1	1		

Title page

2	Names of the authors: S	yed M.	Qaim*,	Bernhard	Scholten,	Bernd Neu	maier
---	-------------------------	--------	--------	----------	-----------	-----------	-------

- 3 Title: New developments in the production of theranostic pairs of radionuclides
- 4 Affiliation and address of the authors: Institut für Neurowissenschaften und Medizin,
- 5 INM-5: Nuklearchemie, Forschungszentrum Jülich, D-52425 Jülich, Germany
- 6 E-mail address of the corresponding author: <u>s.m.qaim@fz-juelich.de</u>

New developments in the production of theranostic pairs of radionuclides

Syed M. Qaim*, Bernhard Scholten, Bernd Neumaier

Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie,
 Forschungszentrum Jülich, D-52425 Jülich, Germany

13 Abstract

10

14 A brief historical background of the development of the theranostic approach in nuclear medicine is given and seven theranostic pairs of radionuclides, namely ^{44g}Sc/⁴⁷Sc, 15 ⁶⁴Cu/⁶⁷Cu, ⁸³Sr/⁹⁰Sr, ⁸⁶Y/⁹⁰Y, ¹²⁴I/¹³¹I, ¹⁵²Tb/¹⁶¹Tb and ¹⁵²Tb/¹⁴⁹Tb, are considered. The first 16 six pairs consist of a positron and a β^- -emitter whereas the seventh pair consists of a 17 18 positron and an α -particle emitter. The decay properties of all those radionuclides are briefly mentioned and their production methodologies are discussed. The positron emitters 19 64 Cu, 86 Y and 124 I are commonly produced in sufficient quantities via the (p,n) reaction on 20 the respective highly enriched target isotope. A clinical scale production of the positron 21 22 emitter ^{44g}Sc has been achieved via the generator route as well as via the (p,n) reaction, but further development work is necessary. The positron emitters ⁸³Sr and ¹⁵²Tb are under 23 development. Among the therapeutic radionuclides, ⁸⁹Sr, ⁹⁰Y and ¹³¹I are commercially 24 25 available and ¹⁶¹Tb can also be produced in sufficient quantity at a nuclear reactor. Great efforts are presently underway to produce ⁴⁷Sc and ⁶⁷Cu via neutron, photon and charged 26 particle induced reactions. The radionuclide ¹⁴⁹Tb is unique because it is an α -particle 27 emitter. The present method of production of ¹⁵²Tb and ¹⁴⁹Tb involves the use of the 28 spallation process in combination with an on-line mass separator. The role of some 29 30 emerging irradiation facilities in the production of special radionuclides is discussed.

31 Keywords

32 Theranostic pair of radionuclides. Decay data. Cross section and excitation function.

33 Production methodology. Yield and purity. Specific activity.

34 **1. Introduction**

35 Radioactivity is unique in the sense that it can be routinely used in nuclear medicine both 36 for diagnosis and therapy [1]. Each application, however, demands a special type of 37 radionuclide, the choice being dependent on its decay properties. Thus, γ -ray emitters like 99m Tc (T_{1/2} = 6.0 h), 123 I (T_{1/2} = 13.2 h) and 201 Tl (T_{1/2} = 3.06 d), and positron emitters, like 38 ¹¹C ($T_{\frac{1}{2}} = 20.4 \text{ min}$), ¹⁸F ($T_{\frac{1}{2}} = 109.6 \text{ min}$) and ⁶⁸Ga ($T_{\frac{1}{2}} = 1.13 \text{ h}$) are commonly used in 39 40 diagnostic studies utilizing Single Photon Emission Computed Tomography (SPECT) or 41 Positron Emission Tomography (PET), respectively. As regards internal radionuclide 42 therapy (endoradiotherapy), in general, radionuclides emitting low-range highly ionizing 43 radiation, i.e., α - or β -particles, conversion and/or Auger electrons, are of great interest. 44 The major problem in internal radiotherapy, however, has been the quantification of 45 radiation dose caused to various organs, mainly due to uncertainties in the measurement of 46 radioactivity from outside the body of the patient. Although in the case of a few therapeutic radionuclides, e. g., 131 I (T_{1/2} = 8.02 d) and 188 Re (T_{1/2} = 17.0 h), γ -scanning or SPECT has 47 48 been used to determine the radioactivity distribution in the body, the methodology lacks 49 precision. The uncertainty in radioactivity distribution is still higher for radionuclides decaying by pure β^- -emission, e.g., ${}^{32}P(T_{\frac{1}{2}} = 14.3 \text{ d}), {}^{89}Sr(T_{\frac{1}{2}} = 50.5 \text{ d})$ and ${}^{90}Y(T_{\frac{1}{2}} = 2.7 \text{ d})$ 50 51 d), because imaging is usually done through the use of bremsstrahlung.

52

53 In the early 1990s, thoughts started developing in several laboratories to use a SPECT radionuclide as a surrogate of a therapeutic radionuclide [2], e.g., ¹¹¹In ($T_{\frac{1}{2}} = 2.8$ 54 d), a trivalent metal, as a surrogate of ⁹⁰Y, another trivalent metal. There has also been 55 56 discussion about the use of several other metallic radionuclides [3]. However, none of those 57 approaches provided patient-individual quantitative data on radiation doses. In 1992, a few 58 researchers at the Forschungszentrum Jülich, Germany, came to the idea of combining PET 59 and endoradiotherapy by using a pair of radionuclides of the same element, one emitting positrons and the other β^- -particles. The choice fell on the pair ${}^{86}Y/{}^{90}Y$. To this end, the 60

61 β^+ -emitting radionuclide ⁸⁶Y (T_{1/2} = 14.7 h) was developed and produced in sufficient 62 quantity [4, 5] and it was applied together with the β^- -emitting radionuclide ⁹⁰Y (T_{1/2} = 2.7 63 d) in a tumour patient study [6]. That investigation is regarded today as the beginning of 64 the theranostic concept. The development of this concept has been recently described in 65 detail [7].

66

67 By administering to a specific patient a positron-emitting radioisotope of an 68 element together with a therapeutic radioisotope of the same element (which emits β^{-} or 69 α -particles, or low-energy Auger/conversion electrons), it is possible to measure the uptake 70 kinetics in an organ of the patient via PET imaging, thereby allowing an accurate 71 dosimetric calculation, which leads to quantification of therapy. This concept is now called 72 "theranostic approach" and it is finding increasing application. The methodology of using 73 "matched-pair" of radionuclides in patient care studies is known as "personalized 74 medicine".

75

76 There are several suitable or potentially suitable theranostic pairs of radionuclides, e. g. ^{44g}Sc/⁴⁷Sc; ⁶⁴Cu/⁶⁷Cu; ⁶⁸Ga/⁶⁷Ga, ⁷²As/⁷⁷As; ⁸³Sr/⁸⁹Sr; ⁸⁶Y/⁹⁰Y; ^{110g}In/¹¹¹In; ¹²⁴I/¹³¹I; 77 ¹⁵²Tb/¹⁶¹Tb and ¹⁵²Tb/¹⁴⁹Tb. Some of them have already found application in clinical 78 79 research while the others are being developed. In recent years there is also an increasing 80 tendency to handle only one radionuclide as a theranostic agent, especially if it is readily available. One example is 177g Lu. The dosimetry is based on γ -ray spectrometry or SPECT 81 82 and the therapy effect is well known. However, in comparison to the PET technique, 83 SPECT is not quantitative, though in recent years high-quality SPECT systems have been 84 developed.

85

In this review we discuss seven rather established pairs of radionuclides where a combination of PET and internal radiotherapy is involved. Their production methods are described and the prospects of their availability on a clinical scale are considered.

89

2. Choice of radionuclides: decay data

The decay properties of the seven pairs of radionuclides under consideration in this review are given in **Table 1**. The major decay data were taken from refs. [8-10] and they represent the commonly accepted values. Only in a few individual cases, e.g., ⁶⁴Cu and ¹²⁴I, own recently measured data [11] are given. The positron emission intensities for ⁸³Sr, ⁸⁶Y and ¹⁵²Tb are rather uncertain.

95 The positron endpoint energy and the associated γ -rays play important roles in PET 96 measurements. Whereas a high positron endpoint energy affects the resolution of a scan, 97 the γ -rays present in the vicinity of the annihilation radiation may altogether distort the image. From this point of view the positron emitter ⁸⁶Y is far from ideal, but it could be 98 99 used after many scattering corrections [12, 13]. There is some problem with ¹²⁴I as well, 100 but the corrections needed are much smaller [12-14]. Somewhat similar result was obtained with ^{44g}Sc [15]. The positron emitter ⁶⁴Cu is almost ideal for PET imaging because of its 101 102 low positron endpoint energy and almost no emitted γ -ray, the abundance of the 1346 keV 103 γ -ray being negligibly low. It has been therefore extensively used in PET studies related to 104 radioimmunotherapy. As far as the other two β^+ -emitters are concerned (i.e. ⁸³Sr and ¹⁵²Tb), very few PET measurements have been reported. The radionuclide ⁸³Sr appears to 105 be promising because its positron endpoint energy is comparable to that of ^{44g}Sc. The 106 radionuclide ¹⁵²Tb has somewhat higher positron endpoint energy but since the associated 107 108 γ -rays are not too many, it has been used in PET measurements after applying scattering corrections similar to those in the case of ¹²⁴I. As regards therapeutic radionuclides, ⁸⁹Sr 109 and 90 Y are pure β^- -emitters. The radionuclide 149 Tb is an exotic α -emitter. The 110 radionuclides 47 Sc, 67 Cu, 131 I and 161 Tb emit β^- -particles with relatively low endpoint 111 energies and a few associated γ -rays. 112

3. Production methodologies

The development of production methodology of a novel radionuclide involves work in several directions, e.g., nuclear data, irradiation technology, chemical separation and quality control of the product. We consider several of those aspects below for each individual radionuclide. For a few radionuclides, some production details were recently

	l	8 ⁺ -emitting 1	adionucli	de		Therapeutic radionuclide					
Radio- nuclide	T ½	Mode of decay	E ^{β+} (max) (keV)	Main γ-rays		Radio- nuclide	T ¹ / ₂	Mode of decay	Corpuscular radiation	Main	γ -rays
		(%)		Energy (keV)	Intensity (%)	-		(%)	E _{max} (keV)	Energy (keV)	Intensity (%)
⁴⁴ Sc	3.9 h	EC (5.7) β ⁺ (94.3)	1470	1157.0	99.9	⁴⁷ Sc	3.35 d	β (100)	610	159.4	68
⁶⁴ Cu ^{b)}	12.7 h	EC (43.8) β^+ (17.8) β^- (38.4)	653 571	1346.0	0.53	⁶⁷ Cu	2.58 d	β (100)	577	184.6	48.6
⁸³ Sr	32.4 h	EC (74) β^+ (26)	1274	762.7 381.6	30.0 19.6	⁸⁹ Sr	50.5 d	β (100)	1470		
⁸⁶ Y	14.7 h	EC (67) β ⁺ (33)	2335	627.8 1076.7 1153.2	32.6 82.5 30.5	⁹⁰ Y ^{c)}	2.7 d	β (100)	2290		
¹²⁴ I ^{b)}	4.18 d	EC (78) β ⁺ (22)	2137	602.7 722.8	61 10	¹³¹ I	8.02 d	β (100)	607	364.5 637.0	82 7.3
¹⁵² Tb	17.5 h	EC (82) β ⁺ (18)	2500	344.3	57	¹⁶¹ Tb ¹⁴⁹ Tb	6.9 d 4.1 h	β (100) α (16.7) β^+ (4.3) EC (79)	590 α: 5830 600	74.6 165.0 352.2	9.8 27.8 33.0

Table 1. Major decay data^{a)} of the theranostic pairs of radionuclides

^{a)} Data taken from Refs. [8-10], unless otherwise stated.
^{b)} Decay data based partly on own measurement [11].
^{c)} Obtained generally from a generator system.

reported [16, 17]. For those radionuclides, therefore, the present review gives only some updated information.

124 **3.1 Theranostic pair** ^{44g}Sc/⁴⁷Sc

125 The trivalent element scandium forms very useful metal complexes with many oxygen-126 containing bifunctional chelators. This pair of radionuclides is therefore of great potential 127 value in theranostic investigations. Although the positron emitter ⁴³Sc ($T_{\frac{1}{2}} = 3.9$ h) is also 128 very interesting and is presently attracting considerable attention, we limit our discussion 129 to ^{44g}Sc because it has been more thoroughly investigated.

130

131 **Production of** ⁴⁴g**Sc**

For the production of the positron emitter ⁴⁴gSc in no-carrier-added form, two routes have
been investigated:

134

a)
$${}^{45}Sc(p,2n){}^{44}Ti (60.4 a) \xrightarrow{EC} {}^{44g}Sc$$
 generator system

- 135 b) Direct production of 44g Sc.
- 136

The first route involves the production of the long-lived parent ⁴⁴Ti at an intermediate 137 138 energy accelerator. The cross sections of the ${}^{45}Sc(p,2n){}^{44}Ti$ nuclear reaction have been well investigated [18, 19] and the energy range $E_p = 35 \rightarrow 15$ MeV appears to be very suitable 139 for production purposes. The calculated thick target yield of ⁴⁴Ti over this energy range 140 amounts to ~ 4 kBg μ A⁻¹ h⁻¹ (for 1 h irradiation). Due to the long half-life of ⁴⁴Ti, its 141 production is a rather difficult proposition. Although it was proposed a long time ago [20], 142 143 hitherto only a 185 MBq generator has been reported [21] and some post-elution purification of ^{44g}Sc has been described [22]. In recent years, more effort has been devoted 144 to the separation of the parent ⁴⁴Ti via anion-exchange chromatography [23] and the 145 daughter ^{44g}Sc through cation-exchange chromatography [24]. The generator activity, 146 however, has still been limited to about 175 MBq. The separated ^{44g}Sc is free of ^{44m}Sc (T_{1/2} 147 148 = 2.44 d).

