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Abstract 

The KAoS policy management framework pioneered the 

use of semantically-rich ontological representation and 

reasoning to specify, analyze, deconflict, and enforce 

policies [9, 10]. The framework has continued to evolve 

over the last five years, inspired by both technological 

advances and the practical needs of its varied 

applications. In this paper, we describe how these 

applications have motivated the partitioning of 

components into a well-defined three-layer policy 

management architecture that hides ontology complexity 

from the human user and from the policy-governed 

system. The power of semantic reasoning is embedded in 

the middle layer of the architecture where it can provide 

the most benefit. We also describe how the policy 

semantics of the core KAoS Policy Ontology has grown in 

its comprehensiveness. The flexible and mature 

architecture of KAoS enables straightforward integration 

with a variety of deployment platforms, ranging from 

highly distributed systems, such as the AFRL Information 

Management System, to human-robotic interaction, to 

dynamic management of quality-of-service and cross-

domain information management of wireless networks in 

resource-constrained or security-sensitive environments. 
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1. Introduction 
Over the past five years, the use of W3C’s Web Ontology 

Language (OWL) has expanded from its primary use in 

representing Semantic Web content and services to 

important roles in a variety of additional applications. 

Given the trend toward increasing complexity and 

dynamics in applications requiring policy services, and 

the high desirability of open and extensible standards for 

distributed systems, OWL occupies an attractive niche for 

policy representation. 

The flexibility and power of a policy management 

framework is to a large degree determined by the 

expressivity of its policy representation, provided it is 

also computationally efficient. In our experience, OWL 

has not only proven to be remarkably expressive and 

efficient but is also straightforwardly extensible and 

adaptable, even at runtime when sophisticated real-time 

management and analysis of new or existing policies may 

be required [8, 10]. As an additional benefit, ontologies 

provide a natural means for supporting alternate sets of 

policy vocabulary for different applications.  

Despite these advantages, our reliance on OWL for 

policy representation has provided its share of challenges. 

For example, thinking about policies in terms of 

sophisticated ontologies and reasoning mechanisms can 

be a daunting task for new users. Among the important 

things we have learned is that a general purpose 

ontology-based policy framework such as KAoS needs to 

make the sophistication, flexibility, and power of 

ontological representation and reasoning available to 

people in a simple and understandable manner. In 

response to this requirement, we have developed a three-

layer policy management architecture that ensures 

consistency among these separate but interdependent 

components. Experience in a wide variety of applications 

and settings has helped us smooth many of the initial 

rough edges of the approach. 

In this article, we describe many of the interesting 

new features of KAoS, including: details of the three-

layer architecture, the hypertext policy editor and policy 

wizard, support for representing and reasoning about 

history, state, and spatial properties as they relate to 

policy, support for logical policy precedence, network-

efficient policy distribution methods, a revamped Guard 

architecture, and additional mechanisms to support 

obligation policies. 

 

2. Related Work 
Ponder was the forerunner of modern policy languages 

and management systems, and significant work continues 

on its development ([1], www.ponder2.net). Recent years 

have witnessed the development of additional 

approaches—some based on XML (e.g., XACML [7]) 

and others, like KAoS, based on Semantic Web 

representations (e.g., Rei [4], PolicyTab [6]). There have 

also been attempts to recode XML-based policies into 

ontology-based policy representations [5]. Languages 

tailored for specific applications have also appeared (e.g., 

CoRaL [3] for radio spectrum control). 

We believe that the increasingly demanding 

requirements of new applications (see e.g., [2]) will be 

difficult to meet without the advantages afforded by 

semantically-rich representations such as OWL, coupled 



with practical, usable, and efficient policy management 

systems that can make use of them. While special-

purpose languages for narrow application deployment 

may sometimes outperform more general approaches in 

their particular niche, policy is being increasingly used in 

ways that cut across traditional domains (as described in 

section 8 and [2, 11]), making a more comprehensive 

approach to policy management extremely desirable. 

 

3. KAoS Overview 
The KAoS policy services framework [9, 10] has been 

adapted to run on a variety of agent, robotic, Web 

services, Grid computing (e.g., Globus), and traditional 

distributed computing platforms, and across a variety of 

industrial, military, and space applications [11]. In 

addition to services directly related to policy 

management, KAoS also provides the basic services for 

distributed computing, including message transport and 

directory services. Because the services are accessed 

through a well-defined Common Services Interface (CSI), 

application developers can use whatever subset of its 

capabilities (e.g., registration, transport, publish-

subscribe, domain management, remote request 

forwarding, queries) are appropriate for a given situation. 

