
New Developments in Ontology-Based Policy Management:

Increasing the Practicality and Comprehensiveness of KAoS

Andrzej Uszok, Jeffrey M. Bradshaw, James Lott, Maggie Breedy, Larry Bunch,

Paul Feltovich, Matthew Johnson, and Hyuckchul Jung

Florida Institute for Human and Machine Cognition (IHMC), 40 S. Alcaniz, Pensacola, FL 32502

{auszok, jbradshaw, jlott, mbreedy, lbunch, pfeltovich, mjohnson, hjung}@ihmc.us

Abstract

The KAoS policy management framework pioneered the

use of semantically-rich ontological representation and

reasoning to specify, analyze, deconflict, and enforce

policies [9, 10]. The framework has continued to evolve

over the last five years, inspired by both technological

advances and the practical needs of its varied

applications. In this paper, we describe how these

applications have motivated the partitioning of

components into a well-defined three-layer policy

management architecture that hides ontology complexity

from the human user and from the policy-governed

system. The power of semantic reasoning is embedded in

the middle layer of the architecture where it can provide

the most benefit. We also describe how the policy

semantics of the core KAoS Policy Ontology has grown in

its comprehensiveness. The flexible and mature

architecture of KAoS enables straightforward integration

with a variety of deployment platforms, ranging from

highly distributed systems, such as the AFRL Information

Management System, to human-robotic interaction, to

dynamic management of quality-of-service and cross-

domain information management of wireless networks in

resource-constrained or security-sensitive environments.

Keywords: policy, ontology, OWL, KAoS, policy

management

1. Introduction
Over the past five years, the use of W3C’s Web Ontology

Language (OWL) has expanded from its primary use in

representing Semantic Web content and services to

important roles in a variety of additional applications.

Given the trend toward increasing complexity and

dynamics in applications requiring policy services, and

the high desirability of open and extensible standards for

distributed systems, OWL occupies an attractive niche for

policy representation.

The flexibility and power of a policy management

framework is to a large degree determined by the

expressivity of its policy representation, provided it is

also computationally efficient. In our experience, OWL

has not only proven to be remarkably expressive and

efficient but is also straightforwardly extensible and

adaptable, even at runtime when sophisticated real-time

management and analysis of new or existing policies may

be required [8, 10]. As an additional benefit, ontologies

provide a natural means for supporting alternate sets of

policy vocabulary for different applications.

Despite these advantages, our reliance on OWL for

policy representation has provided its share of challenges.

For example, thinking about policies in terms of

sophisticated ontologies and reasoning mechanisms can

be a daunting task for new users. Among the important

things we have learned is that a general purpose

ontology-based policy framework such as KAoS needs to

make the sophistication, flexibility, and power of

ontological representation and reasoning available to

people in a simple and understandable manner. In

response to this requirement, we have developed a three-

layer policy management architecture that ensures

consistency among these separate but interdependent

components. Experience in a wide variety of applications

and settings has helped us smooth many of the initial

rough edges of the approach.

In this article, we describe many of the interesting

new features of KAoS, including: details of the three-

layer architecture, the hypertext policy editor and policy

wizard, support for representing and reasoning about

history, state, and spatial properties as they relate to

policy, support for logical policy precedence, network-

efficient policy distribution methods, a revamped Guard

architecture, and additional mechanisms to support

obligation policies.

2. Related Work
Ponder was the forerunner of modern policy languages

and management systems, and significant work continues

on its development ([1], www.ponder2.net). Recent years

have witnessed the development of additional

approaches—some based on XML (e.g., XACML [7])

and others, like KAoS, based on Semantic Web

representations (e.g., Rei [4], PolicyTab [6]). There have

also been attempts to recode XML-based policies into

ontology-based policy representations [5]. Languages

tailored for specific applications have also appeared (e.g.,

CoRaL [3] for radio spectrum control).

We believe that the increasingly demanding

requirements of new applications (see e.g., [2]) will be

difficult to meet without the advantages afforded by

semantically-rich representations such as OWL, coupled

with practical, usable, and efficient policy management

systems that can make use of them. While special-

purpose languages for narrow application deployment

may sometimes outperform more general approaches in

their particular niche, policy is being increasingly used in

ways that cut across traditional domains (as described in

section 8 and [2, 11]), making a more comprehensive

approach to policy management extremely desirable.