150 The second route of production of ^{44g}Sc entails the utilization of either the 44 Ca(p,n) 44g Sc or the 44 Ca(d,2n) 44g Sc reaction. The excitation functions of those reactions 151 have been measured [25-30]. A third reaction, namely ${}^{41}K(\alpha,n){}^{44g}Sc$, is also possible. Its 152 cross sections have also been measured [26, 31, 32]. The thick target yields of ^{44g}Sc 153 154 calculated from the excitation functions are given in **Fig. 1**. The data for the (p,n) reaction were taken from refs. [25, 26, 28] whereby the Levkovskii data [26] were reduced by a 155 156 factor of 0.82 [33]. The cross section data adopted for the (d,2n) reaction were from [30] 157 and those for the (α, n) reaction from refs. [26, 31, 32]. Evidently, the yield from the (p, n)158 reaction is higher than that from the (d,2n) reaction up to about 30 MeV; thereafter the 159 (d,2n) reaction appears to give a higher yield. The yield from the (α,n) process is much 160 lower. In each case a highly enriched target is necessary to achieve clinically relevant yields of ^{44g}Sc. 161

162

163 Several groups measured cross sections of a large number of charged particle induced 164 reactions in which ${}^{44g}Sc$ was formed as a subsidiary product. Furthermore, a few groups 165 investigated the production of ${}^{44g}Sc$ (together with other Sc isotopes) using ^{nat}Ca as the 166 target material [cf. 34, 35]. The formation of ${}^{44g}Sc$ as a side product was also investigated 167 in studies primarily done on the formation of ${}^{43}Sc$ in α -particle induced reactions on ${}^{nat}K$ 168 and ${}^{nat,44}Ca$ [36-38]. All those studies are helpful in optimizing the production of ${}^{44g}Sc$.

169

For clinical scale production of ^{44g}Sc, targets consisting of ⁴⁴CaO (enrichment 95%) 170 171 and ${}^{44}CaCO_3$ (enrichment > 99%) have been used [27, 30, 39, 40]. Irradiations were done with protons ($E_p = 11 \rightarrow 5 \text{ MeV}$) [27, 40] or deuterons ($E_d = 16 \rightarrow 10 \text{ MeV}$) [30, 41] at beam 172 173 currents of up to 50 μ A and 2 μ A, respectively. The separation of ^{44g}Sc and the recovery of 174 the target material were achieved through ion-exchange chromatography. By using the 175 (d,2n) reaction, a batch yield of about 50 MBq of ^{44g}Sc was achieved [41] but it could be 176 increased by increasing the beam current. In the case of the (p,n) reaction, on the other 177 hand, a batch yield of up to 2 GBq ^{44g}Sc has been reported [40]. The product is of high 178 radiochemical purity and can be used immediately for preparing radiometal complexes. 179 The only drawback of the direct method of production of ^{44g}Sc is the associated longer lived metastable state 44m Sc (T_{1/2} = 2.44 d), amounting to < 1% and ~ 2.5% in the (p,n) and 180

181 (d,2n) reactions, respectively [30]. On the other hand, this drawback is positively used in some laboratories to prepare a so-called "in-vivo generator" [41]. The longer lived ^{44m}Sc 182 decays 100% by isomeric transition to ^{44g}Sc which can be measured via PET. Since the 183 spin of the 44m Sc isomer is relatively high (6⁺) as compared to that of 44g Sc (2⁺), it was 184 predicted [42] that an α -particle induced reaction would lead to a higher yield of ^{44m}Sc. 185 This has been experimentally observed in the ${}^{42}Ca(\alpha,d){}^{44m,g}Sc$ process [38]. The ratio of 186 187 ^{44m}Sc to ^{44g}Sc increased to about 11% at E_{α} = 29 MeV. On the other hand, the thick target yields of both ^{44m}Sc and ^{44g}Sc in the α -particle induced reaction [38] are much lower than 188 those in the (p,n) and (d,2n) reactions discussed above. 189

190

In summary, both the direct and indirect methods of production of ^{44g}Sc are interesting, but further development work is needed. A new aspect with regard to the direct production is the development of a solution target for use at a medical cyclotron. By irradiating a solution of ^{nat}Ca(NO₃₎₂ with 13 MeV protons, ^{44g}Sc was produced in quantities up to 28 MBq, sufficient for local radiochemical and possibly animal studies [43].

196

197 **Production of** ⁴⁷**Sc**

198 The production methods for the β^- -emitting therapeutic radionuclide ⁴⁷Sc in no-carrier-199 added form have been under investigation for more than 40 years but in recent years, with 200 the developing concept of theranostic application, the efforts have been intensified. Since 201 in most cases Ti is used as a target material, a large number of radiochemical separation 202 methods for no-carrier-added ⁴⁷Sc from products formed in the interaction of Ti with 203 neutrons, photons and charged particles have been developed [cf. 44-54]. Good summaries of those methods have been given [49, 50]. Similarly, separation methods of ⁴⁷Sc from an 204 205 irradiated Ca target have also been described [55-58].

A summary of the routes used to date for the production of 47 Sc is given in **Table 2**. An old but very successful method has been the 47 Ti(n,p) 47 Sc reaction [45-52, 59-61]. The cross section averaged for the fission neutron spectrum (σ_{FS}) amounts to 20 ± 2 mb [62]. By irradiating 200 mg of 94.5% enriched 47 TiO₂ target in a high flux nuclear reactor for

about 3.6 days it was possible to obtain a batch yield of 1.6 GBq of ⁴⁷Sc of high

211	Table 2. Routes for production of ⁴⁷ Sc
-----	--

Nuclear process	Target (enrichment)	Cross section or projectile energy	Production related work	Separation yield (%)	Purity (%)	Batch yield GBq [Ref.]	Other references
⁴⁷ Ti(n,p) ⁴⁷ Sc	^{nat} TiO ₂ ; ⁴⁷ TiO ₂ (94.5 %)	$\sigma_{FS}: 20 \pm 2 \text{ mb*}$	Irradiation in a high-flux reactor; chemical processing	> 97	> 99.5	1.6 [49]	[44-48, 50-52] [59]
⁴⁸ Ti(γ,p) ⁴⁷ Sc	⁴⁸ TiO ₂ (99.1 %) ^{nat} TiO ₂	Photons: 60 MeV Photons: 40 MeV	Irradiation in photon field; chemical processing	> 90	> 95	11×10^{-3} [54] (for 100 mg target) 186×10^{-3} [54] (for 3 g target)	
	⁴⁸ TiO ₂ (96.2 %)	Photons: 40 MeV	Simulation; benchmarking				[63]
$\stackrel{^{46}\text{Ca}(n,\gamma)^{47}\text{Ca}}{\xrightarrow{\beta^-} {}^{47}\text{Sc}}$	⁴⁶ Ca(NO ₃) ₂ (31.7 %)	$\begin{split} \sigma_{th} &: 0.7 \pm 0.2 \; b^{\dagger} \\ I_o &: 0.32 \pm 0.12 \; b^{\dagger} \end{split}$	Irradiation in a high-flux reactor; chemical processing	> 80	> 99	0.6 [58] (for 1 mg target)	[55, 57, 60]
$\stackrel{^{48}\text{Ca}(\gamma,n)^{47}\text{Ca}}{\xrightarrow{\beta^-}} \stackrel{^{47}\text{Sc}}{\xrightarrow{47}\text{Sc}}$	^{nat} Ca	Photons: 40 MeV	Simulation; benchmarking; yield measurement				[64, 65]
⁴⁸ Ti(p,2p) ⁴⁷ Sc	⁴⁸ TiO ₂ (98.5 %)	48 < E _p < 150 MeV	High-current proton irradiation; chemical processing	> 90	Not accept- able	< 1 [48]	[49, 60, 61]

* Value from A. Calamand, IAEA Technical Report-156 (1974) 273; (σ_{FS} is fission neutron spectrum averaged cross section). [†] Value from S.F. Mughabghab and D.I. Garber, BNL-325 (1973) 20-6; (σ_{th} is thermal cross section; I₀ is resonance integral). 212

radionuclidic and chemical purity [49]. Higher yields are possible, if thicker targets would be used. Other groups used $^{nat}TiO_2$ as target material and the neutron flux was not very high, so the resulting yield of ^{47}Sc was lower.

217

Another old method is the ${}^{48}\text{Ti}(\gamma,p){}^{47}\text{Sc}$ reaction using high-energy photons [53]. In recent years investigations on the formation of a few therapeutic radionuclides using highly powerful accelerators (which deliver high-intensity, high-energy photons) have been intensified. In a most recent work at the Argonne National Laboratory [54] a batch yield of 187 MBq of ${}^{47}\text{Sc}$ has been achieved by using photons generated by an electron beam of 40 MeV (incident on a convertor) at a maximum power of about 3 kW. Further studies to increase the yields are in progress in several laboratories [cf. 63].

225

A third method of ⁴⁷Sc production utilizes the decay of ⁴⁷Ca ($T_{\frac{1}{2}} = 4.54$ d). The nuclear 226 process generally used is ${}^{46}Ca(n,\gamma){}^{47}Ca \xrightarrow{\beta^-} {}^{47}Sc$ [55, 57, 58, 60]. The method has two 227 limitations: a) the abundance of 46 Ca in nat Ca is only 0.004%, so that an enriched target is 228 229 absolutely necessary, which is very expensive, b) the cross section of the (n, γ) reaction is 230 not high (see **Table 2**). Nonetheless, the methodology has been recently well developed by using a 31.7% enriched 46 Ca(NO₃)₂ target and irradiating it at the neutron high flux reactor 231 in Grenoble. The ⁴⁷Sc activity was separated from calcium by column chromatography, 232 similar to the method developed for the separation of ⁴⁴Sc from a ⁴⁴Ca target (see above). 233 From a 1 mg ⁴⁶Ca target, a batch yield of 600 MBq of ⁴⁷Sc was obtained. A higher yield 234 could be achieved by increasing the amount of the target material. Besides the neutron 235 activation of ⁴⁶Ca, the production of ⁴⁷Ca is also being investigated via the ⁴⁸Ca(γ ,n) –route 236 237 [64, 65], especially in view of the increasing potential of high power electron linear 238 accelerators. Irradiations were done with photons obtained from a 40 MeV, 1 kW beam of electrons on a convertor, and the radioactivity of the product ⁴⁷Ca was assayed. Further 239 240 simulation, benchmarking and separation studies are continuing.

241

The production of ⁴⁷Sc has been attempted using charged particles as well, particularly via intermediate energy protons on ^{nat}Ti using the accelerator BLIP at Brookhaven National Laboratory [48, 49, 61]. The ⁴⁷Sc yields determined over the energy region $48 \le E_p \le 150$

MeV were on the order of a few GBq. The level of other Sc isotopes, especially ⁴⁶Sc, 245 246 however, was rather high. More recent studies in a few other laboratories are concentrating 247 on optimization of the energy range for production of this radionuclide. Two other methods investigated for the production of ⁴⁷Sc at the research level consist of the reactions 248 $^{44}Ca(\alpha,p)^{47}Sc$ and $^{48}Ca(p,2n)^{47}Sc$. In the former case, using a 97.0% enriched $^{44}CaCO_3$ 249 target [37] high-purity ⁴⁷Sc was obtained in low yield which was, however, sufficient for a 250 251 preclinical study. In the latter case [66], only the (p,2n) reaction cross section was 252 measured.

253

Thus, in summary, considerable effort is presently being devoted to obtain high-quality 4⁷Sc in quantities sufficient for medical applications. In particular the photon induced reactions are receiving great attention.

257 **3.2 Theranostic pair ⁶⁴Cu/⁶⁷Cu**

The element copper has a versatile co-ordination chemistry. In the no-carrier-added form copper radioisotopes are able to bind with biologically relevant small molecules as well as with some antibodies and proteins. It is thus very suitable for preparing metal-chelates for medical use [67, 68]. Two positron emitters of copper, namely ⁶¹Cu ($T_{1/2} = 3.4$ h) and ⁶⁴Cu ($T_{1/2} = 12.7$ h), have been used in PET studies. For theranostic applications, however, the radionuclide ⁶⁴Cu appears to be more suitable because of its longer half-life. We therefore concentrated on this radionuclide.

265

266 **Production of ⁶⁴Cu**

Several routes have been investigated for the production of no-carrier-added ⁶⁴Cu. The oldest among them is the ⁶⁴Zn(n,p)⁶⁴Cu reaction in a nuclear reactor (for a brief summary see [69–71]). The fission neutron spectrum averaged cross section (σ_{FS}) amounts to 31 ± 2.3 mb [62] and sufficient quantities of ⁶⁴Cu could be produced in a medium to high-flux reactor. The purity of the product achieved, however, did not meet the stringent demands for medical applications. In recent years some further efforts have been made to produce better quality ⁶⁴Cu via the above reaction in a nuclear reactor [70, 71], in particular by using

99.4% enriched ⁶⁴ZnO as target material in a thermal neutron shielded sample holder and
efficient separation methods for radiocopper [71]. Furthermore, accelerator produced
neutrons have also been used, e. g. d(Be) break up neutrons [72] or 14 MeV neutrons [73].
In the latter two cases the (n,p) reaction cross section is higher. However, due to low
neutron fluxes the yield of ⁶⁴Cu was low.