 

3.1. Three-Layered Architecture 
Two important requirements for the KAoS architecture 

are modularity and extensibility. These requirements are 

supported through a framework with well-defined 

interfaces that can be extended, if necessary, with the 

components required to support application-specific 

policies. The basic elements of the KAoS architecture are 

shown in Figure 1; its three layers of functionality 

correspond to three different policy representations: 

• Human interface layer: This layer uses a hypertext-

like graphical interface for policy specification in the 

form of natural English sentences. The vocabulary is 

automatically provided from the relevant ontologies, 

consisting of highly-reusable core concepts 

augmented by application-specific ones. 

• Policy Management layer: Within this layer, OWL  

(http://www.w3.org/TR/owl-features) is used to 

encode and manage policy-related information. The 

Distributed Directory Service (DDS) encapsulates a 

set of OWL reasoning mechanisms. 

• Policy Monitoring and Enforcement layer: KAoS 

automatically “compiles” OWL policies to an 

efficient format that can be used for monitoring and 

enforcement. This representation provides the 

grounding for abstract ontology terms, connecting 

them to the instances in the runtime environment and 

to other policy-related information. 

 

 

Figure 1: KAoS Policy Services Architecture 

Maintaining consistency among these layers is handled 

automatically by KAoS, a task made more challenging 

because each layer implements its functionality in a 

distributed rather than a centralized manner. The three 

layers are described in more detail in sections 5, 6, and 7. 

Within each of the layers, the end user may plug-in 

specialized extension components if needed, as described 

in more detail throughout the paper. Such components are 

typically developed as Java classes and described using 

ontology concepts in the configuration file. They can then 

be used by KAoS in policy specification, reasoning and 

enforcement processes. 

Figure 1 shows one of many ways in which KAoS 

may be deployed. Developers can pick and choose 

whatever elements of KAoS they deem useful for a given 

application. For instance, some applications may only 

require a single guard while others may use several 

distributed guards. Some applications may not use guards 

at all, in this case using KAoS only as a policy 

specification and management tool. 

 

3.2. Ontologies in KAoS Policy Definition 
The KAoS core policy ontology consists of a set of 

independent OWL files (available at: 

http://ontology.ihmc.us/ontology.html). They define the 

root concepts for policy-governed actions, actors, places, 

states, history, situations, environmental properties 

related to actions (e.g., computing or network resources), 

groups (e.g., domains, roles, teams), and so forth. In 

addition, the ontology contains the concepts needed to 

define the policies themselves. There are currently more 

than 100 classes and properties defined in this basic 

ontology. 

Application developers normally extend the core 

ontology with additional application-specific classes, 

properties, and individuals that can be used as vocabulary 

in policy definitions. Such ontologies define concepts that 

will enable information sharing between KAoS and the 

application itself. For example, in an application of KAoS 



to dynamic configuration of military radios, the 

application required runtime information about 

transmission parameters from the ontology. Using KAoS, 

policy developers are not only able to refer to application-

specific concepts but also to link these concepts with 

more abstract ones in the core ontology. 

The following types of ontologies are typically 

createdby application developers as extensions to the 

KAoS core ontology: 

• ApplicationAction.owl – defines application action 

classes and their properties. New Action classes must 

be subclassed from the core class 

http://ontology.ihmc.us/Action.owl#Action. Examples 

of application-specific action classes might include 

radio transmission actions, actions describing the 

movement of robots, or actions relating to the issuance 

of weather reports. 

• ApplicationActor.owl - defines application actor classes 

(or roles) and their properties. New Actor classes must 

be subclassed from 

http://ontology.ihmc.us/Actor.owl#Actor. Examples of 

application-specific actor classes might include radio 

operator, quadripedal robot, or producer of news report. 

• ApplicationEntity.owl – defines application specific 

entities and their properties. These are used to define 

contexts for application actions. New Entity classes 

must be subclassed from 

http://ontology.ihmc.us/Entity.owl#Entity. Examples of 

application-specific entity classes might include 

transmission area, weather, or wind. 