3. KAoS Overview
The KAoS policy services framework [9, 10] has been

adapted to run on a variety of agent, robotic, Web

services, Grid computing (e.g., Globus), and traditional

distributed computing platforms, and across a variety of

industrial, military, and space applications [11]. In

addition to services directly related to policy

management, KAoS also provides the basic services for

distributed computing, including message transport and

directory services. Because the services are accessed

through a well-defined Common Services Interface (CSI),

application developers can use whatever subset of its

capabilities (e.g., registration, transport, publish-

subscribe, domain management, remote request

forwarding, queries) are appropriate for a given situation.

3.1. Three-Layered Architecture
Two important requirements for the KAoS architecture

are modularity and extensibility. These requirements are

supported through a framework with well-defined

interfaces that can be extended, if necessary, with the

components required to support application-specific

policies. The basic elements of the KAoS architecture are

shown in Figure 1; its three layers of functionality

correspond to three different policy representations:

• Human interface layer: This layer uses a hypertext-

like graphical interface for policy specification in the

form of natural English sentences. The vocabulary is

automatically provided from the relevant ontologies,

consisting of highly-reusable core concepts

augmented by application-specific ones.

• Policy Management layer: Within this layer, OWL

(http://www.w3.org/TR/owl-features) is used to

encode and manage policy-related information. The

Distributed Directory Service (DDS) encapsulates a

set of OWL reasoning mechanisms.

• Policy Monitoring and Enforcement layer: KAoS

automatically “compiles” OWL policies to an

efficient format that can be used for monitoring and

enforcement. This representation provides the

grounding for abstract ontology terms, connecting

them to the instances in the runtime environment and

to other policy-related information.

Figure 1: KAoS Policy Services Architecture

Maintaining consistency among these layers is handled

automatically by KAoS, a task made more challenging

because each layer implements its functionality in a

distributed rather than a centralized manner. The three

layers are described in more detail in sections 5, 6, and 7.

Within each of the layers, the end user may plug-in

specialized extension components if needed, as described

in more detail throughout the paper. Such components are

typically developed as Java classes and described using

ontology concepts in the configuration file. They can then

be used by KAoS in policy specification, reasoning and

enforcement processes.

Figure 1 shows one of many ways in which KAoS

may be deployed. Developers can pick and choose

whatever elements of KAoS they deem useful for a given

application. For instance, some applications may only

require a single guard while others may use several

distributed guards. Some applications may not use guards

at all, in this case using KAoS only as a policy

specification and management tool.

3.2. Ontologies in KAoS Policy Definition
The KAoS core policy ontology consists of a set of

independent OWL files (available at:

http://ontology.ihmc.us/ontology.html). They define the

root concepts for policy-governed actions, actors, places,

states, history, situations, environmental properties

related to actions (e.g., computing or network resources),

groups (e.g., domains, roles, teams), and so forth. In

addition, the ontology contains the concepts needed to

define the policies themselves. There are currently more

than 100 classes and properties defined in this basic

ontology.

Application developers normally extend the core

ontology with additional application-specific classes,

properties, and individuals that can be used as vocabulary

in policy definitions. Such ontologies define concepts that

will enable information sharing between KAoS and the

application itself. For example, in an application of KAoS

to dynamic configuration of military radios, the

application required runtime information about

transmission parameters from the ontology. Using KAoS,

policy developers are not only able to refer to application-

specific concepts but also to link these concepts with

more abstract ones in the core ontology.

The following types of ontologies are typically

createdby application developers as extensions to the

KAoS core ontology:

• ApplicationAction.owl – defines application action

classes and their properties. New Action classes must

be subclassed from the core class

http://ontology.ihmc.us/Action.owl#Action. Examples

of application-specific action classes might include

radio transmission actions, actions describing the

movement of robots, or actions relating to the issuance

of weather reports.

• ApplicationActor.owl - defines application actor classes

(or roles) and their properties. New Actor classes must

be subclassed from

http://ontology.ihmc.us/Actor.owl#Actor. Examples of

application-specific actor classes might include radio

operator, quadripedal robot, or producer of news report.