279

The emphasis regarding the production of ⁶⁴Cu got shifted over the last several years 280 281 from a reactor to a cyclotron. Proton and deuteron induced reactions on several target isotopes, especially the reactions ${}^{64}Ni(p,n){}^{64}Cu$, ${}^{64}Ni(d,2n){}^{64}Cu$, ${}^{68}Zn(p,\alpha n){}^{64}Cu$, 282 66 Zn(p,2pn) 64 Cu, 64 Zn(d,2p) 64 Cu and 66 Zn(d, α) 64 Cu were investigated till 2009 over a wide 283 284 energy range of up to 80 MeV using highly enriched target isotopes, with the aim of obtaining data for the production of ⁶⁴Cu. Based on a critical analysis of the published 285 286 nuclear reaction cross section data, Aslam et al. [74] presented a comparison of the various production reactions of ⁶⁴Cu and came to the conclusion that the ⁶⁴Ni(p,n)⁶⁴Cu reaction 287 288 over the energy range of $E_p = 12 \rightarrow 8$ MeV would be the best choice. The calculated thick target yield amounts to 304 MBq μ A⁻¹ h⁻¹ (for 1h irradiation) and no radionuclidic impurity 289 occurs. In recent years some further measurements near the threshold of the ${}^{64}Ni(p,n){}^{64}Cu$ 290 reaction have been carried out [75] and the reaction ${}^{67}Zn(p,\alpha){}^{64}Cu$ has also been studied 291 [76]. Furthermore, in connection with the specific activity of ⁶⁴Cu, the formation of non-292 radioactive copper during the production of ⁶⁴Cu via proton and deuteron-induced reactions 293 on enriched ⁶⁴Ni has also been considered [77]. The nuclear process ⁶⁴Ni(p,n)⁶⁴Cu, 294 295 developed at the Forschungszentrum Jülich [78], has now become the standard procedure for the production of ⁶⁴Cu. The major features were the preparation of a target via 296 electrodeposition of ⁶⁴Ni on a Au backing, a clean separation of ⁶⁴Cu via ion-exchange 297 298 chromatography, and an efficient recovery of the enriched target material. The technology 299 was further developed in some laboratories [79-81] and batch yields of up to 40 GBq of ⁶⁴Cu were achieved. Several other optimization studies have also been performed [82-87]. 300 301 Many small hospital-based laboratories are now producing this radionuclide in amounts 302 sufficient for local use. A few newer developments are related to more efficient chemical 303 separation and purification of ⁶⁴Cu [88-91]. There has been some emphasis on automation 304 of the production procedure as well [92-96]. Thus, considerable interest has been aroused

in recent years in the production of 64 Cu via this route. Due to the increasing demand for this radionuclide, on one hand solution targets similar to those for 44g Sc mentioned above are being developed [97] and, on the other, a commercialization of the process is being pursued. However, it should be mentioned that small amounts of 64 Cu have also been produced via the nuclear processes 64 Zn(d,2p) 64 Cu [98, 99] and 68 Zn(p, α n) 64 Cu [100-103], the latter partly as a by-product in the production of 67 Ga via the 68 Zn(p,2n) 67 Ga reaction.

311

312 **Production of** ⁶⁷Cu

The production of the therapeutic radionuclide 67 Cu (T_{1/2} = 2.58 d) in no-carrier-added form has also been under consideration for more than 40 years and the knowledge available till 2011 was critically reviewed [104]. A few other later reviews dealt with the newer information [17, 105-107]. In this work therefore only some salient features are mentioned.

Similar to ⁶⁴Cu, the production of ⁶⁷Cu in neutron induced reactions, especially in a 318 nuclear reactor via the 67 Zn(n,p) 67 Cu reaction ($\sigma_{FS} = 1.07 \pm 0.04$ mb) has received some 319 new attention [69, 71], in particular by using 93% enriched ⁶⁷ZnO as target material [71]. 320 321 The same threshold reaction has also been investigated with 14 MeV neutrons; however, by using a ^{nat}ZnO target [73]. A yet another method making use of the 68 Zn(n,np) 67 Cu 322 323 reaction induced by fast neutrons, generated by breakup of 40 MeV deuterons on a graphite 324 target, has also been utilized [108]. In those two works [73, 108] the fundamental separation and purification procedures were established. The ⁶⁷Cu obtained via the latter 325 326 process using a 99.29% enriched ⁶⁸ZnO target was shown to be suitable for preclinical 327 studies [109]. For large scale production, however, further development work using high 328 neutron fluxes is needed.

329

Another reaction which has been under investigation for a long time is the $^{68}Zn(\gamma,p)^{67}Cu$ process. In one early study ^{nat}Zn was used as target material [110] and in another 98.97% enriched ⁶⁸ZnO was employed [111]. In both cases chemical separation of the product ⁶⁷Cu was carried out. The batch yield achieved was up to 185 MBq but the chemical purity would not meet the standard required today. With the increasing significance of ⁶⁷Cu combined with the development of powerful electron accelerators, in

recent years the efforts to utilize the 68 Zn(γ ,p) 67 Cu reaction for 67 Cu production have been 336 intensified [64, 112-115]. Production yields of ⁶⁷Cu have been measured experimentally 337 338 and compared with theoretically calculated values [112, 113], extensive purification 339 methodology was developed [114], simulation studies were performed and predicted activities were verified with experimental data [64, 115]. The yield of ⁶⁷Cu achieved 340 amounts to about 1 MBq g⁻¹ kW⁻¹ h⁻¹. Thus, tens of MBq of ⁶⁷Cu can easily be produced. 341 342 It is expected that with further intensification of technological efforts to develop highintensity accelerators (possibly up to 100 kW power), it should be possible to produce ⁶⁷Cu 343 344 in GBg quantities.

345

346 In addition to the neutron and photon induced reactions described above for the production of ⁶⁷Cu, considerable effort has been invested over the years to make use of 347 348 charged-particle induced reactions as well. The four nuclear processes investigated are 349 listed in **Table 3**. The suitable energy ranges and the calculated thick target yields are based 350 on evaluated excitation functions [116] and a few other measurements. However, it should be mentioned that a new measurement on the ${}^{68}Zn(p,2p){}^{67}Cu$ reaction [117] gives cross 351 352 section values which are lower than the evaluated data up to 60 MeV by about 10%. If those values are accepted, the calculated yield of ⁶⁷Cu would decrease slightly. The yield 353 values for the 70 Zn(d,an) 67 Cu and 64 Ni(a,p) 67 Cu reactions given in **Table 3** were derived 354 355 from individual experimental cross section curves, for the former reaction from ref. [118] 356 and for the latter from refs. [119,120].

357

As far as the practical production of 67 Cu is concerned, in the case of the 70 Zn(p, α) 67 Cu reaction two studies were performed, one using a 99.7% enriched 70 ZnO target [121] and the other using a 70% enriched 70 Zn electroplated target [122]. The separation yields were comparable but, as understandable, the radionuclidic purity of 67 Cu achieved was higher in the first study due to the higher enrichment of the target. The batch yield of 67 Cu obtained via this production route was, however, quite low. With

Nuclear reaction	Energy range (MeV)	Calculated thick target yield (MBq/µAh)	Target (enrichment)	Production related work	Separation yield (%)	Radionuclidic purity (%)	Batch yield MBq [Ref.]
⁷⁰ Zn(p,α) ⁶⁷ Cu	$18 \rightarrow 12$	2.2	⁷⁰ ZnO (99.7 %)	Irradiation at 4 µA; anion- exchange separation	> 80	> 99	0.8 [121] for 10 mg target
			⁷⁰ Zn electroplated (70 %)	Irradiation at 20 µA; solvent extraction and anion-exchange separation	> 80	> 85	14 [122]
⁷⁰ Zn(d,nα) ⁶⁷ Cu	$20 \rightarrow 10$	4.2	⁷⁰ Zn metal (95.35 %)	Low current irradiation of thin target; consective cation- and anion-exchange separation	> 90	> 90	0.95 [118]
⁶⁸ Zn(p,2p) ⁶⁷ Cu	$70 \rightarrow 30$	30	⁶⁸ ZnO (99.0 %)	Irradiation at 3 µA; ion- exchange chromatography	83	> 97	117 [127]
			⁶⁸ ZnO (99.7 %)	Irradiation at 100 µA; extensive chemical processing	> 92	mixture of ⁶⁴ Cu and ⁶⁷ Cu ^{a)}	1.6×10^{3} [128]
⁶⁴ Ni(α,p) ⁶⁷ Cu	$35 \rightarrow 10$	0.8	⁶⁴ Ni electroplated (99.07 %)	Irradiation at 15 μA; cation- exchange separation	> 90	> 75	55 [123]

Table 3. Charged-particle induced nuclear reactions used for the production of ⁶⁷Cu.

^{a)} Using an incident proton beam of 92 MeV.

- 366 regard to the 70 Zn(d, α n) 67 Cu reaction, the production test involved only low current
- 367 irradiation of a very thin target and so the batch yield achieved was very low [118]. There
- 368 is the possibility to produce larger quantities of 67 Cu if thicker targets are used. The reaction
- 369 ${}^{64}\text{Ni}(\alpha,p){}^{67}\text{Cu}$ also leads to a

370 relatively low yield of 67 Cu because of the low cross section and the low range of α -371 particles. Nonetheless, a suitable target was prepared and, after a 7 hour irradiation with 36 372 MeV α -particles at 15 μ A, followed by chemical separation, a total of 55 MBq of 67 Cu was 373 achieved [123]. The product was chemically very pure and was used in preclinical studies 374 [123]. The level of 64 Cu impurity was, however, somewhat high.

375

376 In contrast to the above mentioned three low yield processes, the reaction 68 Zn(p,2p) 67 Cu at intermediate energies leads to a much higher yield. It has therefore been 377 378 receiving more attention. It was originally utilized for production of ⁶⁷Cu by irradiation 379 with protons of energies about 180 MeV followed by chemical separation [48, 61, 124]. 380 The yield was very high but the specific activity was low. Later investigations concentrated more over the energy region up to 70 MeV, utilizing highly enriched ⁶⁸Zn as target material 381 382 and extensive chemical processing [125-127]. Further extensive work has recently been 383 reported using about 100 MeV protons [128]. The suggested production energy range is, 384 however, $E_p = 70 \rightarrow 30$ MeV [105]; at higher energies a considerable amount of inactive 65 Cu is formed via the 68 Zn(p,2p2n) 65 Cu reaction which decreases the specific activity of 385 ⁶⁷Cu. Using an incident proton energy of about 92 MeV, batch yields of a few GBq of ⁶⁷Cu 386 have been achieved at BNL. However, the product contains about 5 times more ⁶⁴Cu than 387 ⁶⁷Cu. Thus further optimization work utilizing lower proton energies is needed. A further 388 newer approach is to harvest ⁶⁷Cu from the cooling loop of the Facility for Rare Isotopes 389 390 (FRIB) presently under construction; some preliminary results have been obtained by 391 analysis of a few samples from the aqueous beam stop at the National Superconducting 392 Cyclotron Laboratory (NSCL) [129].

393

From the above discussion it is obvious that the development of production methods of ⁶⁷Cu is of great timely interest because it is one of the most important theranostic radionuclides. Diversified efforts are underway to obtain it in sufficient quantity and good quality for medical applications.

398 **3.3 Theranostic pair ⁸³Sr/⁸⁹Sr**

Strontium is an important bone seeking element. The radionuclides of strontium could therefore be used in diagnostic and therapeutic studies related to bone. The β^- -emitting 89 Sr (T_{1/2} = 50.5 d) is one of the earliest known radionuclides to cure metastases in bone. It also finds application in palliation studies. The β^+ -emitting analogue 83 Sr (T_{1/2} = 32.4 h) should be suitable for theranostic application. As far as we know, to date no PET measurement has been reported using 83 Sr; yet its decay properties suggest that it is potentially suitable.

406

407 **Production of ⁸³Sr**

408 Regarding the production of no-carrier-added ⁸³Sr, excitation functions were measured for 409 the ⁸⁵Rb(p,xn)⁸¹⁻⁸⁵Sr processes up to 100 MeV [130, 131] and ⁸²Kr(³He,xn)^{82,83}Sr reactions up to 36 MeV [132]. Therefrom the suitable energy ranges for the production of ⁸³Sr via 410 411 those two processes were deduced. The calculated thick target yields of the radionuclides 412 formed in the interactions of protons with ⁸⁵Rb are [131] shown in **Fig. 2**. The optimum energy range for the production of ⁸³Sr is $E_p = 37 \rightarrow 30$ MeV, whereby the yield of ⁸³Sr 413 amounts to 160 MBq μ A⁻¹ h⁻¹ (for 1 h irradiation) and the levels of the two long-lived 414 impurities 85 Sr (T¹/₂ = 64.9 d) and 82 Sr (T¹/₂ = 25.3 d) are 0.24% and 0.04%, respectively. 415 A similar analysis for the ³He-particle induced reactions on ⁸²Kr showed that the optimum 416 417 energy range for the production of ⁸³Sr is $E_{3He} = 18 \rightarrow 10$ MeV, whereby the yield of ⁸³Sr amounts to 5.1 MBq μ A⁻¹ h⁻¹ (for 1 h irradiation) and the level of the only impurity ⁸²Sr is 418 0.20%. The method of choice for the production of ⁸³Sr is thus the ⁸⁵Rb(p,3n)-reaction, 419 420 although the availability of 40 MeV protons is often a problem.

421

422 Irradiations of several targets with low beam currents of 40 MeV protons and 18 423 MeV ³He-particles were carried out to measure experimental thick target yields. In the former case, pressed ⁸⁵RbCl pellets absorbing about 5 MeV of the proton beam were used 424 425 and, in the latter, ⁸²Kr gas absorbing about 8 MeV of the ³He-particle energy was irradiated 426 in a special target system [133]. Highly efficient separation methods, using high 427 performance liquid chromatography, were developed to obtain radiostrontium of high quality [131]. The results were compared with the theoretical data. The radionuclide ⁸³Sr 428 429 was obtained in quantities of up to 20 MBq via the (p,3n) process and up to 5 MBq via the

(³He,2n) reaction [131]. A clinical scale production was, however, not demonstrated.
Nevertheless, it should be possible to obtain ⁸³Sr in quantities sufficient for medical
application by using the technology developed for the production of ⁸²Sr (parent of ⁸²Sr/
⁸²Rb generator system), except that the proton energy incident on the ⁸⁵RbCl target should
be 40 MeV instead of 70 MeV used in the ⁸²Sr production.

