: are the respective indi-
cators representing the same underlying constructs over time?
In longitudinal research, constructs can change in meaning or
importance as one traverses different developmental epochs.

Testing and establishing longitudinal factorial invariance
provides empirical evidence that the fundamental meaning of
the construct has not changed across the different develop-
mental periods.

Factorial invariance is traditionally established by following
a sequence of steps (or fitting a sequence of models). Specifi-
cally, one starts with an unconstrained model and progresses
to more restricted (and nested) models to evaluate the tenabil-
ity of each set of successively placed constraints (Little, 1997;
Widaman & Reise, 1997). Figure 1 depicts a CFA for two
constructs measured by three indicators each at three times of
measurement.

The unconstrained model is commonly referred to as the
configurally or form invariant model (Brown, 2006). Here, the
pattern of indicator-to-construct relations is expected to be the
same at each occasion. In this model, each construct has a
scale-setting constraint (e.g., effects coded, marker variable)
for both the mean and covariance structures, but no other
constraints are placed on any of the parameters of the model.
Importantly, in longitudinal panel models the residuals of
corresponding indicators are also allowed to correlate across
measurement occasions (see Figure 1).The reason for allowing
the corresponding residuals to correlate over time is because
residual information in each of the corresponding indicators
has two sources of variability: a variance component that is
reliable but specific to a given indicator, and a random, un-
reliable source. When an indicator is represented in a model at
more than one time of measurement, the item-specific
component would be expected to covary with itself across
times of measurement.

The next level of measurement invariance is termed loading
invariance or weak factorial invariance (Brown, 2006; Vanden-
berg & Lance, 2000; Widaman & Reise, 1997). This level of
measurement invariance is established when the loadings of
corresponding indicators are equated across time. If this level
of invariance holds (i.e., if the constrained model fits well
relative to a model without the equality constraints), any
changes in the amount of reliable variance among the indi-
cators is adequately captured as changes in the amount of
common construct variance (i.e., this level of invariance does
not assume that variances are equal over time; see Selig, Card,
& Little, in press). In our discussion of model fit, we describe
the various criteria by which the adequacy of the invariance
constraints can be evaluated.

The third level of measurement invariance is termed inter-
cept invariance or strong factorial invariance (Brown, 2006;
Meredith, 1993; Vandenberg & Lance, 2000; Widaman &
Reise, 1997). This level of measurement invariance is estab-
lished when, in addition to the loadings, the intercepts of
corresponding indicators are equated across time. If this more
stringent level of invariance holds, any changes in the mean
levels of the indicators are adequately captured as changes in
the underlying means of the latent constructs.

The fourth level of measurement invariance is termed
residual invariance or strict factorial invariance (Brown, 2006;
Meredith, 1993; Vandenberg & Lance, 2000; Widaman &
Reise, 1997). This level of measurement invariance is
established when the residual variances of corresponding
indicators are equated across time. If this level of invariance
holds, then the sum of the item-specific and random sources
of measurement error variance for each indicator does not
change over time. This level of invariance is rarely enforced in
practice because it reflects a level of restriction that is usually
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unrealistic to expect (Brown, 2006; Little, 1997; Widaman &
Reise, 1997).

Evaluating invariance constraints

Factorial invariance across at least two groups or occasions is
traditionally tested by specifying a series of models, each more
constrained than the last, representing various degrees of
invariance. Equality constraints are placed on key parameters,
and the resulting change in model fit (usually in terms of the
change in χ2 relative to the change in degrees of freedom (df),
respectively ∆χ2 and ∆df) is monitored to assess whether adding
the constraint was justifiable (Vandenberg & Lance, 2000;
Widaman & Reise, 1997). Only after invariance has been satis-
factorily demonstrated can panel models with latent variables
be interpreted (at a minimum one should have at least partial
weak invariance to examine covariance relations and partial
strong invariance to examine mean structures).

In longitudinal designs, a first step is to test whether the
occasion-specific covariance matrices and mean structures are
equal across waves of measurement. If they are equal, there is
little need to proceed with further invariance testing because
this indicates no differences in the covariance and mean struc-
ture across time. If they are not equal, the researcher might
proceed to apply equality constraints consistent with the levels
of invariance described earlier until the most appropriate level
has been identified. The utility of proceeding to a more strict
level of invariance is traditionally gauged via a ∆χ2 test with as
many df as there were constraints added (cf. Little, 1997, on
using a modeling rationale).