• ApplicationEntity.owl – defines application specific

entities and their properties. These are used to define

contexts for application actions. New Entity classes

must be subclassed from

http://ontology.ihmc.us/Entity.owl#Entity. Examples of

application-specific entity classes might include

transmission area, weather, or wind.

It is also possible to link application-defined

concepts to any number of pre-existing ontologies. By

subclassing new concepts as appropriate subclasses to

existing concepts in the KAoS core ontology, the new

concepts can be used in policy vocabulary, reasoning, and

enforcement. New ontologies (and related policies) can

be defined, imported, or modified at runtime as needed.

3.3. Grounding Ontologies in the World
Ontology-based policy services dynamically define

mappings between class definitions and entities in the

controlled environment and in the world. This can be

accomplished in several ways.

First, static elements of the environment may be

defined as individuals in application-specific ontologies.

For instance, we might describe specific instances of

robots, a range of existing radio spectrums, or a set of

producers of weather reports for a given area. In addition,

dynamic elements of the environment may be registered

within KAoS through the Guard interface, or information

about them can be provided to a guard at policy

enforcement time. For instance, at runtime, new areas of

robot operation can be defined, new weather reports can

be produced, new radios can be introduced, and new

domains, roles, or teams can be formed or removed.

Extension components added to KAoS can be used to

collect the history of actions, sense the state of the

environment, or access external databases to provide

information needed for policy enforcement.

4. KAoS Policy Semantics
4.1. The Basic Form of KAoS Policies

Like Ponder and Rei, KAoS supports two main types of

policy: authorization and obligation [8]. The set of

permitted actions is determined by authorization policies

that specify which actions an actor or set of actors is

allowed (positive authorization policies) or not allowed

(negative authorization policies) to perform in a given

context. Obligation policies specify actions that an actor

or set of actors is required to perform (positive

obligations) or for which such a requirement is waived

(negative obligations). All other kinds of policies (e.g.,

delegation, teamwork coordination) are built from these

two primitive types, combined with other aspects of

KAoS policy semantics (e.g., domains, history, state).

The basic form of KAoS policies is as follows:

[Actor] is [constrained] to perform [controlled

action] which has [any attributes]

[Actor] is a variable that refers to the subject of the

policy-controlled action. Any of the following can be

defined as actors:

• A single actor instance (e.g. Robot32);

• An actor class or a role (as in role-based access

control) using an actor class name (e.g. members of

class Robot, Weather Producer, Team A; all Robots

within 50 feet of my current location);

• The complement of some instance or set of instances

(e.g. any Robot except Robot324);

• The complement of actor class or set of classes (e.g.

any Robot that is not Pioneer).

[constrained] is a variable that refers to the basic

type of the policy (i.e., positive or negative authorization,

positive or negative obligation).

[controlled action] is a variable that refers to the

action class that will be controlled by the policy (e.g.

Radio Transmission, Movement).

[any attributes] is an optional variable referring to

one or more attributes of the controlled action. For

example, a Radio Transmission action may have

attributes defining configuration parameters, the

destination of the transmission, and so forth. These

attributes will typically be used to describe aspects of

context relating to the controlled action.

Attributes can be used either as part of simple value

restrictions or to define a test that dynamically relates two

or more separate attributes. A simple restriction typically

has the form:

[all | some] [attribute] values are [within the set of

enumerated instances | of a given type]

For example, such a restriction allows a policy to say

that:

• A valid credential for a given user must be one of the

set of recognized credentials.

• Receivers of a given radio transmission must all be

holders of a particular security clearance.

Some policies require the definition of dynamic

attributes whose values must be tested relative to the

values of some other attribute. Support in KAoS for this

feature allows users to define policies that relate to the

local context of the action or actor. For example:

• A robot is authorized to request assistance only from

current members of its team,

• Employees are forbidden from using printers

belonging to departments other than their own.

• Users are authorized to share documents only if they

share a common credential.