435

436 **Production of ⁸⁹Sr**

437 As far as the production of the therapeutic radionuclide 89 Sr is concerned, some use has been made of the ⁸⁸Sr(n,γ)⁸⁹Sr reaction. However, due to the very low specific activity, the 438 product ⁸⁹SrCl₂ has been used only in palliative therapy of malignant metastases to the 439 440 skeleton. For preparation of radiopharmaceuticals with high specific activity, a production route involving the neutron threshold reaction 89 Y(n,p) 89 Sr has been developed. The cross 441 442 section averaged for the fission neutron spectrum is low ($\sigma_{FS} = 0.31 \pm 0.06$ mb [62]); therefore long irradiations are needed. The target material consisting of Y2O3 powder, 443 pressed to a pellet, is placed in an Al capsule. The irradiation is done for several weeks at 444 a high fast neutron flux of 1-2 x10¹⁵ n cm⁻² s⁻¹. Thereafter the chemical processing starts 445 by dissolving the irradiated target in HNO₃ and extracting the bulk of yttrium in 446 tributylphosphate. The purification of ⁸⁹Sr is done by incorporating several cation-447 448 exchange chromatographic steps. The finally purified product is then obtained as ⁸⁹SrCl₂ 449 in dilute HCl in a batch yield of about 20 GBq. Large quantities of this radionuclide are 450 produced mainly at the reactor RIAR in Dimitovgrad, Russia [134, 135]. It is then shipped 451 to various parts of the world.

452 **3.4 Theranostic pair ⁸⁶Y/⁹⁰Y**

As mentioned in the introduction, this was the first pair of radionuclides used for
theranostic studies. Its development has been described in detail in a recent publication [7].
In this article therefore only a very brief account is given.

456

457 For the production of the positron emitter ⁸⁶Y ($T_{\frac{1}{2}} = 14.7$ h), the nuclear reactions 458 ⁸⁶Sr(p,n)⁸⁶Y, ⁸⁸Sr(p,3n)⁸⁶Y, ^{nat}Zr(p,x)⁸⁸Y and ^{nat}Rb(³He,xn)⁸⁶Y were investigated (for

references see [136]). Very recently the nuclear process ${}^{89}Y(p,4n){}^{86}Zr \xrightarrow{EC,\beta^+} {}^{86}Y$ has also 459 been reported [137]. The method of choice for production of ⁸⁶Y, however, is the 460 ⁸⁶Sr(p,n)⁸⁶Y reaction on a highly enriched target, originally reported by the Jülich group 461 [5, 6]. Over the optimum energy range of $E_p = 14 \rightarrow 7$ MeV the expected thick target yield 462 463 of ⁸⁶Y amounts to 371 MBq μ A⁻¹ h⁻¹ (for 1 h irradiation). Although an evaluation revealed discrepancy in nuclear data [136], the production technology has been well developed. For 464 irradiation mostly solid 97% enriched ⁸⁶SrCO₃ target is used at a proton beam current of 465 466 about 10 μ A. For the chemical separation of radioyttrium, two methods have been 467 advantageously used:

468 a) Co-precipitation with La(OH)₃, followed by cation-exchange chromatography,

- b) Electrolytic removal of radioyttrium.
- 470

471 A detailed discussion of the separation procedures is given in ref. [7]. Batch yields of a few 472 GBq of 86 Y have been reported. At a few medical cyclotrons, solution targets have been 473 developed to produce small quantities of 86 Y for local use. The radionuclidic purity of 86 Y 474 amounts to > 97%; the major impurity 87m Y originates from the small amount of the isotope 475 87 Sr present in the enriched 86 Sr target. Due to great demand for this radionuclide, efforts 476 are underway to commercialize its production.

477

As regards the production of the β^- -emitter ⁹⁰Y (T_{1/2} = 2.7 d), it could be done via the ⁸⁹Y(n, γ)⁹⁰Y process, but the specific activity is very low. No-carrier-added ⁹⁰Y is therefore generally obtained via the ⁹⁰Sr/⁹⁰Y generator system. The parent activity ⁹⁰Sr (T_{1/2} = 28.6 a) is separated from the fission products and fixed on a generator column. The daughter ⁹⁰Y is eluted about once a week using 2N HCl as eluent. About 3-5 GBq quantities of ⁹⁰Y are collected in 0.5 mL of the eluent. Such generator systems are commercially available.

485 **3.5 Theranostic pair** ¹²⁴I/¹³¹I

486 This is a unique pair of radionuclides. In contrast to the four metallic pairs discussed above, 487 namely ${}^{44g}Sc/{}^{47}Sc$, ${}^{64}Cu/{}^{67}Cu$, ${}^{83}Sr/{}^{89}Sr$ and ${}^{86}Y/{}^{90}Y$, this pair belongs to the group of halogens which form a rather strong covalent bond and have therefore been frequently
applied following the "analogue" approach. A large number of radiopharmaceuticals have
been developed using halogens. Thus, both ¹²⁴I and ¹³¹I find applications both individually
and collectively as a theranostic pair.

492

The therapeutic use of ¹³¹I has been successfully practised for more than 70 years, especially in treatment of thyroid diseases. The use of ¹²⁴I is relatively new. It was first proposed in 1988 by Lambrecht et al. [138]. Since then extensive studies on its production and preparation of radiopharmaceuticals have been performed. Today it is widely used in tumour targeting as well as in thyroid dosimetry.

498

The various methods investigated for the production of 124 I (T_{1/2} = 4.18 d) have been 499 500 extensively reviewed [139]. A critical analysis of the cross section data was performed 501 [140, 141]. A summary of the results was given [106]. It was concluded that the 124 Te(p,n) 124 I reaction, originally suggested by Scholten et al. [142] is the method of choice 502 for the production of ¹²⁴I. For a 99.8% enriched ¹²⁴Te target over the energy range $E_p = 12$ 503 \rightarrow 8 MeV the expected ¹²⁴I yield is 16 MBq μ A⁻¹ h⁻¹ (for 1h irradiation). This yield is not 504 505 very high, but the product obtained is of the highest radionuclidic purity, the level of the associated long-lived ¹²⁵I ($T_{\frac{1}{2}}$ = 60.0 d) impurity being < 0.1%. On the other hand, it is felt 506 that the ¹²⁵Te(p,2n)¹²⁴I reaction [143] over the energy range $E_p = 21 \rightarrow 15$ MeV may also 507 be quite useful; the yield of 124 I is 5 times higher than that via the (p,n) reaction and the 508 level of the ¹²⁵I Impurity is < 1%. Today, for clinical scale production of ¹²⁴I, the 509 ¹²⁴Te(p.n)¹²⁴I reaction is almost universally applied and batch yields of a few GBq are 510 511 obtained. The procedure commonly involves irradiation of a ¹²⁴TeO₂ target and removal of 512 radioiodine by a distillation process at about 750 °C [144-150]. A detailed review of the 513 distillation parameters used by various groups was presented [139]. Radioiodine is 514 generally collected almost quantitatively in 0.3 mL of 0.02 M NaOH solution. Its radiochemical form is checked by high performance liquid chromatography (HPLC); it is 515 516 > 98% iodide which is very suitable for subsequent synthesis steps. The enriched target 517 material is regenerated (without any substantial loss) for reuse.

519 In recent years the separation of radioiodine from α -particle irradiated antimony 520 was also investigated using solvent extraction and ion-chromatographic techniques [151-521 153]. The radionuclidic purity of the product achieved was quite high. However, due to the 522 low batch yield of ¹²⁴I, those methods have not found much practical application.

523

As far as the production of ¹³¹I ($T_{\frac{1}{2}} = 8.02 \text{ d}$) is concerned, the methodology is well established [cf. 154]. It is a reactor radionuclide and is produced either via the fission process (as a subsidiary of ⁹⁹Mo production) or via the route ¹³⁰Te(n, γ)^{131m,g}Te $\stackrel{\beta^-}{\rightarrow}$ ¹³¹I. In the latter case, both dry and wet distillation methods have been used for the separation of radioiodine. Large quantities of ¹³¹I are commercially available.

529 **3.6 Theranostic pairs** ¹⁵²Tb/¹⁶¹Tb and ¹⁵²Tb/¹⁴⁹Tb

530 These two pairs of radionuclides are rather exotic but very promising. In recent years there 531 has been an increasing interest in the application of radiolanthanides in imaging and 532 therapy, especially because a trivalent lanthanide forms stable complexes with many 533 oxygen-containing bifunctional chelators. The imaging is generally done by SPECT which, 534 however, is not quantitative. The radionuclide ¹⁵²Tb ($T_{\frac{1}{2}} = 17.5$ h) is the only suitable β^+ -535 emitter in the region of lanthanides which has been successfully developed for PET 536 measurements. It can thus serve as an exact diagnostic match to the β^{-} -emitting therapeutic 537 radionuclide ¹⁶¹Tb ($T_{\frac{1}{2}} = 6.9 \text{ d}$) as well as to the α -particle emitting therapeutic radionuclide ¹⁴⁹Tb ($T_{\frac{1}{2}}$ = 4.1 h), whose potential in therapy was first suggested by Allen and Blagojevic 538 539 [155]. In fact these three radionuclides together with the Auger electron emitter ¹⁵⁵Tb ($T_{\frac{1}{2}}$ 540 = 5.3 d) make the element terbium very versatile for medical applications, somewhat 541 similar to copper and iodine.

542

543 **Development of ¹⁵²Tb and ¹⁴⁹Tb**

544 Work on the development of the β^+ -emitter ¹⁵²**Tb** and the α -particle emitter ¹⁴⁹**Tb** has been 545 going on for quite some time and two rather uncommon reactions have been investigated 546 for their production.

548 a) *Heavy-ion induced reactions*, first studied in Sydney [156,157]. Using a natural Nd 549 target, ¹⁵²Dy was produced over the energy range of 80 to 110 MeV. The contributing reactions were ${}^{142}Nd({}^{12}C.2n){}^{152}Dy$, ${}^{143}Nd({}^{12}C.3n){}^{152}Dy$, ${}^{144}Nd({}^{12}C.4n){}^{152}Dy$ and 550 ¹⁴⁵Nd(¹²C, 5n)¹⁵²Dy. The product ¹⁵²Dy decays with a half-life of 2.4 h to ¹⁵²Tb. After 551 552 irradiation the thick Nd metal target was therefore allowed to decay for about 12 hours, 553 thereafter it was dissolved in 6 M HNO₃, evaporated to dryness and the residue 554 redissolved in α -hydroxyisobutyric acid (α -HIBA). The separation of no-carrier added ¹⁵²Tb was then achieved through cation-exchange chromatography. The batch yield of 555 ¹⁵²Tb amounted to a few MBq. It was sufficient for tracer studies but not for a PET 556 557 phantom measurement. In the same Nd target irradiated with ${}^{12}C$ ions, the α -particle emitting ¹⁴⁹Tb was formed via the ¹⁴²Nd(¹²C, 5n)¹⁴⁹Dy \rightarrow ¹⁴⁹Tb process. Its batch yield 558 559 amounted to a few MBq [157].

560

561 b) Spallation reaction, first studied at CERN [156]. A tantalum foil was irradiated with 562 1000 MeV protons. The spallation products were released from the target at 2400 °C. 563 The ionized products were separated electromagnetically at the ISOLDE facility. The 564 spallation products of mass number 152 were collected and subjected to a two-step separation procedure, similar to the one used in the separation of 86 Y [5], viz. at first 565 566 coprecipitation of radioterbium with La(OH)₃, then removal of radioterbium from lanthanum by cation-exchange chromatography. The batch yield of ¹⁵²Tb amounted to 567 568 770 MBq [156]. A PET phantom measurement demonstrated the feasibility of using ¹⁵²Tb for monitoring the behavior of therapeutic terbium radionuclides [156]. 569

570

571 Following the successful production of ¹⁵²Tb via the spallation process, several 572 optimization studies and further development work were carried out, in particular with 573 regard to on-line mass separation [158, 159]. To demonstrate the utility of ¹⁵²Tb, a proof 574 of concept study was performed with ¹⁵²Tb-labelled folate in a mouse bearing folate 575 receptor (FR)-positive tumours [158]. A more detailed in vivo imaging study using several 576 other ¹⁵²Tb-labelled compounds showed the potential of this radionuclide for PET studies 577 [159]. Very recently the first application of this positron emitter in human PET/CT has been convincingly demonstrated [160]. The significance of this radionuclide is thusincreasing.

580

Besides the application of the spallation process to the production of ¹⁵²Tb, many 581 582 investigations on other possible production reactions have also been carried out. They deal 583 either with cross section measurements of proton and deuteron induced reactions on 584 gadolinium and dysprosium [161-166] or with chemical separation of radioterbium from 585 gadolinium irradiated with protons [167], europium irradiated with α -particles [168] or lanthanum and cerium irradiated with ¹⁶O-ions [169, 170]. The (p,xn) reactions on 586 587 gadolinium isotopes in the intermediate energy range appear to be promising. An example 588 is given in Fig. 3, which has been adapted from the data of Steyn et al. [162]. The cross section of the ¹⁵⁵Gd(p,4n)¹⁵²Tb reaction is fairly high and over the energy range of E_p = 589 50 \rightarrow 30 MeV, the calculated yield of ¹⁵²Tb amounts to about 1.45 GBq μ A⁻¹ h⁻¹ (for 1 h 590 irradiation). Thus using an enriched ¹⁵⁵Gd target, in principle, it should be possible to 591 592 produce ¹⁵²Tb in quantities sufficient for medical applications.