There are limitations inherent in this method, however

(Preacher, Cai, & MacCallum, 2007). First, as with any null
hypothesis test, we know the test to be false before we even
collect data. The difference in the fit of two nested models is
never literally 0, so the hypothesis being tested could be
considered either absurd or uninteresting. Second, the ∆χ2 test
is known to be very sensitive to sample size; larger N values
necessarily result in larger values of ∆χ2, so the nested model
strategy is biased in favor of invariance when N is small and is
biased against invariance when N is large (MacCallum,
Browne, & Cai, 2005).

Nested model tests for invariance do not represent the only
viable approach for identifying the level of invariance charac-
terizing a data set. Determining the level of invariance that best
characterizes a data set may depend in part on the goals of the
modeler. If the researcher’s goal is to identify the true level of
invariance, there must exist a ‘true level’ to identify. Strictly
speaking, however, no level of invariance is correct for the
simple reason that no model is correct, even when fit is perfect.
Models are simply convenient mathematical or schematic
representations of theoretical predictions, and are not expected
to directly map onto the processes they represent. It is more
realistic to say that, although no model is ever strictly correct,
many models may provide useful approximations to the truth
(Cudeck & Henly, 1991; MacCallum, 2003). If the
researcher’s goal is to find the best approximation (from the
pool of available alternative models) to the data-generating
process, then fit indices designed to reflect population-level
approximation error, such as the RMSEA, should perform the
best.

Good fit is only one criterion that has been suggested to
characterize good models. Replicability is another. Therefore,
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Figure 1. A detailed schematic of a longitudinal CFA. Not all parameters presented in this figure are identified unless scaling and identifi-
cation constraints are place on various elements. See text for a description of three different methods of identification for such a model.
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an alternative strategy is to identify the model (level of invari-
ance, in this context) that best replicates when fit to another
sample from the same population. Replication is the principle
behind cross-validation. If identifying a model that maximizes
replicability is the researcher’s goal, then it is sensible to use
model selection criteria that were designed with this goal in
mind, such as the expected cross-validation index (ECVI;
Browne & Cudeck, 1989, 1993), AIC, or BIC.

The bottom line is that when assessing factorial invariance
– either cross-group invariance or longitudinal invariance with
panel data – it is important to clearly articulate the goal. If the
goal is to identify the best-fitting level of invariance for the data
in hand, then absolute fit indices such as RMSEA may be more
appropriate. If the goal is to identify the level of invariance
most likely to replicate in future samples, then selection criteria
may be preferable.

Specifying an appropriate null model

Widaman and Thompson (2003) discuss a number of issues
regarding relative fit indices. Relative (or incremental) fit
indices are routinely used to evaluate the overall fit of a model.
Commonly used fit statistics include the comparative fit index
(CFI) and the non-normed fit index (NNFI), which is the
same as the Tucker–Lewis Index (TLI) commonly used in
exploratory factor analysis. All of the relative fit statistics have
in common a reliance on a null model, a worst-fitting model
nested within the hypothesized model. Most SEM software
packages fit a null model and calculate the relative fit statistics
automatically. By default, the null model is usually the indepen-
dence model. The independence model assumes zero covariance
among the indicators (variables) in a model, but freely esti-
mates the variances of these indicators. For many applications
(e.g., single-group, single-occasion models), the independence
model is a reasonable null model because it helps calibrate how
much covariation among the indicators can be recovered by a
substantively meaningful model.

For longitudinal (and multiple group) models, the indepen-
dence assumption is only one piece of the ‘null’ expectation.
When a researcher is interested in evaluating whether means
and/or variances change across time, the independence model
(in which one equates means or variances across time to
evaluate this contribution to misfit) is not nested within such
models, so the independence model no longer represents an
adequate null model. Instead, the appropriate null model is
one in which neither the variances nor the means of correspon-
ding indicators change over time (Little, Card, Slegers et al.,
2007; Widaman & Thompson, 2003). Because SEM software
currently does not have the option to specify an alternative null
model, users must specify and estimate a null model and use
the fit information in the formula for calculating the various
relative fit indices (calculators and sample code for specifying
an appropriate null model are available at Quant.KU.edu).