4.2. Role-Value Maps

OWL semantics do not allow the expression of the

constraints on attributes described above. The KAoS role-

value-map reasoner [10] solves this problem. The

reasoner can handle any of the following forms:

• Attribute values must equal the values of another

action attribute (e.g., user department membership

must equal the ownership property of the printer used

in the print action).

• Attribute values must contain all values of another

action attribute (e.g., receivers of a radio

transmission must all be members of the set of

security clearance holders).

• At least one attribute value must equal the value of

another action attribute (e.g., at least one of the

credentials of the user initiating communication must

be in the set of credentials of the receiver of the

message).

• None of the attribute values is equal to the values of

another action attribute.

4.3. Spatial Relations

Spatial relations (http://ontology.ihmc.us/spatial/) have

been useful in policies such as: requiring a robot to stay

to the right of an astronaut, restricting robot movement

through a given area, or restricting radio transmission to

authorized power levels within a given political zone.

For such purposes, we have implemented the KAoS

Spatial Reasoning Component (KSPARC
1
). KSPARC

can reason about the location and orientation of objects

relative to an arbitrary coordinate system and any number

of dynamically-definable regions described as polygons.

KSPARC can reason with any mix of absolute and

egocentric references, allowing the following sorts of

policy reasoning:

• Queries for relative positions between objects (e.g.,

in front / behind, to the left / right, inside / outside);

• Translation between reference orientations (e.g., my

right = your left);

• Listing spatial relations between two objects;

1
 Pronounced “KAY-spark.”

• Spatial relationships between two objects in relation

to a reference object (e.g., further to the left or right

of, higher than);

• Calculating whether or not an object can be seen

from a given position and orientation;

• Calculating specific values associated with any

spatial relations (distance, rotation).

4.5. Obligation Policy Triggers

Unlike authorization policies, obligation policies include

triggers that specify the conditions under which the

required action will be activated (e.g., When two hours

have elapsed, the operator must terminate the

transmission). Trigger actions are specified in a manner

that is similar to controlled actions.

Relative attributes are typically used to relate the

trigger to the obliged action (e.g., “If [some robot] fails,

then [some robot] must notify its teammates; “If [some

message] is of class ‘secret’ or greater, [some message]

must be logged to the audit queue).”

4.4. History and Current State of a Situation

All policies are defined in the context of a Situation,

which possesses a history and a set of variables

describing its current state.

History is used to qualify the applicability of the

policy relative to past events, i.e.:

This policy applies when [actor] has performed

[action] which has [any attributes] _at least [#]

times_ _within the last [x] [minutes|hours|days…]

For example, this feature could be used in a policy to

forbid system access to anyone who has a history of two

or more failed logon attempts in the last five days.

State information is used to qualify the applicability

of a policy relative to values representing the current state

of one or more variables, i.e.:

This policy applies when the [situation element] [has

any state | is] [state] has [attributes]

For instance, a given policy governing the frequency

of weather reports might apply only when the Weather is

Bad Weather. Another policy might apply when the

Weather has the following attributes: temperature is > 75

and sunlight is bright.

4.6. Policy Precedence

The ranking of policies by order of importance is used in

two important phases of policy management. In the first

case, when a policy is created or updated, the policy

service must determine whether the new policy is

consistent with the existing set of policies. If the new

policy and an existing policy have the same ranking in

importance, cover overlapping actor, action, and context

classes, and have conflicting modalities (i.e.,

authorized/forbidden, required/forbidden, required/not

required), the new policy is rejected and deconfliction

recommendations are given to the user [9]. If the new

policy overlaps with an existing policy and has a

conflicting modality, but one of the two policies has a

higher ranking than the other, no deconfliction is

required.

The second case occurs during authorization policy

decisions (i.e., determining whether or not an action is

permitted). As part of this process, KAoS collects a set of

policies with action classes positively classifying the

action instance being tested. Policy ranking allows KAoS

to group applicable policies into sets of decreasing

importance. At policy creation time, the consistency

checking mechanism has already assured that the sets are

not in conflict. At policy decision time, within the policy

set with the highest priority for a given action, a single

positive or negative authorization policy will determine

whether the action is permitted or forbidden.