593

594 With regard to the production of the therapeutic radionuclides of terbium, the case of the α -particle emitter ¹⁴⁹Tb has been mentioned above. Its production in tracer quantities 595 596 via the heavy-ion induced reaction was reported [157]. Subsequently, Beyer et al. [171, 597 172] produced this radionuclide on a clinical scale via spallation of tantalum with 1400 598 MeV protons in conjunction with on-line isotope separation at CERN, and demonstrated direct evidence for single cancer cell killing using ¹⁴⁹Tb-rituximab. In general, however, 599 600 the availability of this radionuclide is rare. On the other hand the cross sections of a few 601 (p,xn) reactions on a few gadolinium isotopes, leading to the formation of ¹⁴⁹Tb, have been 602 described [162]. They appear to be interesting for production purposes but specific 603 production methodology needs to be developed.

604

605 **Production of ¹⁶¹Tb**

606 The production of the β⁻-emitting therapeutic radionuclide ¹⁶¹Tb is usually done in a 607 nuclear reactor via the sequence ¹⁶⁰Gd(n,γ)¹⁶¹Gd $\stackrel{\beta^-}{\rightarrow}$ ¹⁶¹Tb. In general, an enriched ¹⁶⁰Gd 608 target is irradiated with a high neutron flux and separation of ¹⁶¹Tb from the gadolinium target is done by cation-exchange chromatography with α-HIBA, followed by concentration of ¹⁶¹Tb solution [158, 173, 174], There is, however, some difficulty in the production process. The intermediate nuclide ¹⁶¹Gd ($T_{\frac{1}{2}} = 3.7 \text{ min}$) has a very high neutron capture cross section ($\sigma_{\text{th}} \approx 20000 \text{ b}$) so that the formation of ¹⁶¹Tb through the β⁻-decay of ¹⁶¹Gd is in strong competition with the formation of ¹⁶²Gd through the (n,γ) reaction. A short irradiation with a high neutron flux is advantageous. In general, the radionuclide ¹⁶¹Tb could be made available in sufficient quantities.

616 **4. Concluding remarks**

617 The theranostic approach in nuclear medicine, i.e. administering to a specific person two 618 radionuclides of the same element in the same chemical form, one emitting positrons and 619 the other highly-ionizing low-range radiation to cause therapeutic effect, is gaining 620 increasing significance because it constitutes "personalized medicine". In this review seven 621 such pairs have been dealt with and their production methods have been discussed. The positron emitters ⁶⁴Cu, ⁸⁶Y and ¹²⁴I are well characterized and the respective production 622 623 technology using the (p,n) reaction on the respective highly enriched target isotope is well developed. The positron emitter ^{44g}Sc is presently attracting great attention. Though its 624 clinical scale production has been achieved via two routes, namely the ⁴⁴Ti/^{44g}Sc generator 625 626 system and the direct production via the (p,n) reaction, further development work is 627 necessary to ensure its large scale production. The basic methodology for production of the positron emitter ⁸³Sr has also been demonstrated but due to the need of an intermediate 628 629 energy cyclotron, not much progress has been made with regard to its production on a clinical scale. The positron emitter ¹⁵²Tb is potentially very interesting. The production 630 631 methodology developed so far, however, is rather exotic because it makes use of the 632 spallation process in combination with on-line mass separation. Attempts are presently 633 underway to produce it at an intermediate energy cyclotron/accelerator. All those positron 634 emitters have either been shown to be, or are expected to be, suitable for PET 635 measurements; only in the case of ⁸⁶Y the large number of associated γ -rays cause some 636 difficulty, but after proper corrections, the images can be satisfactorily interpreted.

Regarding the therapeutic radionuclides, ⁸⁹Sr and ⁹⁰Y decay by emission of β^{-} -638 particles of intermediate energy. Both are produced in a nuclear reactor, the former via the 639 (n,p) reaction and the latter via the 90 Sr/ 90 Y generator system. The generator parent 90 Sr is 640 separated from fission products. Both ⁸⁹Sr and ⁹⁰Y are commercially available. The β^- -641 particle endpoint energies of the remaining four radionuclides, namely ⁴⁷Sc, ⁶⁷Cu, ¹³¹I and 642 ¹⁶¹Tb are relatively low (< 610 keV). The radionuclide ¹³¹I is produced in a nuclear reactor 643 644 either via fission or more commonly via the sequence ${}^{130}\text{Te}(n,\gamma){}^{131\text{m},g}\text{Te} \rightarrow {}^{131}\text{I}$. It has been known for a very long time and is extensively used in internal radiotherapy. It is 645 commercially available. The radionuclide ¹⁶¹Tb is also produced in a nuclear reactor 646 through the sequence ${}^{160}\text{Gd}(n,\gamma){}^{161}\text{Gd} \rightarrow {}^{161}\text{Tb}$ and it is available in sufficient quantities. In 647 648 recent years interest has also been growing in the comparison of the therapeutic effect of 649 the four very similar β^- -particle emitters, namely ⁴⁷Sc, ⁶⁷Cu, ¹⁶¹Tb, and ¹⁷⁷Lu [173-175]. The radionuclides ⁴⁷Sc and ⁶⁷Cu are very interesting but difficult to produce. Therefore 650 651 presently strong efforts are underway to produce them through neutron, photon and charged 652 particle induced reactions.

653

In contrast to the above mentioned theranostic pairs of radionuclides consisting of a β^+ -emitter and a β^- -emitter, the pair ¹⁵²Tb/¹⁴⁹Tb is unique in that the radionuclide ¹⁵²Tb is a β^+ -emitter and ¹⁴⁹Tb is an α -emitter. The efficacy of ¹⁴⁹Tb for targeted α -therapy has been demonstrated but the exotic production route, involving spallation and on-line mass separation, makes its availability very rare. Further development work is called for.

659

Besides the 7 rather established theranostic pairs of radionuclides discussed in this review, the pair 72 As/ 77 As is in development [cf. 176-178]. Furthermore, there are 3 other pairs where the combination consists of a positron emitter and an Auger electron emitter as a therapeutic partner. They are 68 Ga/ 67 Ga, 110g In/ 111 In and 152 Tb/ 155 Tb. However, since Auger therapy using the radionuclides 67 Ga, 111 In and 155 Tb is still developing, those pairs have not been considered in this review.

666

667 In conclusion, it may be stated that the field of theranostics is attracting tremendous 668 attention today, but the availability of the respective radionuclides plays a very important role. Concerted efforts are needed to produce several of the above mentioned radionuclides in quantities sufficient for clinical studies. Enhanced utilization of intermediate energy cyclotrons/accelerators would be very advantageous. Furthermore, for production of a few special radionuclides, use of powerful electron linear accelerators may be beneficial. Similarly, the use of some rather unconventional methods, like heavy-ion induced reactions and on-line mass separation of radioactive products, may also be worthwhile, especially for small scale production of some exotic radionuclides for tracer studies.

677 **References**

- Stöcklin G, Qaim SM, Rösch F (1995) The impact of radioactivity on medicine.
 Radiochim Acta 70/71:249-272
- 681 2. Zimmer AM, Kuzel TM, Spies WG, Duda RB, Webber DI, Kazikiewicz JM,
- 682 Radosevich JA, LoCicero J, Robinson PG, Gilyon KA, Samuelson E, Spies
- SM, Rosen ST, Maguire RT (1992) Comparative pharmacokinetics of ¹¹¹In and ⁹⁰Y
 B72.3 in patients following single dose intravenous administration. Antib
 Immunoconjug Radiopharm 5:285-294
- 686 3. Mausner LF, Srivastava SC (1993) Selection of radionuclides for
 687 radioimmunotherapy. Med Phys 20:503-509
- 4. Rösch F, Qaim SM, Stöcklin, G (1993) Nuclear data relevant to the production of
 the positron emitting radioisotope ⁸⁶Y via the ⁸⁶Sr(p,n)- and ^{nat}Rb(³He,xn)processes. Radiochim Acta 61:1-8
- 691 5. Rösch F, Qaim SM, Stöcklin G. (1993) Production of the positron emitting
 692 radioisotope ⁸⁶Y for nuclear medical application. Appl Radiat Isot 44:677-681
- 693 6. Herzog H, Rösch F, Stöcklin G, Lueders C, Qaim SM, Feinendegen LE (1993)
 694 Measurement of pharmacokinetics of ⁸⁶Y radiopharmaceuticals with PET and
 695 radiation dose calculation of analogous ⁹⁰Y radiotherapeutics. J Nucl Med 34:2222696 2226
- Rösch F, Herzog H, Qaim SM (2017) The beginning and development of the
 theranostic approach in nuclear medicine, as exemplified by the radionuclide pair
 ⁸⁶Y and ⁹⁰Y. Pharmaceuticals 10:56(1-28)
- 8. Lederer CM, Shirley VS, Ed. (1978) Table of Isotopes, 7th ed., John Wiley and
 Sons, New York, NY, USA, Volume 99:1-1523
- Find Strength Strengt
- 10. Evaluated Nuclear Structure and Decay File (ENSDF), BNL, USA. Available
 705 online: www.nndc.bnl.gov/ensdf (accessed on 6 June 2017)
- Qaim SM, Bisinger T, Hilgers K, Nayak D, Coenen HH (2007) Positron emission
 intensities in the decay of ⁶⁴Cu, ⁷⁶Br and ¹²⁴I. Radiochim Acta 95:67-73

708	12.	Herzog H, Tellmann L, Scholten B, Coenen HH, Qaim SM (2008) PET imaging
709		problems with the non-standard positron emitters ⁸⁶ Y and ¹²⁴ I. Q J Nucl Med Mol
710		Imaging 52:159-165
711	13.	Lubberink M, Herzog H (2011) Quantitative imaging of 124 I and 86 Y with PET.
712		Eur J Nucl Med Mol Imaging (Suppl. 1) 38:10
713	14.	Herzog H, Tellmann L, Qaim SM, Spellerberg S, Schmid A, Coenen HH (2002)
714		PET quantitation and imaging of the non-pure positron-emitting iodine isotope 124 I.
715		Appl Radiat Isot 56:673-679
716	15.	Bunka M, Müller C, Vermeulen C, Haller S, Türler, A., Schibli, R., van der Meulen,
717		N.P. (2016) Imaging quality of ⁴⁴ Sc in comparison with five other PET
718		radionuclides using Derenzo phantoms and preclinical PET. Appl Radiat Isot
719		110:129-133
720	16.	Qaim SM (2011) Development of novel positron emitters for medical applications:
721		nuclear and radiochemical aspects. Radiochim Acta 99:611-625
722	17.	Qaim SM, Spahn I (2018) Development of novel radionuclides for medical
723		applications. J Label Compd Radiopharm 61:126-140
724	18.	Ejnisman R, Goldman ID, Pascholati PR, daCruz MTF, Oliveira RM, Norman EB,
725		Zlimen I, Wietfeldt FE, Larimer RM, Chan YD, Lesko KT, Garcia A (1996) Cross
726		sections for ⁴⁵ Sc(p,2n) ⁴⁴ Ti and related reactions. Phys Rev C 54:2047-2050
727	19.	Daraban L, Rebeles RA, Hermanne A, Tárkányi F, Takács S (2009) Study of the
728		excitation functions for 43 K, 43 Sc, 44 Sc, 44m Sc and 44 Ti by proton irradiation on 45 Sc
729		up to 37 MeV. Nucl Instrum Methods B 267:755-759
730	20.	Seidl E, Lieser KH (1973) ¹¹³ Sn/ ¹¹³ mIn, ⁶⁸ Ge/ ⁶⁸ Ga and ⁴⁴ Ti/ ⁴⁴ Sc radionuclide
731		generators. Radiochim Acta 19:196-198
732	21.	Filosofov DV, Loktionova NS, Rösch F (2010) A ⁴⁴ Ti/ ⁴⁴ Sc radionuclide generator
733		for potential application of ⁴⁴ Sc-based PET-radiopharmaceuticals. Radiochim Acta
734		98:149-156
735	22.	Pruszynski M, Loktionova NS, Filosofov DV, Rösch F (2010) Post-elution
736		processing of ⁴⁴ Ti/ ⁴⁴ Sc generator-derived ⁴⁴ Sc for clinical application. Appl Radiat
737		Isot 68:1636-1641

738	23.	Radchenko V, Engle JW, Medvedev DG, Maassen JM, Naranjo CM, Unc GA,
739		Meyer CAL, Mastren T, Brugh M, Mausner L, Cutler CS, Birnbaum ER, John
740		KD, Nortier FM, Fassbender ME (2017) Proton-induced production and
741		radiochemical isolation of ⁴⁴ Ti from scandium metal targets for ⁴⁴ Ti/ ⁴⁴ Sc generator
742		development. Nucl Med Biol 50:25-32
743	24.	Radchenko V, Meyer CAL, Engle JW, Naranjo CM, Unc GA, Mastren T, Brugh
744		M, Birnbaum ER, John KD, Nortier FM, Fassbender ME (2016) Separation of 44 Ti
745		from proton irradiated scandium by using solid-phase extraction chromatography
746		and design of ⁴⁴ Ti/ ⁴⁴ Sc generator system. J Chromatogr A 1477:39-46
747	25.	de Waal TJ, Peisach M, Pretorius R (1971) Activation cross sections for proton-
748		induced reactions on calcium isotopes up to 5.6 MeV. J Inorg Nucl Chem 33:2783-
749		2789
750	26.	Levkovskii N (1991) Middle Mass Nuclides (A = 40 - 100) Activation Cross
751		Sections by Medium Energy (E = $10 - 50$ MeV) Protons and Alpha Particles
752		(Experiment and Systematics), Inter-Vesti, Moscow, 215 pp.
753	27.	Krajewski S, Cydzik I, Abbas K, Bulgheroni A, Simonelli F, Holzwarth U,
754		Bilewicz, A. (2013) Cyclotron production of ⁴⁴ Sc for clinical application.
755		Radiochim Acta 101:333-338
756	28.	Carzaniga TS, Auger M, Braccini S, Bunka M, Ereditato A, Nesteruk KP, Scampoli
757		P, Türler A, van der Meulen N (2017) Measurement of ⁴³ Sc and ⁴⁴ Sc production
758		cross section with an 18 MeV medical PET cyclotron. Appl Radiat Isot 129:96-102
759	29.	Al-Abyad M, Mohamed GY, Hassan HE, Takács S, Ditrói F (2018) Experimental
760		measurements and theoretical calculations for proton, deuteron and alpha-particle
761		induced nuclear reactions on calcium: special relevance to the production of ⁴³ Sc,
762		⁴⁴ Sc. J Radioanal Nucl Chem 316:119-128
763	30.	Duchemin C, Guertin A, Haddad F, Michel N, Metivier V (2015) Production of
764		^{44m} Sc and ^{44g} Sc with deuterons on ⁴⁴ Ca: cross section measurements and production
765		yield calculations. Phys Med Biol 60:6847-6864
766	31.	Riley C, Linder B, Ueno K (1964) Cross sections and isomer ratios for
767		41 K(α ,n) ^{44m,44g} Sc reaction. Phys Rev B 135:1340-1344