It is also possible to link application-defined 

concepts to any number of pre-existing ontologies. By 

subclassing new concepts as appropriate subclasses to 

existing concepts in the KAoS core ontology, the new 

concepts can be used in policy vocabulary, reasoning, and 

enforcement. New ontologies (and related policies) can 

be defined, imported, or modified at runtime as needed. 

 

3.3. Grounding Ontologies in the World 
Ontology-based policy services dynamically define 

mappings between class definitions and entities in the 

controlled environment and in the world. This can be 

accomplished in several ways. 

First, static elements of the environment may be 

defined as individuals in application-specific ontologies. 

For instance, we might describe specific instances of 

robots, a range of existing radio spectrums, or a set of 

producers of weather reports for a given area. In addition, 

dynamic elements of the environment may be registered 

within KAoS through the Guard interface, or information 

about them can be provided to a guard at policy 

enforcement time. For instance, at runtime, new areas of 

robot operation can be defined, new weather reports can 

be produced, new radios can be introduced, and new 

domains, roles, or teams can be formed or removed. 

Extension components added to KAoS can be used to 

collect the history of actions, sense the state of the 

environment, or access external databases to provide 

information needed for policy enforcement. 

 

4. KAoS Policy Semantics 
4.1. The Basic Form of KAoS Policies 

Like Ponder and Rei, KAoS supports two main types of 

policy: authorization and obligation [8]. The set of 

permitted actions is determined by authorization policies 

that specify which actions an actor or set of actors is 

allowed (positive authorization policies) or not allowed 

(negative authorization policies) to perform in a given 

context. Obligation policies specify actions that an actor 

or set of actors is required to perform (positive 

obligations) or for which such a requirement is waived 

(negative obligations). All other kinds of policies (e.g., 

delegation, teamwork coordination) are built from these 

two primitive types, combined with other aspects of 

KAoS policy semantics (e.g., domains, history, state). 

The basic form of KAoS policies is as follows: 

[Actor] is [constrained] to perform [controlled 

action] which has [any attributes] 

[Actor] is a variable that refers to the subject of the 

policy-controlled action. Any of the following can be 

defined as actors: 

• A single actor instance (e.g. Robot32); 

• An actor class or a role (as in role-based access 

control) using an actor class name (e.g. members of 

class Robot, Weather Producer, Team A; all Robots 

within 50 feet of my current location); 

• The complement of some instance or set of instances 

(e.g. any Robot except Robot324); 

• The complement of actor class or set of classes (e.g. 

any Robot that is not Pioneer). 

[constrained] is a variable that refers to the basic 

type of the policy (i.e., positive or negative authorization, 

positive or negative obligation). 

[controlled action] is a variable that refers to the 

action class that will be controlled by the  policy (e.g. 

Radio Transmission, Movement). 

[any attributes] is an optional variable referring to 

one or more attributes of the controlled action. For 

example, a Radio Transmission action may have 

attributes defining configuration parameters, the 

destination of the transmission, and so forth. These 

attributes will typically be used to describe aspects of 

context relating to the controlled action. 

Attributes can be used either as part of simple value 

restrictions or to define a test that dynamically relates two 

or more separate attributes. A simple restriction typically 

has the form: 

[all | some] [attribute] values are [within the set of 

enumerated instances | of a given type] 

For example, such a restriction allows a policy to say 

that: 

• A valid credential for a given user must be one of the 

set of recognized credentials. 



• Receivers of a given radio transmission must all be 

holders of a particular security clearance. 

Some policies require the definition of dynamic 

attributes whose values must be tested relative to the 

values of some other attribute. Support in KAoS for this 

feature allows users to define policies that relate to the 

local context of the action or actor. For example: 

• A robot is authorized to request assistance only from 

current members of its team, 

• Employees are forbidden from using printers 

belonging to departments other than their own. 

• Users are authorized to share documents only if they 

share a common credential. 

 

4.2. Role-Value Maps 

OWL semantics do not allow the expression of the 

constraints on attributes described above. The KAoS role-

value-map reasoner [10] solves this problem. The 

reasoner can handle any of the following forms: 

• Attribute values must equal the values of another 

action attribute (e.g., user department membership 

must equal the ownership property of the printer used 

in the print action). 

• Attribute values must contain all values of another 

action attribute (e.g., receivers of a radio 

transmission must all be members of the set of 

security clearance holders). 

• At least one attribute value must equal the value of 

another action attribute (e.g., at least one of the 

credentials of the user initiating communication must 

be in the set of credentials of the receiver of the 

message). 