KAoS originally relied on numeric policy priority

assignments by users to determine how policies should be

ranked. This mechanism has important advantages. For

example, at policy commitment time it is immediately

evident that only policies with the same numeric priorities

must be tested for consistency with the new policy. When

policy decisions are made, policy applicability is

analyzed according to the partially-sorted priority

sequence. Thus, the numeric policy ranking approach

executes quickly. Unfortunately, a disadvantage of this

approach has been that people may have difficulty

assigning meaningful priorities and tracking how a given

policy’s priority relates to the priorities of other policies.

For this reason, we are extending the priority mechanism

in KAoS to use a logical precedence mechanism in

addition to numeric priorities. The following relations are

supported:

• Name or role of the person who authorized the policy

(e.g., Jim Hanna’s policies take precedence over

anyone else’s policies, policies of the domain

administrator take precedence over user policies);

• Time when the policy was created (e.g., more recent

policies take precedence over older policies);

• Relative scope of class of the policy subject (e.g.,

superdomain policies take precedence over

subdomain policies; policies for Pioneer robots take

precedence over policies for the general robot class);

• Relative scope of the class of policy action (e.g.,

policies about writing to a specific directory take

precedence over policies about writing to the

volume);

• Modality of the policy (e.g., Negative authorizations

take precedence over Positive authorizations);

• Priority level of the policy (e.g., high-medium-low).

These levels will allow users to define any number of

arbitrarily-ordered priority categories and associate

them with names of their own choice. These priority

levels can be used in conjunction with any of the

precedence relations described above.

The user is also allowed to manually change the location

of any policy in the ranked list.

When the policy service does not find any policy

applicable to the current situation, it must still provide an

answer to the authorization question. For this reason,

users can specify a default authorization mode on a per

domain basis. A domain is considered tyrannical if it is

configured such that nothing is permitted unless explicitly

authorized, and laissez-faire in the opposite case.

5. KAoS Human Interface Layer
The KAoS Policy Administration Tool (KPAT

2
)

implements a graphical user interface for policy

management functionality. Besides its use in policy

specification and analysis, it is used for administration

tasks such as browsing and loading ontologies, and

domain and Guard management.

Figure 2: Authorization Policy in Hypertext Mode

KPAT’s generic Policy Editor (Fig. 2) presents an

administrator with a starting point for policy

construction—essentially, a very generic policy statement

shown as hypertext (see the generic policy statement in

section 4.1). Clicking on a specific link that represents a

variable provides the user with choices allowing him to

make a more specific policy statement. During use,

KPAT accesses the ontology loaded into the DDS and

always provides the user with the list of choices narrowed

to the current context of the policy construction. New

classes and instances can also be created from KPAT.

To further simplify policy construction, KPAT

provides two additional policy creation interfaces:

• The Policy Wizard (Fig. 3) takes a user step-by-step

through the policy creation process. Information

selected for presentation is conditioned on whatever

has been selected previously, making the experience

as simple and foolproof as possible.

• The Policy Template Editor allows custom policy

editors for a given kind of policies to be created by

point-and-click methods. For instance, if an

application will require the definition of several

2
 Pronounced “KAY-pat.”

policies governing publish/subscribe actions, a

custom policy editor can be quickly created by

limiting choices to just what is needed, thus

eliminating the requirement for repetitive selections.

Figure 3: Authorization Policy Using KPAT Wizard.

KPAT is also used to change policy precedence,

activate and deactivate policies, and to provide for a

variety of analysis and test options not discussed here.

Once a policy is deconflicted and committed, the Jena

framework (http://jena.sourceforge.net/) is used to

dynamically build the OWL policy. A demonstration

version of KPAT is available as a Java Web Start

application from http://ontology.ihmc.us/kaos.html.

6. KAoS Policy Management Layer
This layer mediates between the human interface layer

and the monitoring and enforcement layer. Though other

kinds of reasoning take place in the top and bottom

layers, the middle layer is where virtually all the

ontological reasoning and representation takes place. The

higher computational cost of reasoning for policy

deconfliction and analysis is paid up front so that policy

monitoring and enforcement in the lowest layer can be

performed in a highly efficient manner.