Longitudinal structural models of panel data

We now turn our attention to key issues in fitting structural
models to longitudinal panel data. Building upon the best
fitting measurement model (assuming that at least partial weak
invariance has been established), structural models are
designed to address questions about directional patterns of
effects. Specifically, structural models attempt to answer key

questions about the pattern of direct (both autoregressive and
cross-lagged) and indirect (i.e., mediated) relations among the
constructs over time.

Causality in panel designs

Because of the temporal arrangement of constructs in longi-
tudinal panel designs, the temptation to infer causal relation-
ships in the patterns of direct and indirect influences is strong.
Unfortunately, causality can be implied only in longitudinal
panel data. Key threats to causal inferences include the
exogeneity assumption, the omitted variable problem, and the
potential confound of instrumental variables (i.e., covariates).

In common SEM parlance, latent variables that are repre-
sented in a model with no directed paths predicting them are
termed exogenous variables, whereas variables that are
predicted are termed endogenous variables. The exogeneity
assumption refers to the idea that a longitudinal study begins
at the start of a causal chain of events; however, the variables
that are exogenous in the model might not be the true origi-
nating (causal) part of the system of changes. Even though
exogeneity is an assumption of these models, the true causal
agent in the system of change being modeled may have
occurred at an earlier point in time. Violating this assumption
may be less problematic if one is focused on proximal causes,
but may still be relevant if a second proximal cause precedes
a modeled proximal cause.

The omitted variable problem is similar to the exogeneity
assumption, in that one might wrongly presume to have
modeled the true causal constructs that are part of the system
under scrutiny. Here, the causal agent in the system may be a
common, but unmeasured or omitted, variable that causes two
or more of the variables being modeled to covary, giving the
appearance of causality. In some senses, the exogeneity
assumption can be seen as a special case of the omitted variable
problem.

A related problem is the proxy variable problem. The proxy
variable problem describes a pervasive threat to validity –
namely, that the measured construct may be only a proxy of
the intended construct. For detailed examples of the proxy
variable problem see Little, Card, Bovaird, Preacher, and
Crandall (2007).

Including covariates

Potential covariates are commonly considered, and sometimes
are even included in a particular analysis. The proper use of
covariates, however, is not widely understood. For example,
one might include gender as a covariate; however, the method
for including such a variable is subject to choice. In a longitu-
dinal panel study, such a covariate can be included in at least
four different ways. First, the effects of gender can be partialed
from all the indicators of all the constructs. This approach
would involve specifying a model in which each indicator is
regressed on the gender construct, thereby removing any
variance shared with gender from each indicator. This
approach can be used even prior to the construction of an
SEM model by calculating the covariances among the indi-
cators patialed for gender and using these partialed sufficient
statistics as input for an SEM package. This latter approach is
not recommended because the covariate effects are not explic-
itly represented in a model (and, therefore, issues of effect size,
significance, overall model fit, and degrees of freedom related
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to the covariate are not evaluated) but may be appropriate
under some circumstances (e.g., when model complexity
becomes unwieldy or when the significance and magnitude of
covariate effects are not of concern).

A second approach to representing the effects of a covariate
(such as gender) is to model the covariate as a direct effect
on each latent construct, regardless of time of measurement.
This approach is similar to modeling partialed indicators, but
now the partialing is established for the latent variables
instead of the manifest variables. In situations where the
covariate is a discrete variable such as gender, multiple-group
models can be specified to examine the homogeneity across
the groups to see if it is warranted to collapse the covariance
information across groups and represent the mean differences
of gender as a covariate in a model only when the data are
collapsed across the groups. If the homogeneity of the
variance–covariance matrices across groups is not tenable,
then the covariate (e.g., gender) has a moderating effect on
the relations among the variables and the analyses should be
performed in the multiple-group format. If homogeneity of
the variance–covariance matrix is tenable and mean differ-
ences exist, data can be collapsed, and including the covari-
ate as a variable in the model would adequately control for
the mean differences.

A third approach is to control for covariate differences as
effects on the constructs at the first measurement occasion,
thereby accounting for the influence of the covariate ‘down-
stream’ in the model via various indirect pathways. This
approach assumes that the covariate influence is an exogenous
process and that once this effect is accounted for at the first
occasion of measurement, the influence of the covariate no
longer has a direct impact on the endogenous constructs.