• None of the attribute values is equal to the values of 

another action attribute. 

 

4.3. Spatial Relations 

Spatial relations (http://ontology.ihmc.us/spatial/) have 

been useful in policies such as: requiring a robot to stay 

to the right of an astronaut, restricting robot movement 

through a given area, or restricting radio transmission to 

authorized power levels within a given political zone. 

For such purposes, we have implemented the KAoS 

Spatial Reasoning Component (KSPARC
1
). KSPARC 

can reason about the location and orientation of objects 

relative to an arbitrary coordinate system and any number 

of dynamically-definable regions described as polygons. 

KSPARC can reason with any mix of absolute and 

egocentric references, allowing the following sorts of 

policy reasoning: 

• Queries for relative positions between objects (e.g., 

in front / behind, to the left / right, inside / outside); 

• Translation between reference orientations (e.g., my 

right = your left); 

• Listing spatial relations between two objects; 

                                                
1
 Pronounced “KAY-spark.” 

• Spatial relationships between two objects in relation 

to a reference object (e.g., further to the left or right 

of, higher than); 

• Calculating whether or not an object can be seen 

from a given position and orientation; 

• Calculating specific values associated with any 

spatial relations (distance, rotation). 

 

4.5. Obligation Policy Triggers 

Unlike authorization policies, obligation policies include 

triggers that specify the conditions under which the 

required action will be activated (e.g., When two hours 

have elapsed, the operator must terminate the 

transmission). Trigger actions are specified in a manner 

that is similar to controlled actions. 

Relative attributes are typically used to relate the 

trigger to the obliged action (e.g., “If [some robot] fails, 

then [some robot] must notify its teammates; “If [some 

message] is of class ‘secret’ or greater, [some message] 

must be logged to the audit queue).” 

 

4.4. History and Current State of a Situation 

All policies are defined in the context of a Situation, 

which possesses a history and a set of variables 

describing its current state. 

History is used to qualify the applicability of the 

policy relative to past events, i.e.: 

This policy applies when [actor] has performed 

[action] which has [any attributes] _at least [#] 

times_ _within the last [x] [minutes|hours|days…] 

For example, this feature could be used in a policy to 

forbid system access to anyone who has a history of two 

or more failed logon attempts in the last five days. 

State information is used to qualify the applicability 

of a policy relative to values representing the current state 

of one or more variables, i.e.: 

This policy applies when the [situation element] [has 

any state | is] [state] has [attributes] 

For instance, a given policy governing the frequency 

of weather reports might apply only when the Weather is 

Bad Weather. Another policy might apply when the 

Weather has the following attributes: temperature is > 75 

and sunlight is bright. 

 

4.6. Policy Precedence 

The ranking of policies by order of importance is used in 

two important phases of policy management. In the first 

case, when a policy is created or updated, the policy 

service must determine whether the new policy is 

consistent with the existing set of policies. If the new 

policy and an existing policy have the same ranking in 

importance, cover overlapping actor, action, and context 

classes, and have conflicting modalities (i.e., 

authorized/forbidden, required/forbidden, required/not 

required), the new policy is rejected and deconfliction 

recommendations are given to the user [9]. If the new 



policy overlaps with an existing policy and has a 

conflicting modality, but one of the two policies has a 

higher ranking than the other, no deconfliction is 

required. 

The second case occurs during authorization policy 

decisions (i.e., determining whether or not an action is 

permitted). As part of this process, KAoS collects a set of 

policies with action classes positively classifying the 

action instance being tested. Policy ranking allows KAoS 

to group applicable policies into sets of decreasing 

importance. At policy creation time, the consistency 

checking mechanism has already assured that the sets are 

not in conflict. At policy decision time, within the policy 

set with the highest priority for a given action, a single 

positive or negative authorization policy will determine 

whether the action is permitted or forbidden. 

KAoS originally relied on numeric policy priority 

assignments by users to determine how policies should be 

ranked. This mechanism has important advantages. For 

example, at policy commitment time it is immediately 

evident that only policies with the same numeric priorities 

must be tested for consistency with the new policy. When 

policy decisions are made, policy applicability is 

analyzed according to the partially-sorted priority 

sequence. Thus, the numeric policy ranking approach 

executes quickly. Unfortunately, a disadvantage of this 

approach has been that people may have difficulty 

assigning meaningful priorities and tracking how a given 

policy’s priority relates to the priorities of other policies. 