6.1. Bootstrapping and Basic Policy Reasoning

An entire KAoS configuration, including application-

specific ontologies and policies, can be captured

declaratively as OWL and reused at a later time. During

bootstrap, the core policy ontology (section 3.1) is loaded

into the ontology reasoner integrated with KAoS. We

have used KAoS with Java Theorem Prover (JTP
3
) and

Pellet,
2
 but there is no reason why other reasoners could

3
 http://www.ksl.stanford.edu/software/JTP/

2
 http://pellet.owldl.com/

not be used, since the DDS interacts with them through a

well-defined abstract interface. After bootstrap,

application-specific ontologies may be loaded. The

reasoner maintains information about domain structures,

registered actors and other entities pertinent to the

situation. as described in section 3.3. With respect to

policy management, the reasoner supports the creation of

policies by supplying KPAT with lists of vocabulary

terms (e.g., all of the action classes which can be

performed by a given class of actor). Policies can also be

created, of course, through a programmatic interface.

During policy analysis the reasoner finds relations

between action classes controlled by policies through

subsumption reasoning [9]. Description logic, however,

does not recognize role-value map semantics. So when

the subsumption reasoner finds a relation between actions

and subsequently policies it is still up to the manager to

determine whether potential instances of role-value maps

separate the actions and nullify the policy relation.

As policies are distributed to guards (see below), the

reasoner classifies existing instances (e.g., the list of

actors) so that relevant information of other kinds can be

sent to the guards at the same time.

6.2. Policy Distribution

When policies are added and modified, or when a guard

connects or reconnects to the Distributed Directory

Service (DDS), the DDS assembles the appropriate

update information relevant to a particular guard. The

DDS maintains a registry about the interests of each

guard (see below) and a history of what has already been

sent to it.

During the policy update process, the OWL policy

representations are converted to a form that enables the

guards to make complex enforcement decisions very

efficiently. The algorithm traverses the OWL policy

structure and “compiles” it into a hash-table-like structure

where entries for each policy describe policy action

attributes, a range of acceptable values, a list of super-

attributes and sub-attributes defined in the ontology, and,

if available, the encoded definition of the range class.

Abstract actions not explicitly included in the business

code are changed into the enforceable action with a

definition of restrictions that distinguish the abstract class

from a base class encoded as an attribute. For instance, if

a given policy talks about the publication of weather

reports and the business code just has a method of

publication with a parameter specifying the information,

then the range of values for the corresponding attribute of

the published action used in the enforceable

representation of policy is set to the weather report type.

Since the DDS has a record of information sent to guards

it can recognize that some of the information cached in

the pre-computed guard policy representation has

changed when entities register or deregister, and can send

updates as appropriate.

We are near completion of a new mechanism to

allow direct communication among a group of guards for

the exchange of policy and cache updates. We have

designed this capability for a mobile ad-hoc network

environment where continuous direct communication

between the DDS and the guards is not always possible.

7. Policy Monitoring and Enforcement Layer
The guard is where KAoS meets the application. Its

primary role is as a policy decision point. Guards register

to receive policies about particular entities, classes of

entities, and/or for a given set of action classes. Because

guards can save their policies and reload them directly

from a snapshot, they can be bootstrapped in a standalone

mode without a need to connect to the DDS. This

functionality allows policies to govern the actions of

standalone sensors or similar components.

Figure 4: Architecture of the KAoS Guard

Guards not only receive information about policies,

but also about the state of the system and the entities

being managed. Guards do not by themselves provide

monitoring functions, but they do provide interfaces to

plug in outside monitors or databases providing access to

external state or event-related information (Fig 4).

The Policy Checking Interface provides a set of

methods that allow a given action instance to be checked

for:

• Authorization. If an action is not authorized, an

exception is thrown with information about the

policy that prevented it. In some secure applications,

however, it would not be desirable to release

information about the cause of the policy exception.

• Obligations. A list of obligations for a given actor is

returned, sorted in rank order of importance. In

addition, if there are obligations for other actors that

are triggered by an external event, then KAoS will

try to locate them and forward the obligations to

them.