As a fourth approach, one can control for the covariate effect
at the final occasion of measurement. This approach is similar
to entering a covariate first in a regression equation to remove
its influence from the dependent variable before entering other
predictors.

Deciding on which approach to use depends on the nature
of covariates included and the goals of the modeling endeavor.
Moreover, further work is needed to articulate the substantive
implications of each approach and the conditions under which
one approach would be more appropriate than another.

Mediation in panel designs

Mediation is the process by which an intervening mediator
variable carries the effect of an independent variable (X) to a
dependent variable (Y). In other words, M is the mechanism
by which X exerts its effect on Y. For example, parental involve-
ment in school influences a child’s motivation for school, which
in turn influences the child’s actual school performance. There
is a rich methodological literature on methods for assessing the
magnitude and significance of mediation effects (or indirect
effects; MacKinnon, Lockwood, Hoffman, West, & Sheets,
2002; Shrout & Bolger, 2002). Most modern approaches
quantify the indirect effect as the product of the path
coefficient linking X to M (denoted a) and the coefficient
linking M to Y while controlling for X (denoted b).The various
methods differ mainly in how the significance of this quantity
is assessed. In panel models, there is a further complication in
that there may be many a and b paths from which to choose.
In what follows we first say a few words about causal inference.

We follow this with a discussion of how the statistical signifi-
cance of mediation effects may be ascertained.

Causal inference

A pervasive flaw in many studies addressing mediation effects
concerns the fact that they are often assessed using cross-
sectional data. Mediation is a causal process, however, and a
fundamental prerequisite for making claims of causality is
temporal separation. That is, measurement of variables
involved in causal processes must be separated by enough time
to permit the causal effect to unfold. Cole and Maxwell (2003)
point out that mediation hypotheses tested against cross-
sectional data (i.e., the majority of those seen in the literature)
can be biased and very misleading. Panel designs are ideally
suited for correcting this common problem.

Cole and Maxwell (2003) suggest that a model like that in
Figure 2 be employed, in which X, M, and Y are each
measured at several occasions in a panel design. Making the
assumption of stationarity (i.e., that the causal effects do not
change in magnitude over time) permits the researcher to
equate the a paths to equality across occasions, as well as the
x, m, y, and b paths (the tenability of these constraints is
testable via nested model comparisons). Omitted from the
diagram, but present in the model, are c� paths linking X
measured at time t – 2 to Y measured at time t. Also omitted
are within-occasion residual covariances, which may be
included or not, as the situation decrees. Use of a model like
that in Figure 2 is far preferable to the traditional cross-
sectional analysis of mediation. First, the temporal lag necess-
ary for causal inference is explicitly considered. Second,
repeated measurement of the key variables permits more
accurate estimation of the path coefficients than in a cross-
sectional design.

However, several issues need to be considered before such a
model is used in assessing mediation (Cole & Maxwell, 2003).
First, the optimal lag separating measurement waves needs to
be identified. It is likely that the magnitude of the path coeffi-
cients will shift as the lag becomes shorter or longer, so pilot
research is sometimes necessary to identify theoretically appro-
priate lags. Second, it is critical that unreliability be minimized.
Unreliable variables can either attenuate or spuriously inflate
path coefficients, usually in ways impossible to predict before-
hand. Fortunately, reducing the biasing effects of unreliability
is one of the primary benefits of using latent variable models.
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Figure 2. Type of panel model Cole and Maxwell (2003) suggest
for testing mediation hypotheses linking X1 to Y5. All path coefficients
involved in connecting X1 and Y5 are involved in quantifying the
indirect effect.
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Finally, estimation and testing of the indirect effect becomes
more difficult in lagged panel designs, as we describe later. See
Cole and Maxwell (2003) and Gollob and Reichardt (1985,
1987, 1991) for more detail.

Cole and Maxwell (2003) note that the longitudinal data
collection needed to use the panel strategy for assessing medi-
ation can be conveniently shortened by using only two waves
of data collection. For example, in Figure 2 the paths linking
X to M are constrained to equality over time. This assumption
of stationarity is usually directly testable by merely setting the
constraint and noting any significant decrement in fit. In
addition, it is presumed that the optimal lags between
measurement of X and M, and between measurements of M
and Y, have been identified and used. If only two waves of data
are collected, the model in Figure 3 may be employed, and
mediation assessed as previously described. Here, stationarity
must be assumed true, either on the strength of theory or prior
research. Furthermore, the optimal lag between measurement
of X and M must be assumed equal to the optimal lag between
measurement of M and Y. Besides curtailing the cost of a
study in terms of both time and money, employing a two-
wave design has an added potential benefit in that it permits
the researcher to experimentally manipulate M to strengthen
causal inferences with regard to the M → Y effect. However,
it is unclear whether the product of a and b will be meaning-
ful in these circumstances because individual differences in M
may have different meaning when M is manipulated versus
observed.