For this reason, we are extending the priority mechanism 

in KAoS to use a logical precedence mechanism in 

addition to numeric priorities. The following relations are 

supported: 

•  Name or role of the person who authorized the policy 

(e.g., Jim Hanna’s policies take precedence over 

anyone else’s policies, policies of the domain 

administrator take precedence over user policies); 

• Time when the policy was created (e.g., more recent 

policies take precedence over older policies); 

• Relative scope of class of the policy subject (e.g., 

superdomain policies take precedence over 

subdomain policies; policies for Pioneer robots take 

precedence over policies for the general robot class); 

• Relative scope of the class of policy action (e.g., 

policies about writing to a specific directory take 

precedence over policies about writing to the 

volume); 

• Modality of the policy (e.g., Negative authorizations 

take precedence over Positive authorizations); 

• Priority level of the policy (e.g., high-medium-low). 

These levels will allow users to define any number of 

arbitrarily-ordered priority categories and associate 

them with names of their own choice. These priority 

levels can be used in conjunction with any of the 

precedence relations described above. 

The user is also allowed to manually change the location 

of any policy in the ranked list. 

When the policy service does not find any policy 

applicable to the current situation, it must still provide an 

answer to the authorization question. For this reason, 

users can specify a default authorization mode on a per 

domain basis. A domain is considered tyrannical if it is 

configured such that nothing is permitted unless explicitly 

authorized, and laissez-faire in the opposite case. 

 

5. KAoS Human Interface Layer 
The KAoS Policy Administration Tool (KPAT

2
) 

implements a graphical user interface for policy 

management functionality. Besides its use in policy 

specification and analysis, it is used for administration 

tasks such as browsing and loading ontologies, and 

domain and Guard management. 

 

Figure 2: Authorization Policy in Hypertext Mode 

KPAT’s generic Policy Editor (Fig. 2) presents an 

administrator with a starting point for policy 

construction—essentially, a very generic policy statement 

shown as hypertext (see the generic policy statement in 

section 4.1). Clicking on a specific link that represents a 

variable provides the user with choices allowing him to 

make a more specific policy statement. During use, 

KPAT accesses the ontology loaded into the DDS and 

always provides the user with the list of choices narrowed 

to the current context of the policy construction. New 

classes and instances can also be created from KPAT. 

To further simplify policy construction, KPAT 

provides two additional policy creation interfaces: 

• The Policy Wizard (Fig. 3) takes a user step-by-step 

through the policy creation process. Information 

selected for presentation is conditioned on whatever 

has been selected previously, making the experience 

as simple and foolproof as possible. 

• The Policy Template Editor allows custom policy 

editors for a given kind of policies to be created by 

point-and-click methods. For instance, if an 

application will require the definition of several 

                                                
2
 Pronounced “KAY-pat.” 



policies governing publish/subscribe actions, a 

custom policy editor can be quickly created by 

limiting choices to just what is needed, thus 

eliminating the requirement for repetitive selections. 
 

 

Figure 3: Authorization Policy Using KPAT Wizard. 

KPAT is also used to change policy precedence, 

activate and deactivate policies, and to provide for a 

variety of analysis and test options not discussed here. 

Once a policy is deconflicted and committed, the Jena 

framework (http://jena.sourceforge.net/) is used to 

dynamically build the OWL policy. A demonstration 

version of KPAT is available as a Java Web Start 

application from http://ontology.ihmc.us/kaos.html. 

 

6. KAoS Policy Management Layer 
This layer mediates between the human interface layer 

and the monitoring and enforcement layer. Though other 

kinds of reasoning take place in the top and bottom 

layers, the middle layer is where virtually all the 

ontological reasoning and representation takes place. The 

higher computational cost of reasoning for policy 

deconfliction and analysis is paid up front so that policy 

monitoring and enforcement in the lowest layer can be 

performed in a highly efficient manner. 