• Configuration options. If a partial description of the

action is sent to KAoS, a range of allowed values for

properties of a given action is returned. For instance,

if an application were to query the guard about a

planned radio transmission, information about the

maximum power and range of frequencies allowed to

be used in the given geographical area would be

returned to it. Disclosure policies would be used to

filter out unauthorized information in the results.

The data structure exchanged between an application

and KAoS in these methods is an Action Instance

Description (AID), easily constructed with a Java class

provided by KAoS. For those not wanting to use Java for

this purpose, KAoS also accepts a string with an OWL

definition of an AID. Applications that check

authorization policies must be able to create AIDs, and

applications that handle obligations must be able to

interpret them when received. AIDs can contain complex

values in the form of additional structures.

OWL requires references to the URLs of ontology

concepts defining actions. For this purpose, KAoS

provides a simple tool to create Java constants for

ontological concepts. The values of these constants are

URLs. This approach allows URLs to be easily

referenced and used in application code.

In order to cope with the OWL open-world

assumption,
4
 KAoS uses intersection to define classes of

policy controlled actions
5
 for deterministic policy

decisions. When the policy checking method is executed,

it traverses the policy database in priority order and

checks to see whether the AID is in the range of actions

controlled by any policy—the range of actions is derived

from an analysis of the policy’s controlled action class.

To make this determination, each attribute of the AID’s

action must be checked to see whether its value is in the

range of its corresponding attribute in the policy control

action class. The role-value map relations, defining

aspects of policy context, are checked as well. This is just

a brief sketch of the full guard policy-checking algorithm

which, because it does not require the power of a

complete OWL reasoner, executes in a few milliseconds.

In order to support the semantics of complex

application-specific policies, guards accommodate a

variety of extensions. These can be activated on demand,

as specified in each guard’s configuration information.

Examples include:

• Obligation Policies

Obligation Action Instantiator: helps customize the

creation of obligation actions.

Obligation Monitor: monitors fulfillment of

obligations and notifies responsible parties about

perceived violations.

4
http://en.wikipedia.org/wiki/Open_World_Assumption

5
 http://ontology.ihmc.us/Policy

Obligation Redirector: delegates obligations to some

other actor.

• History and State

History Monitor: tracks the history of specific

actions and verifies whether a given history is

present.

State Monitor: a sensor that provides information

about some aspect of the environment or situation.

• Spatial Reasoner: provides spatial reasoning support

to the guard.

8. Application Case Studies
Below is a brief summary of some current KAoS

applications illustrating the comprehensiveness and

maturity of the system.

The AFRL Information Management System
6
 is a

large-scale highly-distributed publish-subscribe system in

which KAoS has been integrated to deal with security and

increasingly challenging quality-of-service policies

(http://ontology.ihmc.us/Raytheon/index.html). In a

related project, we are implementing a KAoS-enabled

infosphere federation service that includes support for

policy negotiation among federation partners. We have

also built a prototype for the support of communities of

interest across their life cycle (http://ontology.ihmc.us/

COI/index.html).
7

In a set of ARL-supported projects supporting the

goal of Cross-Domain Information Exchange (CDIX),

we have developed a system that represents and reasons

about domain-specific policies to help recognize what

otherwise sensitive documents a soldier is allowed to

receive given the current mission context. The system

also relies on policies to help recognize when appropriate

human approval can be obtained or a specific

transformation of the information can be performed to

allow the information to be released [13].

As part of a series of ONR-sponsored studies of

Human–Agent-Robot Teamwork, we have exercised

KAoS in an application involving a variety of application

domains and enforcement at different levels of control,

from low level network resource control to high level

organizational constraints, spatial reasoning, and

coordination management. A recent phase of the study

culminated in an outdoor field exercise that required

policy-based coordination in real time of mixed subteams,

involving a combination of two people and five robots

communicating over wireless 802.11b, while performing

a hide-and-seek style search and apprehension of an

intruder on a Navy pier [12].

In partnership with Raytheon, we have developed

prototypes of Radio Spectrum and Transmission

Control applications, where settings governing power

and other configuration parameters of the transmission in

6
 http://www.infospherics.org/

7
 http://ontology.ihmc.us/coi

given geographical areas are approximated from

reasoning based on spatial knowledge and the current

type and usage of a radio (http://ontology.ihmc.us/

Raytheon/index.html).