Assessing statistical significance

Assessing the statistical significance of mediation effects is a
very active area of research. Four general methods of assess-
ing mediation effects prevail in the literature: the causal steps
approach, the product of coefficients approach, the distribution of
the product approach, and the resampling or bootstrapping
approach. Other strategies have been suggested. Readers in
need of a clear, basic introduction to mediation should consult

Frazier, Tix, and Barron’s (2004) excellent and approachable
article describing and distinguishing mediation and modera-
tion.

Most social scientists associate tests for mediation with the
causal steps criteria described by Baron and Kenny (1986).
These criteria are as follows. First, X must significantly predict
Y. This total effect, quantified as the path coefficient linking X
and Y, is sometimes designated c. Second, X must predict M
(path a). Third, M must significantly predict Y, conditional on
the presence of X in the model (path b). Fourth, upon addition
of M as a mediator, the direct effect of X on Y (c�) should
decrease relative to c. This pattern of effects is consistent with
the notion that X explains variability in Y because X predicts
M, which in turn predicts Y. Satisfying these criteria remains
the most popular approach to gauging the extent and signifi-
cance of mediation effects. However, several drawbacks are
associated with it.The causal steps approach suffers from lower
power than alternative methods (MacKinnon et al., 2002) and
does not address the hypothesis of mediation directly. Rather,
the researcher must infer the presence or absence of mediation
by interpreting the pattern of relevant regression weights.
Furthermore, in complex panel designs like that in Figure 2,
there are no longer straightforward a, b, and c� paths to map
onto the causal steps framework.

Whereas the indirect effect in simple cross-sectional models
is quantified as ab, the overall indirect effect linking X at the first
occasion to Y at the last occasion in Figure 2 is aby2 + amby +
am2b + xaby + xamb + x2ab. We will refer to sample estimates
of complex indirect effects like this as ω̂. Assessing the signifi-
cance or precision of such effects is considerably more difficult
than in the traditional three-variable case. As with any sample
statistic, it would be useful to know something about the
sampling distribution of ω̂. In particular, being able to make
the assumption of normality for ω̂ across repeated sampling
would allow us to gauge its significance with a simple z-test,
or (preferably) to use the point estimate ω̂ in a 95% confidence
interval to estimate the population ω.

If the assumption of normality is appropriate, the problem
is an easy one. Assuming that all the relevant path coefficients
are normally distributed across repeated sampling (usually a
safe assumption in large samples and with well-behaved data)
means that the standard error (SE) of ω̂ can be derived using
widely known methods. Various forms of this SE have been
presented in connection with large-sample tests in simple
mediation models (e.g., Sobel’s test for mediation; Sobel,
1982; MacKinnon, Warsi, & Dwyer, 1995). Essentially a z-test
of ω̂ when only one indirect path connects X and Y, the Sobel
test is included in SEM software, is available online and in
macros for popular statistics packages, and has become
popular lately in the applied literature as an adjunct to report-
ing the results of the causal steps approach.

Unfortunately, the form of the sampling distribution of ω̂ –
or, more precisely, the set of assumptions that may legitimately
be made about the distribution – has been the subject of much
debate. Early statistics literature makes it clear that ω̂ is not
normally distributed even in simple models, although it may
approach normality in large samples (Aroian, 1947; Craig,
1936). For most samples used in psychology, the distribution
of ω̂ will be skewed and kurtotic, implying that the assump-
tion of normality may not be tenable. Furthermore, the
standard error of ω̂ increases greatly in complexity with the size
of the model.

The most accurate and powerful approaches to assessing
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Figure 3. A two-wave panel model for testing mediation hypotheses.
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indirect effects fall into two categories: the distribution of the
product approach and resampling approaches. The distribution
of the product approach accurately considers the correct distri-
bution of ω̂ rather than simply assuming normality. Unfortu-
nately, the distributional theory for ω̂ has been worked out only
in the special case of a simple mediation model, and has not
been extended to more complex panel designs.