 

6.1. Bootstrapping and Basic Policy Reasoning 

An entire KAoS configuration, including application-

specific ontologies and policies, can be captured 

declaratively as OWL and reused at a later time. During 

bootstrap, the core policy ontology (section 3.1) is loaded 

into the ontology reasoner integrated with KAoS. We 

have used KAoS with  Java Theorem Prover (JTP
3
) and 

Pellet,
2
 but there is no reason why other reasoners could 

                                                
3
 http://www.ksl.stanford.edu/software/JTP/ 

2
 http://pellet.owldl.com/ 

not be used, since the DDS interacts with them through a 

well-defined abstract interface. After bootstrap, 

application-specific ontologies may be loaded. The 

reasoner maintains information about domain structures, 

registered actors and other entities pertinent to the 

situation. as described in section 3.3. With respect to 

policy management, the reasoner supports the creation of 

policies by supplying KPAT with lists of vocabulary 

terms (e.g., all of the action classes which can be 

performed by a given class of actor). Policies can also be 

created, of course, through a programmatic interface. 

During policy analysis the reasoner finds relations 

between action classes controlled by policies through 

subsumption reasoning [9]. Description logic, however, 

does not recognize role-value map semantics. So when 

the subsumption reasoner finds a relation between actions 

and subsequently policies it is still up to the manager to 

determine whether potential instances of role-value maps 

separate the actions and nullify the policy relation. 

As policies are distributed to guards (see below), the 

reasoner classifies existing instances (e.g., the list of 

actors) so that relevant information of other kinds can be 

sent to the guards at the same time. 

 

6.2. Policy Distribution 

When policies are added and modified, or when a guard 

connects or reconnects to the Distributed Directory 

Service (DDS), the DDS assembles the appropriate 

update information relevant to a particular guard. The 

DDS maintains a registry about the interests of each 

guard (see below) and a history of what has already been 

sent to it. 

During the policy update process, the OWL policy 

representations are converted to a form that enables the 

guards to make complex enforcement decisions very 

efficiently. The algorithm traverses the OWL policy 

structure and “compiles” it into a hash-table-like structure 

where entries for each policy describe policy action 

attributes, a range of acceptable values, a list of super-

attributes and sub-attributes defined in the ontology, and, 

if available, the encoded definition of the range class. 

Abstract actions not explicitly included in the business 

code are changed into the enforceable action with a 

definition of restrictions that distinguish the abstract class 

from a base class encoded as an attribute. For instance, if 

a given policy talks about the publication of weather 

reports and the business code just has a method of 

publication with a parameter specifying the information, 

then the range of values for the corresponding attribute of 

the published action used in the enforceable 

representation of policy is set to the weather report type. 

Since the DDS has a record of information sent to guards 

it can recognize that some of the information cached in 

the pre-computed guard policy representation has 

changed when entities register or deregister, and can send 

updates as appropriate. 



We are near completion of a new mechanism to 

allow direct communication among a group of guards for 

the exchange of policy and cache updates. We have 

designed this capability for a mobile ad-hoc network 

environment where continuous direct communication 

between the DDS and the guards is not always possible. 

 

7. Policy Monitoring and Enforcement Layer 
The guard is where KAoS meets the application. Its 

primary role is as a policy decision point. Guards register 

to receive policies about particular entities, classes of 

entities, and/or for a given set of action classes. Because 

guards can save their policies and reload them directly 

from a snapshot, they can be bootstrapped in a standalone 

mode without a need to connect to the DDS. This 

functionality allows policies to govern the actions of 

standalone sensors or similar components. 

 

Figure 4: Architecture of the KAoS Guard 

Guards not only receive information about policies, 

but also about the state of the system and the entities 

being managed. Guards do not by themselves provide 

monitoring functions, but they do provide interfaces to 

plug in outside monitors or databases providing access to 

external state or event-related information (Fig 4). 

The Policy Checking Interface provides a set of 

methods that allow a given action instance to be checked 

for: 

• Authorization. If an action is not authorized, an 

exception is thrown with information about the 

policy that prevented it. In some secure applications, 

however, it would not be desirable to release 

information about the cause of the policy exception. 

• Obligations. A list of obligations for a given actor is 

returned, sorted in rank order of importance. In 

addition, if there are obligations for other actors that 

are triggered by an external event, then KAoS will 

try to locate them and forward the obligations to 

them. 

• Configuration options. If a partial description of the 

action is sent to KAoS, a range of allowed values for 

properties of a given action is returned. For instance, 

if an application were to query the guard about a 

planned radio transmission, information about the 

maximum power and range of frequencies allowed to 

be used in the given geographical area would be 

returned to it. Disclosure policies would be used to 

filter out unauthorized information in the results. 