768	32.	Scott AF, Morton AJ, Tingwell CJW, Tims SG, Hansper VY, Sargood DG (1991)
769		Cross sections and thermonuclear reaction rates for ${}^{41}K(\alpha,n) {}^{44}Sc$ and ${}^{41}K(\alpha,p) {}^{44}Ca$.
770		Nucl Phys A 523:373-385
771	33.	Qaim SM, Sudár S, Scholten B, Koning AJ, Coenen HH (2014) Evaluation of
772		excitation functions of ${}^{100}Mo(p,d+pn){}^{99}Mo$ and ${}^{100}Mo(p,2n){}^{99m}Tc$ reactions:
773		estimation of long-lived Tc-impurity and its implication on the specific activity of
774		cyclotron-produced ^{99m} Tc Appl Radiat Isot 85:101-113
775	34.	Severin GW, Engle JW, Valdovinos HF, Barnhart TE, Nickles RJ (2012) Cyclotron
776		produced ^{44g} Sc from natural calcium. Appl Radiat Isot 70:1526-1530
777	35.	Valdovinos HF, Hernandez R, Barnhart TE, Graves S, Cai W, Nickles RJ (2015)
778		Separation of cyclotron-produced ⁴⁴ Sc from a natural calcium target using a
779		dipentyl pentylphosphonate functionalized extraction resin. Appl Radiat Isot 95:23-
780		29
781	36.	Rangacharyulu C, Fukuda M, Kanda H, Nishizaki S, Takahashi N (2017)
782		Assessment of ⁴³ Sc, ⁴⁴ Sc isotope production in proton- and alpha- induced
783		reactions. J Radioanal Nucl Chem 314:1967-1971
784	37.	Minegishi K, Nagatsu K, Fukada M, Suzuki H, Ohya T, Zhang MR (2016)
785		Production of ⁴³ Sc and ⁴⁷ Sc from a powdery calcium oxide target via the
786		^{nat/44} Ca(alpha,x)-channel. Appl Radiat Isot 116:8-12
787	38.	Szkliniarz K, Sitarz M, Walczak R, Jastrzebski J, Bilewicz A, Choinski J,
788		Jakubowski A, Majkowska A, Stolarz A, Trzcinska A, Zipper W (2016) Production
789		of medical Sc radioisotopes with an alpha particle beam. Appl Radiat Isot 118:182-
790		189
791	39.	Alliot C, Kerdjoudj R, Michel N, Haddad F, Huclier-Markai S (2015) Cyclotron
792		production of high purity ^{44m} Sc, ⁴⁴ Sc with deuterons from (CaCO ₃) ⁴⁴ Ca targets.
793		Nucl Med Biol 42:524-529
794	40.	van der Meulen NP, Bunka M, Domnanich KA, Müller C, Haller S, Vermeulen C,
795		Türler A, Schibli R (2015) Cyclotron production of ⁴⁴ Sc: from bench to bedside.
796		Nucl Med Biol 42:745-751

797	41.	Huclier-Markai S, Alliot C, Rousseau J, Chouin N, Fani M, Bouziotis P, MainaT,
798		Cutler CS, Barbet J (2014) Promising prospects of ^{44m} Sc/ ⁴⁴ Sc as an in vivo
799		generator: biological evaluation and PET images. Nucl Med Biol 41: p. 631
800	42.	Qaim SM, Spahn I, Scholten B, Neumaier B (2016) Uses of alpha particles,
801		especially in nuclear reaction studies and medical radionuclide production.
802		Radiochim Acta 104: 601-626
803	43.	Hoehr C, Oehlke E, Bernárd F, Lee CJ, Hou X, Badesso B, Ferguson S, Miao Q,
804		Yang H, Buckley K, Hanemaayer V, Zeisler S, Ruth T, Celler A, Schaffer P (2014)
805		^{44g} Sc production using a water target on a 13 MeV cyclotron. Nucl Med Biol
806		41:401-406
807	44.	Das MK, Sarkar BR, Ramamoorthy N (1990) Yields of some radioisotopes formed
808		in alpha-particle induced reactions on titanium and recovery of scandium
809		radionuclides. Radiochim Acta 50:135-139
810	45.	Pietrelli L, Mausner LF, Kolsky KL (1992) Separation of carrier-free ⁴⁷ Sc from
811		titanium targets. J Radioanal Nucl Chem Articles 157:335-345
812	46.	Das NR, Banerjee S, Lahiri S (1995) Sequential separation of carrier-free ⁴⁷ Sc, ⁴⁸ V
813		and 48,49,51 Cr from α -particle activated titanium with TOA. Radiochim Acta 1995,
814		69 , 61-64
815	47.	Lahiri S, Banerjee S, Das NR (1996) LLX separation of carrier-free ⁴⁷ Sc, ⁴⁸ V and
816		48,49,51 Cr produced in α -particle activated titanium with HDEHP. Appl Radiat Isot
817		47:1-6
818	48.	Mausner LF, Kolsky KL, Joshi V, Srivastava SC (1998) Radionuclide
819		development at BNL for nuclear medicine therapy. Appl Radiat Isot 49:285-294
820	49.	Kolsky KL, Joshi V, Mausner LF, Srivastava SC (1998) Radiochemical
821		purification of no-carrier-added ⁴⁷ Sc for radioimmunotherapy. Appl Radiat Isot
822		49:1541-1549
823	50.	Bokhari TH, Mushtaq A, Khan IU (2010) Separation of no-carrier-added
824		radioactive scandium from neutron irradiated titanium. J Radioanal Nucl Chem
825		283:389-393

826	51.	Bartos B, Majkowska A, Kasperek A, Krajewski S, Bilewicz A (2012) New
827		separation method of no-carrier-added ⁴⁷ Sc from titanium targets. Radiochim Acta
828		100:457-461
829	52.	Deilami-Nezhad L, Moghaddam-Banaem L, Sadeghi M, Asgari M (2016)
830		Production and purification of ⁴⁷ Sc: a potential radioisotope for cancer theranostics.
831		Appl Radiat Isot 118:124-128
832	53.	Yagi M, Kondo K (1977) Preparation of carrier-free 47 Sc by 48 Ti(γ ,p) reaction. Int
833		J Appl Radiat Isot 28:463-468
834	54.	Rotsch DA, Brown MA, Nolen JA, Brossard T, Henning WF, Chemerisov SD,
835		Gromov RG, Greene J (2018) Electron linear accelerator production and
836		purification of ⁴⁷ Sc from titanium dioxide targets. Appl Radiat Isot 131:77-82
837	55.	Hara T, Freed BR (1973) Preparation of carrier-free ⁴⁷ Sc by chemical separation
838		from ⁴⁷ Ca and its distribution in tumor bearing mice. Int J Appl Radiat Isot 24:373-
839		376
840	56.	Bilewicz A, Walczak R, Majkowska A, Misiak R, Choinski J, Sitarz M, Stolarz A,
841		Jastrzebski J (2016) Cyclotron production of theranostic pair ⁴³ Sc/ ⁴⁷ Sc on calcium
842		targets. Eur J Nucl Med Mol Imaging (Suppl) 43:S135-S136
843	57.	Chakravarty R, Chakraborty S, Ram R, Dash A (2017) An electroamalgamation
844		approach to separate ⁴⁷ Sc from neutron-activated ⁴⁶ Ca target for use in cancer
845		theranostics. Separation Science and Technology 52:2363-2371
846	58.	Müller C, Bunka M, Haller S, Köster U, Groehn V, Bernhardt, P, van der Meulen
847		N, Türler A, Schibli R (2014) Promising prospects for ⁴⁴ Sc/ ⁴⁷ Sc-based
848		theragnostics: application of ⁴⁷ Sc for radionuclide tumor therapy in mice. J Nucl
849		Med 55:1658-1664
850	59.	Gladney ES, Goode WE (1979) Preparation of carrier-free ⁴⁷ Sc by the ⁴⁷ Ti(n,p)
851		reaction with epithermal neutrons. Int J Appl Radiat Isot 30:65
852	60.	Mausner LF, Kolsky KL, Mease RC, Chinol M, Meinken GE, Straub RF, Pietrelli
853		RF, Steplewski Z, Srivastava SC (1993) Production and evaluation of ⁴⁷ Sc for
854		radioimmunotherapy. J Label Compd Radiopharm 32:388-390
855	61.	Srivastava SC (2011) Paving the way to personalized medicine: production of

856		some theragnostic radionuclides at Brookhaven National Laboratory. Radiochim
857		Acta 99:635-640
858	62.	Calamand A (1974) Cross sections for fission neutron spectrum averaged induced
859		reactions, Technical Report No.156, IAEA, Vienna, Austria, p.273
860	63.	Mamtimin M, Harmon F, Starovoitova VN (2015) ⁴⁷ Sc production from titanium
861		targets using electron linacs. Appl Radiat Isot 102:1-4
862	64.	Starovoitova VN, Cole PL, Grimm TL (2015) Accelerator-based photoproduction
863		of promising beta-emitters ⁶⁷ Cu and ⁴⁷ Sc. J Radioanal Nucl Chem 305:127-
864		132
865	65.	Rane S, Harris JT, Starovoitova VN (2015) ⁴⁷ Ca production for ⁴⁷ Ca/ ⁴⁷ Sc generator
866		system using electron linacs. Appl Radiat Isot 97:188-192
867	66.	Misiak R, Walczak R, Was B, Bartyzel M, Mietelski JW, Bilewicz A (2017) ⁴⁷ Sc
868		production development by cyclotron irradiation of ⁴⁸ Ca. J Radioanal Nucl Chem
869		313: 429-434
870	67.	Blower PJ, Lewis JS, Zweit J (1996) Copper radionuclides and
871		radiopharmaceuticals in nuclear medicine. Nucl Med Biol 23:957-980
872	68.	Ma D, Lu F, Overstreet T, Milenic DE, Brechbiel MW (2002) Novel chelating
873		agents for potential applications of copper. Nucl Med Biol 29: 91-105
874	69.	Uddin MS, Rumman-uz-Zaman M, Hossain SM, Qaim SM (2014) Radiochemical
875		measurement of neutron-spectrum averaged cross sections for the formation of ⁶⁴ Cu
876		and ⁶⁷ Cu via the (n, p) reaction at a TRIGA Mark-II reactor: feasibility of
877		simultaneous production of the theragnostic pair ⁶⁴ Cu/ ⁶⁷ Cu. Radiochim Acta
878		102:473-480
879	70.	Bokhari TH, Mushtaq A, Khan IU (2010) Production of low and high specific
880		activity ⁶⁴ Cu in a reactor. J Radioanal Nucl Chem 284:265-271
881	71.	Johnsen AM, Heidrich BJ, Durrant CB, Bascom AJ, Ünlu K (2015) Reactor
882		production of ⁶⁴ Cu and ⁶⁷ Cu using enriched zinc target material. J Radioanal Nucl
883		Chem 305:61-71
884	72.	Spahn I, Coenen HH, Qaim SM (2004) Enhanced production possibility of the
885		therapeutic radionuclides ⁶⁴ Cu, ⁶⁷ Cu and ⁸⁹ Sr via (n,p) reactions induced by fast
886		spectral neutrons. Radiochim Acta 92:183-186

887 73. Kawabata M, Hashimoto K, Saeki H, Sato N, Motoishi S, Takakura K, Konno C, Nagai Y (2015) Production and separation of ⁶⁴Cu and ⁶⁷Cu using 14 MeV 888 889 neutrons. J Radioanal Nucl Chem 303:1205-1209 890 Aslam MN, Sudár S, Hussain M, Malik AA, Shah HA, Qaim SM (2009) Charged 74. 891 particle induced reaction cross section data for production of the emerging medically important positron emitter ⁶⁴Cu: a comprehensive evaluation. Radiochim 892 893 Acta 97:669-686 894 75. Uddin MS, Chakraborty AK, Spellerberg S, Shariff MA, Das S, Rashid MA, Spahn 895 I, Qaim SM (2016) Experimental determination of proton induced reaction cross sections on ^{nat} Ni near threshold energy. Radiochim Acta 104:305-314 896 897 76. Szelecsényi F, Kovács Z, Nagatsu K, Zhang MR, Suzuki K (2014) Excitation function of (p,α) nuclear reaction on enriched ⁶⁷Zn: possibility of production of 898 899 ⁶⁴Cu at low energy cyclotron. Radiochim Acta 102:465-472 900 77. Szelecsényi F, Steyn GF, Kovács Z (2016) On the formation of non-radioactive 901 copper during the production of ⁶⁴Cu via proton and deuteron-induced nuclear reactions on enriched ⁶⁴Ni targets. J Radioanal Nucl Chem 307:1841-1846 902 903 78. Szelecsényi F, Blessing G, Qaim SM (1993) Excitation functions of proton induced nuclear reactions on enriched ⁶¹Ni and ⁶⁴Ni: possibility of production of no-carrier-904 added ⁶¹Cu and ⁶⁴Cu at a small cyclotron. Appl Radiat Isot 44:575-580 905 906 McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler 79. 907 CS, Anderson CJ, Welch MJ (1997) Efficient production of high specific activity ⁶⁴Cu using a biomedical cyclotron. Nucl Med Biol 24:35-43 908 909 80. Szajek LP, Meyer W, Plascjak P, Eckelman WC (2005) Semi-remote production of [⁶⁴Cu]CuCl₂ and preparation of high specific activity [⁶⁴Cu]Cu-ATSM for PET 910 911 studies. Radiochim Acta 93:239-244 912 81. Avila-Rodriguez MA, Nye JA, Nickles RJ (2007) Simultaneous production of high specific activity ⁶⁴Cu and ⁶¹Co with 11.4 MeV protons on enriched ⁶⁴Ni nuclei. 913 914 Appl Radiat Isot 65:1115-1120 915 Sadeghi M, Amiri M, Roshanfarzad P, Avila M, Tenreiro C (2008) Radiochemical 82. studies relevant to the no-carrier-added production of ^{61,64}Cu at a cyclotron. 916 917 Radiochim Acta 96:399-402