9. Conclusions and Future Work
In this article we have described how the architecture and

capabilities of the KAoS policy services framework have

evolved, inspired by both technological advances and the

practical needs of its varied applications. Areas of future

research include: automated policy refinement,

visualization of policy relations and applicability,

enhancement of probabilistic techniques for automated

policy adjustment (adjustable autonomy), uncertainties in

information used in policy checking, and the handling of

time—as in, for example, performing progress appraisal.

Acknowledgments

We are grateful for the contributions of Niranjan Suri,

Marco Carvalho, Pat Hayes, Tom Eskridge and Ken Ford.

The authors gratefully acknowledge the sponsorship by

Air Force Research Lab, Army Research Lab, Raytheon,

and the Office of Naval Research.

References
[1] Damianou, N., Dulay, N., Lupu, E. C., & Sloman, M. S. (2000). Ponder: A

Language for Specifying Security and Management Policies for Distributed

Systems. Version 2.3, Imperial College.

[2] Dini, P., Clemm A., Gray, T., Fuchun, J., Logrippo, L., and Reiff-Marganiec,

S. (2004). Policy-enabled mechanisms for feature interactions: reality,

expectations and challenges. Computer Networks, Vol. 45,

[3] Elenius, D., Denker, G., Stehr, M., Senanayake, R., Talcott, C. and Wilkins, D.

(2007). CoRaL--Policy Language and Reasoning Techniques for Spectrum

Policies. Proc. 8th Workshop on Policies.

[4] Kagal, L., Finin, T. and Joshi, A. (2003). A Policy Language for a Pervasive

Computing Environment. Proc. 4th Workshop on Policies.

[5] Kolovski, V., Parsia, B., Katz, Y., Hendler, J. (2005). Representing Web

Service Policies in OWL-DL. Proc. of the Semantic Web Conference, LNCS 3729.

[6] Nejdl, W., Olmedilla, D., Winslett, M. and Zhang, C. (2005). Ontology-Based

Policy Specification and Management. Proc. of 2nd European Semantic Web

Conference, LNCS 3532.

[7] Yague, M. (2006). Survey on XML-Based Policy Languages for Open

Environments. Journal of Info. Assurance and Security, Vol. 1.

[8] Tonti, G., Bradshaw, J., Jeffers, R., Montanari, R., Suri, N. and Uszok, A.

(2003). Semantic Web Languages for Policy Representation and Reasoning: A

Comparison of KAoS, Rei, and Ponder. In D. Fensel, K. Sycara & J. Mylopoulos

(Eds.), The Semantic Web—ISWC 2003, LNCS 2870. Berlin, Germany: Springer,

pp. 419-437.

[9] Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch,

L., Johnson, M., Kulkarni, S. and Lott, J. (2003). KAoS Policy and Domain

Services: Toward a Description-Logic Approach to Policy Representation,

Deconfliction and Enforcement. Proceedings of the IEEE Fourth International

Workshop on Policy (Policy 2003). Los Alamitos, CA: IEEE Computer Society,

pp. 93-98.

[10] Uszok, A., Bradshaw, J., Jeffers, R., Johnson, M., Tate A., Dalton, J., Aitken,

S. (2004). KAoS Policy Management for Semantic Web Services. IEEE Intelligent

Systems, July/August, 19(4), pp. 32-41.

[11] Johnson, M., Bradshaw, J. M., Jung, H., Suri, N. & Carvalho, M. (2008).

Policy management across multiple platforms and application domains. Proc. of

the 2008 IEEE Conference on Policy.

[12] Bradshaw, J. M., Feltovich, P. J., Johnson, M., Bunch, L., Breedy, M., Jung,

H., Lott, J. & Uszok, A. (2008). Coordination in human-agent-robot teamwork.

Proceedings of the CTS 2008, Special Session on Collaborative Robots and

Human Robot Interaction, Irvine, CA.

[13] Bunch, L., Bradshaw, J. M. & Young, C. O. (2008). Policy-governed

information exchange in a US Army operational scenario. Demonstration track.

2008 IEEE Conference on Policy, Palisades, NY, 2-4 June.