The data structure exchanged between an application 

and KAoS in these methods is an Action Instance 

Description (AID), easily constructed with a Java class 

provided by KAoS. For those not wanting to use Java for 

this purpose, KAoS also accepts a string with an OWL 

definition of an AID. Applications that check 

authorization policies must be able to create AIDs, and 

applications that handle obligations must be able to 

interpret them when received. AIDs can contain complex 

values in the form of additional structures. 

OWL requires references to the URLs of ontology 

concepts defining actions. For this purpose, KAoS 

provides a simple tool to create Java constants for 

ontological concepts. The values of these constants are 

URLs. This approach allows URLs to be easily 

referenced and used in application code. 

In order to cope with the OWL open-world 

assumption,
4
 KAoS uses intersection to define classes of 

policy controlled actions
5
 for deterministic policy 

decisions. When the policy checking method is executed, 

it traverses the policy database in priority order and 

checks to see whether the AID is in the range of actions 

controlled by any policy—the range of actions is derived 

from an analysis of the policy’s controlled action class. 

To make this determination, each attribute of the AID’s 

action must be checked to see whether its value is in the 

range of its corresponding attribute in the policy control 

action class. The role-value map relations, defining 

aspects of policy context, are checked as well. This is just 

a brief sketch of the full guard policy-checking algorithm 

which, because it does not require the power of a 

complete OWL reasoner, executes in a few milliseconds. 

In order to support the semantics of complex 

application-specific policies, guards accommodate a 

variety of extensions. These can be activated on demand, 

as specified in each guard’s configuration information. 

Examples include: 

• Obligation Policies 

Obligation Action Instantiator: helps customize the 

creation of obligation actions. 

Obligation Monitor: monitors fulfillment of 

obligations and notifies responsible parties about 

perceived violations. 
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Obligation Redirector: delegates obligations to some 

other actor. 

• History and State 

History Monitor: tracks the history of specific 

actions and verifies whether a given history is 

present. 

State Monitor: a sensor that provides information 

about some aspect of the environment or situation. 

• Spatial Reasoner: provides spatial reasoning support 

to the guard. 

 

8. Application Case Studies 
Below is a brief summary of some current KAoS 

applications illustrating the comprehensiveness and 

maturity of the system. 

The AFRL Information Management System
6
 is  a 

large-scale highly-distributed publish-subscribe system in 

which KAoS has been integrated to deal with security and 

increasingly challenging quality-of-service policies 

(http://ontology.ihmc.us/Raytheon/index.html). In a 

related project, we are implementing a KAoS-enabled 

infosphere federation service that includes support for 

policy negotiation among federation partners. We have 

also built a prototype for the support of communities of 

interest across their life cycle  (http://ontology.ihmc.us/ 

COI/index.html).
7
 

In a set of ARL-supported projects supporting the 

goal of Cross-Domain Information Exchange (CDIX), 

we have developed a system that represents and reasons 

about domain-specific policies to help recognize what 

otherwise sensitive documents a soldier is allowed to 

receive given the current mission context. The system 

also relies on policies to help recognize when appropriate 

human approval can be obtained or a specific 

transformation of the information can be performed to 

allow the information to be released [13]. 

As part of a series of ONR-sponsored studies of 

Human–Agent-Robot Teamwork, we have exercised 

KAoS in an application involving a variety of application 

domains and enforcement at different levels of control, 

from low level network resource control to high level 

organizational constraints, spatial reasoning, and 

coordination management. A recent phase of the study 

culminated in an outdoor field exercise that required 

policy-based coordination in real time of mixed subteams, 

involving a combination of two people and five robots 

communicating over wireless 802.11b, while performing 

a hide-and-seek style search and apprehension of an 

intruder on a Navy pier [12]. 

In partnership with Raytheon, we have developed 

prototypes of Radio Spectrum and Transmission 

Control applications, where settings governing power 

and other configuration parameters of the transmission in 
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given geographical areas are approximated from 

reasoning based on spatial knowledge and the current 

type and usage of a radio (http://ontology.ihmc.us/ 

Raytheon/index.html). 

 

9. Conclusions and Future Work 
In this article we have described how the architecture and 

capabilities of the KAoS policy services framework have 

evolved, inspired by both technological advances and the 

practical needs of its varied applications. Areas of future 

research include: automated policy refinement, 

visualization of policy relations and applicability, 

enhancement of probabilistic techniques for automated 

policy adjustment (adjustable autonomy), uncertainties in 

information used in policy checking, and the handling of 

time—as in, for example, performing progress appraisal. 
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