918	83.	Alliot C, Michel N, Bonraisin AC, Bosse V, Laize J, Bourdeau C, Mokili BM,
919		Haddad F (2011) One step purification process for no-carrier-added ⁶⁴ Cu produced
920		using enriched nickel target. Radiochim Acta 99:627-630
921	84.	Watanabe S, Iida Y, Suzui N, Katabuchi T, Ishii S, Kawachi N, Hanaoka H,
922		Watanabe S, Matsuhashi S, Endo K, Ishioka N (2009) Production of no-carrier-
923		added ⁶⁴ Cu and applications to molecular imaging by PET and PETIS as a
924		biomedical tracer. J Radioanal Nucl Chem 280:199-205
925	85.	Rajec P, Csiba V, Leporis M, Stefecka M, Pataky EL, Reich M, Ometakova J
926		(2010) Preparation and characterization of nickel targets for cyclotron production
927		of ⁶⁴ Cu. J Radioanal Nucl Chem 286:665-670
928	86.	Le VS, Howse J, Zaw M, Pellegrini P, Katsifis A, Greguric I, Weiner, R (2009)
929		Alternative method for ⁶⁴ Cu radioisotope production. Appl Radiat Isot 67:1324-
930		1331
931	87.	Thisgaard H, Jensen M, Elema DR (2011) Medium to large scale radioisotope
932		production for targeted radiotherapy using a small PET cyclotron. Appl Radiat Isot
933		69:1-7
934	88.	Watanabe S, Watanabe S, Liang JX, Hanaoka H, Endo K, Ishioka NS (2009)
935		Chelating ion-exchange methods for the preparation of no-carrier-added ⁶⁴ Cu. Nucl
936		Med Biol 36:587-590
937	89.	Dirks C, Scholten B, Happel S, Zulauf A, Bombard A, Jungclas H (2010)
938		Characterisation of a Cu selective resin and its application to the production of 64 Cu.
939		J Radioanal Nucl Chem 286:671-674
940	90.	Toyota T, Hanafusa T, Oda T, Koumura I, Sasaki T, Matsuura E, Kumon H, Yano
941		T, Ono T (2013) A purification system for 64 Cu produced by a biomedical cyclotron
942		for antibody PET imaging. J Radioanal Nucl Chem 298:295-300
943	91.	Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M, Fukumura T,
944		Zhang MR (2016) Efficient preparation of high-quality ⁶⁴ Cu for routine use. Nucl
945		Med Biol 43:685-691
946	92.	Burke P, Golovko O, Clark JC, Aigbirhio FI (2010) An automated method for
947		regular productions of ⁶⁴ Cu for PET radiopharmaceuticals. Inorg Chim Acta
948		363:1316-1319

949 93. Rebeles RA, Van den Winkel P, Hermanne A, De Vis L, Waegeneer R (2010) PCcontrolled radiochemistry system for preparation of no-carrier-added ⁶⁴Cu. J 950 951 Radioanal Nucl Chem 286:655-659 952 94. Thieme S, Walther M, Pietzsch HJ, Henniger J, Preusche S, Mäding P, Steinbach J (2012) Module-assisted preparation of ⁶⁴Cu with high specific activity. Appl Radiat 953 954 Isot 70:602-608 955 95. Kume M, Carey PC, Gaehle G, Madrid E, Voller T, Margenau W, Welch MJ, Lapi SE (2012) Module-assisted preparation of ⁶⁴Cu with high specific activity. Appl 956 957 Radiat Isot 70:1803-1808 Elomaa VV, Jurttila J, Rajander J, Solin O (2014) Automation of ⁶⁴Cu production 958 96. 959 at Turku PET Centre. Appl Radiat Isot 89:74-78 97. 960 Alves F, Alves VHP, Do Carmo SJC, Neves ACB, Silva M, Abrunhosa AJ (2017) Production of ⁶⁴Cu and ⁶⁸Ga with a medical cyclotron using liquid targets. Mod 961 Phys Letters 32: 1740013 962 963 98. Abbas K, Kozempel J, Bonardi M, Groppi F, Alfarano A, Holzwarth U, Simonelli 964 F, Hofmann H, Horstmann W, Menapace E, Leseticky L, Gibson N (2006) Cyclotron production of ⁶⁴Cu by deuteron irradiation of ⁶⁴Zn. Appl Radiat Isot 965 966 64:1001-1005 967 99. Kozempel J, Abbas K, Simonelli F, Zampese M, Holzwarth U, Gibson N, Leseticky L (2007) A novel method for n.c.a. 64 Cu production by the 64 Zn(d,2p) 64 Cu reaction 968 969 and dual ion-exchange column chromatography. Radiochim Acta 95:75-80 Smith SV, Waters DJ, Di Bartolo N (1996) Separation of ⁶⁴Cu from ⁶⁷Ga waste 970 100. 971 products using anion exchange and low acid aqueous/organic mixtures. Radiochim 972 Acta 75:65-68 973 101. Smith SV, Waters DJ, Di Bartolo NM, Hockings R (2003) Novel separation process for ultra pure and high specific activity ⁶⁴Cu. J Inorg Biochemistry 96:232 974 975 Szelecésnyi F, Stevn GF, Kovács Z, Vermeulen C, van der Meulen NP, Dolley SG, 102. van der Walt TN, Suzuki K, Mukai K (2005) Investigation of the ⁶⁶Zn(p,2pn) ⁶⁴Cu 976 and ⁶⁸Zn(p,x)⁶⁴Cu nuclear processes up to 100 MeV: production of ⁶⁴Cu. Nucl 977 978 Instrum Methods B 240:625-637

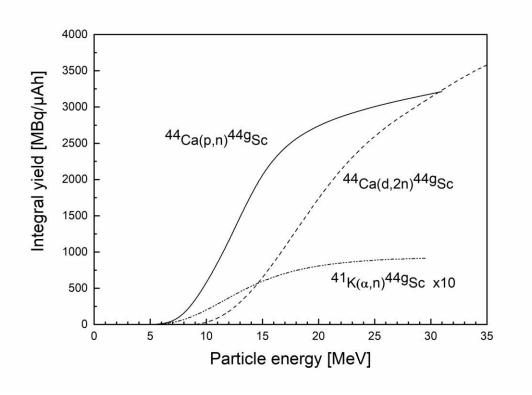
- 979 103. Kim JH, Park H, Chun KS (2010) Effective separation method of ⁶⁴Cu from ⁶⁷Ga
 980 waste product with a solvent extraction and chromatography. Appl Radiat Isot
 981 68:1623-1626
- 982 104. Smith NA, Bowers DL, Ehst DA (2012) The production, separation, and use of
 983 ⁶⁷Cu for radioimmunotherapy: a review. Appl Radiat Isot 70:2377-2383
- 984 105. Qaim SM (2012) The present and future of medical radionuclide production.
 985 Radiochim Acta 100:635-651
- 986 106. Qaim SM (2015) Nuclear data for medical radionuclides. J Radioanal Nucl Chem
 987 305:233-245
- 988 107. Qaim SM (2017) Nuclear data for production and medical application of
 989 radionuclides: present status and future needs. Nucl Med Biol 44:31-49
- Sato N, Tsukada K, Watanabe S, Ishioka NS, Kawabata M, Saeki H, Nagai Y, Kin
 T, Minato F, Iwamoto N, Iwamoto O (2014) First measurement of the radionuclide
 purity of the therapeutic isotope ⁶⁷Cu produced by ⁶⁸Zn(n,x) reaction using ^{nat}C(d,n)
 neutrons. J Phys Soc Japan 83:073201
- 109. Sugo Y, Hashimoto K, Kawabata M, Saeki H, Sato S, Tsukada K, Nagai Y (2017)
 Application of ⁶⁷Cu produced by ⁶⁸Zn(n,n'p+d)⁶⁷Cu to biodistribution study in
 tumor-bearing mice. J Phys Soc Japan 86:023201
- 997 110. Marceau N, Kruck TPA, McConnell DB, Aspin N (1970) Production of ⁶⁷Cu from
 998 natural zinc using a linear accelerator. Int J Appl Radiat.Isot 21:667-669
- 999 111. Yagi M, Kondo K (1978) Preparation of carrier-free ⁶⁷Cu by the ⁶⁸Zn(γ,p) reaction.
 1000 Int J Appl Radiat Isot 29:757-759
- 1001 112. Danon Y, Block RC, Testa R, Moore H (2008) Medical isotope production using a
 1002 60 MeV linear electron accelerator. Transactions of the American Nuclear Society
 1003 98:894-895
- 1004 113. Ayzatsky NI, Dikiy NP, Dovbnya AN, Lyashko YV, Nikiforov VI, Tensihev AE,
 1005 Torgovkin AV, Uvarov VL, Shramenko BI, Ehst D (2008) Features of ⁶⁷Cu
 1006 photonuclear production. Probl Atom Sci Tech 49:174-178
- 1007 114. Aizatskyi NI, Dikiy NP, Dovbnya AN, Dolzhek MA, Lyashko YV, Medvedeva EP,
 1008 Medvedev DV (2014) Photonuclear method of production of ⁶⁷Cu. Probl Atom Sci
 1009 Tech 49:182-185

1010	115.	Starovoitova VN, Tchelidze L, Wells DP (2014) Production of medical
1011		radioisotopes with linear accelerators. Appl Radiat Isot 85:39-44
1012	116.	Qaim SM, Tárkányi F Capote R (eds.) (2011) Nuclear Data for the Production of
1013		Therapeutic Radionuclides. IAEA Tech. Reports Series No. 473, Vienna, Austria,
1014		1-358
1015	117.	Pupillo G, Sounalet T, Michel N, Mou L, Esposito J, Haddad F (2018) New
1016		production cross sections for the theranostic radionuclide ⁶⁷ Cu. Nucl Instrum
1017		Methods B 415:41-47
1018	118.	Kozempel J, Abbas K, Simonelli F, Bulgheroni A, Holzwarth U, Gibson N (2012)
1019		Preparation of ⁶⁷ Cu via deuteron irradiation of ⁷⁰ Zn. Radiochim Acta 100:419-423
1020	119.	Skakun Y, Qaim SM (2004) Excitation function of the $^{64}\text{Ni}(\alpha,p)^{67}\text{Cu}$ reaction for
1021		production of ⁶⁷ Cu. Appl Radiat Isot 60:33-39
1022	120.	Uddin MS, Kim K, Nadeem M, Sudár S, Kim G (2018) Measurements of excitation
1023		functions of alpha-particle induced reactions on ^{nat} Ni: possibility of production of
1024		the medical isotopes ⁶¹ Cu and ⁶⁷ Cu. Radiochim Acta 106:87-93
1025	121.	Jamriska Sr DJ, Taylor WA, Ott MA, Heaton RC, Phillips DR, Fowler MM (1995)
1026		Activation rates and chemical recovery of ⁶⁷ Cu produced with low-energy proton
1027		irradiation of enriched ⁷⁰ Zn targets. J Radioanal Nucl Chem Articles 195:263-270
1028	122.	Hilgers K, Stoll T, Skakun Y, Coenen HH, Qaim SM (2003) Cross section
1029		measurements of the nuclear reactions $^{nat}Zn(d,x)^{64}Cu,\ ^{66}Zn(d,\alpha)^{64}Cu$ and
1030		$^{68}\text{Zn}(p,\alpha n)^{64}\text{Cufor production of }^{64}\text{Cu}$ and technical developments for small-scale
1031		production of 67 Cu via the 70 Zn(p, α) 67 Cu process. Appl Radiat Isot 59:343-351
1032	123.	Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M, Zhang MR
1033		(2018) Small-scale production of ^{67}Cu for a preclinical study via the $^{64}\text{Ni}(\alpha,p)^{67}\text{Cu}$
1034		channel. Nucl Med Biol 59:56-60
1035	124.	Dasgupta AK, Mausner LF, Srivastava SC (1991) A New separation procedure for
1036		⁶⁷ Cu from proton irradiated Zn. Appl Radiat Isot 42:371-376
1037	125.	Schwarzbach R, Zimmermann K, Bläuenstein P, Smith A, Schubiger PA (1995)
1038		Development of a simple and selective separation of ⁶⁷ Cu from irradiated zinc for
1039		use in antibody labelling: a comparison of methods. Appl Radiat Isot 46:329-336