Resampling, or bootstrapping (Bollen & Stine, 1990; Efron &
Tibshirani, 1998; Lockwood & MacKinnon, 1998; MacKin-
non, Lockwood, & Williams, 2004; Preacher & Hayes, 2004;
Shrout & Bolger, 2002), recreates the sampling distribution of
ω̂ by drawing thousands of resamples of size N (with replace-
ment) from the original sample of size N, computing sample
estimates of all relevant path coefficients, and forming a
distribution of ω̂. The researcher may form a percentile-based
confidence interval of any degree of precision α by locating the
values of ω̂ cutting off the lower and upper (50α) % of the
bootstrapped distribution. The results of any point hypothesis
test are implied by the resulting interval. A modified form of
bootstrapping, in which the confidence limits are adjusted
slightly to correct for bias, has been found to perform very
well in terms of type I error rates and statistical power
(MacKinnon et al., 2004). The primary benefits of boot-
strapping are that it involves no distributional assumptions, is
characterized by highly accurate type I error rates and relatively
high statistical power, and can be used in small samples.
Resampling methods are available in some SEM software
applications (M.W.-L. Cheung, in press; Shrout & Bolger,
2002).

Finally, we note a new and promising method of assessing
the significance of mediation effects described by M.W.-L.
Cheung (in press). M.W.-L. Cheung’s method involves defining
a new parameter and setting it equal to the expression for ω.
A likelihood-based confidence interval for ω may be obtained by
iteratively determining the values that ω̂ must assume for the
overall fit of the model to change by ±.84 units (a significant
χ2 when df = 1 and α = .05). Currently only the SEM package
Mx automatically computes likelihood-based intervals. The
method is sufficiently general to compute intervals for indirect
effects of any degree of complexity with equal ease. In panel
designs like those in Figure 2, we recommend creating either
bootstrapped confidence intervals (easiest in Mplus) or likeli-
hood-based confidence intervals for ω (for straightforward
descriptions of both methods, see M.W.-L. Cheung, in press).

Regardless of what strategy is used to assess mediation, it is
strongly recommended that emphasis be placed on estimating
the magnitude of the effect with confidence intervals rather
than on making a dichotomous accept–reject decision
(Wilkinson & the Task Force on Statistical Inference, 1999).
There are many arguments favoring this emphasis. First,
researchers already know the answer to the question ‘is the null
hypothesis (of no mediation) true?’ The answer is invariably
‘no’ – it is a matter of direction and degree. Second, point (nil)
hypothesis testing has become something of a mindless ritual
(Gigerenzer, 2004), encouraging scientists to pursue low p-
values rather than estimate the size of an effect in the popu-
lation. Third, whereas comparing a p-value to α leads only to
a dichotomous decision about the null hypothesis, confidence
intervals can be used to infer the results of any hypothesis test,
and add information about the magnitude of the effect and
precision of estimation. In other words, emphasis should be
placed on estimating how large an effect is, not how small it
isn’t.

Accelerated designs

It is always advantageous to collect data over many occasions
when evaluating developmental processes. For example, the
magnitude the cross-time correlation for a given construct
might be expected to change with age, or one might expect that
cross-lag paths differ across development. In these situations,
researchers might consider collecting longitudinal data over a
wide time frame (e.g., yearly assessment over the course of
several years), usually at great cost in terms of money and time.
Alternatively, researchers might consider accelerated longitu-
dinal designs as a way of approximating these long-term
longitudinal data.

Accelerated longitudinal designs, first proposed by Bell
(1953) as an efficient method of obtaining longitudinal data
over an extended developmental period, consist of shorter
term longitudinal studies of several cohorts, linked so as to
provide comprehensive coverage of a particular developmental
period. Although these designs are more often discussed in the
context of growth curve modeling (Meredith & Tisak, 1990;
Tisak & Meredith, 1990), they also have value in fitting panel
models. Figure 4 provides an illustration of an accelerated
longitudinal path model, in which data are collected longitu-
dinally for 2 or 3 years (more on this point below) from three
cohorts of children aged 11, 12, and 13 at the initial assess-
ment. An important requirement of this design is that there
exist one or more points of linkage – ages where multiple
cohorts are measured1 (e.g., the youngest cohort was
measured at time 2 when they were 12 years old, and the
middle cohort was measured at time 1 when they were 12 years
old).

Although these accelerated longitudinal designs are often
treated as analyses with large amounts of missing data (Allison,
1987; McArdle & Hamagami, 1991), there are also advantages
to treating them as multiple group SEMs. One advantage of
the multiple group approach is that it allows for tests of
measurement invariance not only across time (see above), but
also across cohorts, thus evaluating whether the constructs are
measured equivalently across time and cohort. A second
advantage is that the process of evaluating cohort and develop-
mental similarities and differences can be performed quite
simply as nested model comparisons. This second advantage
will be elaborated next.

Consider first the situation in which there is minimal overlap
among cohorts, where there is only one shared age of measure-
ment for each pair of successive cohorts. This is represented
by the portions of the model with solid lines in Figure 4.Within
a three-group model, one begins by evaluating measurement
invariance across time as described above, then evaluating
whether it is also tenable to equate loadings and intercepts
across groups (i.e., cohorts; alternatively, one may choose to
establish invariance across time and cohort simultaneously).
Assuming measurement invariance is tenable, one then esti-
mates the autoregressive (i.e., stability) and cross-lagged paths
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1 This requirement is, technically speaking, overly restrictive. Although most
accelerated longitudinal designs follow this pattern, one could instead design a
study in which the ranges of ages, rather than specific ages at assessment, over-
lapped. For instance, for this hypothetical example, one could assess the middle
cohort at ages 11.5, 13, and 14.5 in order to obtain an overlap in age ranges
rather than specific ages. It is not clear the extent of settings in which such a
design would be advantageous; readers should be aware that data from these
unbalanced accelerated longitudinal designs could be analyzed.
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of interest, allowing these to be freely estimated across groups.
From this model, one can then constrain the set of paths of
interest (e.g., X predicting Y) to be equal across the three
cohort groups. If this constraint does not result in a significant
decrement in model fit (evaluated perhaps by ∆χ2 on ∆df), then
one can conclude that this process operates similarly across this
developmental period. If this change is significant, however,
this indicates that the process operates differently across cohort
or development. In this minimal overlap condition, however, it
is not possible to determine whether this change is due to
developmental or cohort differences.

A second situation occurs when the researcher has two or
more points of linkage between successive cohorts, as
displayed in Figure 4 by the inclusion of portions with dashed
lines. As in the minimal overlap situation, one begins by estab-
lishing measurement invariance across time and cohort, fitting
an unrestricted model in which the paths of interest are freely
estimated across time and cohort, then evaluating whether a
model in which the paths of interest are constrained equal
across time and cohort leads to a significant drop in model fit.
If this test does indicate a significant drop, one can now
evaluate the extent to which this is due to cohort versus
developmental effects. To evaluate cohort effects, one would
evaluate the increase in χ2, relative to the unrestricted model,
that occurs with the equating of paths of interest across
cohorts during developmental periods where the cohorts
overlap. For example, one might constrain the cross-lag path
of X predicting subsequent Y to be equal for the following
overlaps: (1) time 2 to time 3 for cohort 1 = time 1 to time 2
for cohort 2; and (2) time 2 to time 3 for cohort 2 = time 1 to
time 2 for cohort 3. The decrement in model fit resulting from
these constraints would indicate the effects of cohort differ-
ences. The remaining decrement in model fit from the un-
restricted model to the fully restricted model (i.e., that where
the parameter of interest is equated across time and cohort)
could be interpreted as a developmental effect.

Conclusions

Traditional panel designs are still developing in terms of what
would be considered best-practice approaches (e.g., specifying
an appropriate null model) and in terms of choices that the
investigator can make (e.g., scaling choices, model evaluation,
how to include covariate effects, and how best to assess medi-
ation). Moreover, data collected for traditional panel designs
often lend themselves to more advanced accelerated designs.
We feel that the traditional panel design still has much to offer
the substantive researcher because it addresses specific ques-
tions about the nature of change that are not necessarily
contained in other advance approaches such as growth curve
modeling. In addition, recent advances in general SEM prac-
tices serve to augment the validity and utility of the infor-
mation that is derived from such models. In sum, we encourage
the continued use of panel designs when the research ques-
tions match their empirical content. By outlining recent
advances in the application of SEM, we hope the quality of
research using these designs will continue to advance.
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