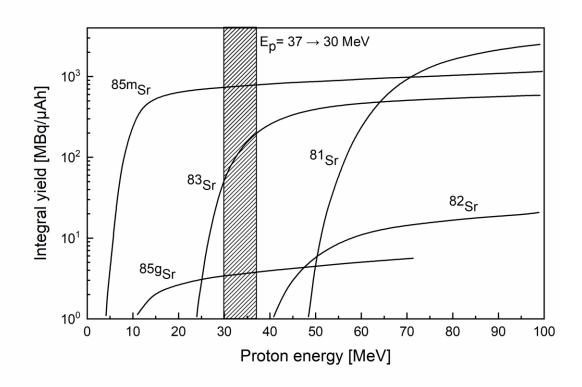
1040 126. Stoll T, Kastleiner S, Shubin YN, Coenen HH, Qaim SM (2002) Excitation
1041 functions of proton induced reactions on ⁶⁸Zn from threshold up to 71 MeV, with
1042 special reference to the production of ⁶⁷Cu. Radiochim Acta 90:309-313

- 1043 127. Katabuchi T, Watanabe S, Ishioka NS, Iida Y, Hanaoka H, Endo K, Matsuhashi S
 1044 (2008) Production of ⁶⁷Cu via the ⁶⁸Zn(p,2p)⁶⁷Cu reaction and recovery of ⁶⁸Zn
 1045 target. J Radioanal Nucl Chem 277:467-470
- Medvedev DG, Mausner LF, Meinken GE, Kurczak SO, Schnakenberg H, Dodge
 CJ, Korach EM, Srivastava SC (2012) Development of a large scale production of
 ⁶⁷Cu from ⁶⁸Zn at the high energy proton accelerator: closing the ⁶⁸Zn cycle. Appl
 Radiat Isot 70:423-429
- 1050 129. Mastren T, Pen A, Loveless S, Marquez BV, Bollinger E, Marois B, Hubley N,
 1051 Brown K, Morrissey DJ, Peaslee GF, Lapi SE (2015) Harvesting ⁶⁷Cu from the
 1052 collection of a secondary beam cocktail at the national superconducting cyclotron
 1053 laboratory. Anal Chem 87:10323-10329
- 1054 130. Horiguchi T, Noma H, Yoshizawa Y, Takemi H, Hasai H, Kiso Y (1980) Excitation
 1055 functions of proton-induced nuclear reactions on ⁸⁵Rb. Int J Appl Radiat Isot
 1056 31:141-151
- 1057 131. Kastleiner S, Qaim SM, Nortier FM, Blessing G, van der Walt TN, Coenen HH
 1058 (2002) Excitation functions of ⁸⁵Rb(p,xn) ^{85m,g,83,82,81}Sr reactions up to 100 MeV:
 1059 integral tests of cross section data, comparison of production routes of ⁸³Sr and
 1060 thick target yield of ⁸²Sr. Appl Raidat Isot 56:685-695
- 1061 132. Tárkányi F, Qaim SM, Stöcklin G (1988) Excitation functions of ³He-particle
 1062 induced nuclear reactions on enriched ⁸²Kr and ⁸³Kr. Radiochim Acta 43:185-189
- 1063 133. Blessing G, Tárkányi F, Qaim SM (1997) Production of ^{82m}Rb via the ⁸²Kr(p,n) process on highly enriched ⁸²Kr: a remotely controlled compact system for
 irradiation, safe handling and recovery of the target gas and isolation of the
 radioactive product. Appl Radiat Isot 48:37-43
- 1067 134. Karelin YA, Efimov VN, Filimonov VT, Kuznetsov RA, Revyakin YL, Andreev
 1068 OI, Zhemkov IY, Bukh VG, Lebedev VM, Spiridonov YN (2000) Radionuclide
 1069 production using a fast flux reactor. Appl Radiat Isot 53:825-827

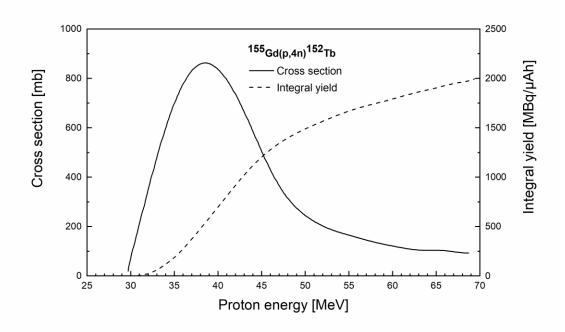
- 1070 135. Zhuikov BL (2014) Production of medical radionuclides in Russia: status and
 1071 future-a review. Appl Radiat Isot 84:48-56
- 1072 136. Zaneb H, Hussain M, Amjed N, Qaim SM (2015) Nuclear model analysis of
 1073 excitation functions of proton induced reactions on ⁸⁶Sr, ⁸⁸Sr and ^{nat}Zr: evaluation
 1074 of production routes of ⁸⁶Y. Appl Radiat Isot 104:232-241
- 1075137.Baimukhanova A, Radchenko V, Kozempel J, Marinova A, Brown V, Karandashev1076V, Karaivanov D, Schaffer P, Filosofov D (2018) Utilization of (p,4n) reaction for1077 86 Zr- production with medium energy protons and development of a 86 Zr \rightarrow 86 Y1078radionuclide generator. J Radioanal Nucl Chem 316:191-199
- 1079 138. Lambrecht RM, Sajjad M, Qureshi MA, Alyanbawi SJ (1988) Production of ¹²⁴I. J
 1080 Radioanal Nucl Chem Articles 127:143-150
- 1081 139. Braghirolli AMS, Waissmann W, da Silva JB, dos Santos GR (2014) Production of
 1082 iodine-124 and its applications in nuclear medicine. Appl Radiat Isot 90:138-148
- 1083 140. Aslam MN, Sudár S, Hussain M, Malik AA, Shah HA, Qaim SM (2010) Evaluation
 1084 of excitation functions of proton and deuteron induced reactions on enriched
 1085 tellurium isotopes with special relevance to the production of iodine-124. Appl
 1086 Radiat Isot 68:1760-1773
- 1087 141. Aslam MN, Sudár S, Hussain M, Malik AA, Qaim SM (2011) Evaluation of
 1088 excitation functions of ³He- and alpha-particle induced reactions on antimony
 1089 isotopes with special reference to the production of iodine-124. Appl Radiat Isot
 1090 69:94-110
- 1091 142. Scholten B, Kovács Z, Tárkányi F, Qaim SM (1995) Excitation functions of
 1092 ¹²⁴Te(p,xn) ^{123,124}I reactions from 6 MeV to 31 MeV with special reference to the
 1093 production of ¹²⁴I at a small cyclotron. Appl Radiat Isot 46:255-259
- 1094 143. Hohn A, Nortier FM, Scholten B, van der Walt TN, Coenen HH, Qaim SM (2001)
 1095 Excitation functions of ¹²⁵Te(p,xn)-reactions from their respective thresholds up to
 1096 100 MeV with special reference to the production of ¹²⁴I. Appl Radiat Isot 55:1491097 156
- Michael H, Rosezin H, Apelt H, Blessing G, Knieper J, Qaim SM (1981) Some
 technical improvements in the production of ¹²³I via the ¹²⁴Te(p,2n)¹²³I reaction at
 a compact cyclotron. Int J Appl Radiat Isot 32:581-587


- 1101 145. Sheh Y, Koziorowski J, Balatoni J, Lom C, Dahl JR, Finn RD (2000) Low energy
 1102 cyclotron production and chemical separation of "no carrier added" iodine-124
 1103 from a reusable, enriched tellurium-124 dioxide/aluminum oxide solid solution
 1104 target. Radiochim Acta 88:169-173
- 1105 146. Qaim SM, Hohn A, Bastian T, El-Azoney KM, Blessing G, Spellerberg S, Scholten
 B, Coenen HH (2003) Some optimisation studies relevant to the production of high purity ¹²⁴I and ^{120g}I at a small-sized cyclotron. Appl Radiat Isot 58:69-78
- 1108 147. Glaser M, Mackay DB, Ranicar ASO, Waters SL, Brady F, Luthra SK (2004)
 1109 Improved targetry and production of iodine-124 for PET studies. Radiochim Acta
 1110 92:951-956
- 1111 148. Sajjad M, Bars E, Nabi HA (2006) Optimisation of ¹²⁴I production via ¹²⁴Te(p,n)¹²⁴I
 reaction. Appl Radiat Isot 64:965-970
- 1113 149. Nye JA, Avila-Rodriguez MA, Nickles RJ (2006) Production of [¹²⁴I]iodine on an
 1114 11 MeV cyclotron. Radiochim Acta 94:213-216
- 1115 150. Nagatsu K, Fukada M, Minegishi K, Suzuki H, Fukumura T, Yamazaki H, Suzuki
 1116 K (2011) Fully automated production of iodine-124 using a vertical beam. Appl
 1117 Radiat Isot 69:146-157
- 1118 151. Mandal S, Mandal A, Lahiri S (2012) Separation of nca ^{123,124,125,126}I from alpha
 1119 particle induced reactions on the natural antimony trioxide target. J Radioanal Nucl
 1120 Chem 292:579-584
- 1121152.Hassan KF, Spellerberg S, Scholten B, Saleh ZA, Qaim SM (2014) Development1122of an ion-exchange method for separation of radioiodine from tellurium and1123antimony and its application to the production of 124 I via the 121 Sb(α ,n)-process. J1124Radioanal Nucl Chem 302:689-694
- 1125 153. Uddin MS, Qaim SM, Hermanne A, Spahn I, Spellerberg S, Scholten B, Hossain
 1126 SM, Coenen HH (2015) Ion-exchange separation of radioiodine and its application
 1127 to production of ¹²⁴I by alpha particle induced reactions on antimony. Radiochim
 1128 Acta 103:587-593
- 1129 154. Manual for Reactor Produced Radionuclides (2003) IAEA-TECDOC-1340,
 1130 Vienna, 1-251

- 1131 155. Allen BJ, Blagojevic N (1996) Alpha- and beta-emitting radiolanthanides in
 1132 targeted cancer therapy: the potential role of terbium-149. Nucl Med Comm 17:401133 47
- 1134 156. Allen BJ, Goozee G, Sarkar S, Beyer G, Morel C, Byrne AP (2001) Production of
 1135 terbium-152 by heavy ion reactions and proton induced spallation. Appl Radiat Isot
 1136 54:53-58
- 1137 157. Sarkar S, Allen BJ, Iman S, Gouzee G, Leigh J, Meriaty H (1997) Production and
 1138 separation of terbium-149,152 for targeted cancer therapy. In: Second International
 1139 Conference on Isotopes, Sydney, 104
- 1140158.Müller C, Zhernosekov, K, Köster U, Johnston K, Dorrer H, Hohn A, van der Walt1141TN, Türler A, Schibli R (2012) A unique matched quadruplet of terbium1142radioisotopes for PET and SPECT and for α and β -radionuclide therapy: an in1143vivo proof-of-concept study with a new receptor-targeted folate derivative. J Nucl1144Med 53: 1951-1959
- 1145 159. Müller C, Vermeulen C, Johnston K, Köster U, Schmid R, Türler A, van der
 1146 Meulen NP (2016) Preclinical in vivo application of ¹⁵²Tb-DOTANOC: a
 1147 radiolanthanide for PET imaging. Eur J Nucl Med Mol Imag Res 6:35-45
- 1148 160. Baum RP, Singh A, Benesova M, Vermeulen C, Gnesin S, Köster U, Johnston K,
 1149 Müller D, Senftleben S, Kulkarni HR, Türler A, Schibli R, Prior JO, van der Meulen
 1150 NP, Müller C (2017) Clinical evaluation of the radiolanthanide terbium-152: first1151 in-human PET/CT with Tb-152-DOTATOC. Dalton Transactions 46:14638-14646
- 1152 161. Vermeulen C, Steyn GF, Szelecsényi F, Kovács Z, Suzuki K, Nagatsu K, Fukumura
 1153 T, Hohn A, van der Walt TN (2012) Cross sections of proton-induced reactions on
 1154 nat Gd with special emphasis on the production possibilities of ¹⁵²Tb and ¹⁵⁵Tb. Nucl
 1155 Instrum Methods B 275:24-32
- Steyn GF, Vermeulen C, Szelecsenyi F, Kovacs Z, Hohn A, van der Meulen NP,
 Schibli R, van der Walt TN (2014) Cross sections of proton-induced reactions on
 ¹⁵²Gd, ¹⁵⁵Gd and ¹⁵⁹Tb with emphasis on the production of selected Tb
 radionuclides. Nucl Instrum Methods B 319:128-140


1160	163.	Tárkányi F, Takács S, Ditrói F, Csikai J, Hermanne A, Ignatyuk AV (2014)
1161		Activation cross-sections of deuteron induced reactions on ^{nat} Gd up to 50 MeV.
1162		Appl Radiat Isot 83:25-35
1163	164.	Tárkányi F, Ditrói F, Takács S, Hermanne A, Ignatyuk AV (2015) Extension of the
1164		energy range of the experimental activation cross sections data of longer lived
1165		products of proton induced nuclear reactions on dysprosium up to 65 MeV. Appl
1166		Radiat Isot 98:87-95
1167	165.	Güray, RT, Özkan N, Yalcin C, Rauscher T, Gyürky G, Farkas J, Fülöp Z, Halász
1168		Z, Somorjai E (2015) Measurements of $^{152}Gd(p,\gamma)$ ^{153}Tb and $^{152}Gd(p,n)$ ^{152}Tb
1169		reaction cross sections for the astrophysical γ process. Phys Rev C 91:055809
1170	166.	Kovács Z, Szelecsényi F, Brezovcsik K (2016) Preparation of thin gadolinium
1171		samples via electrodeposition for excitation function studies. J Radioanal Nucl
1172		Chem 307:1861-1864
1173	167.	Brezovcsik K, Kovács Z, Szelecsényi F (2018) Separation of radioactive terbium
1174		from massive Gd targets for medical use. J Radioanal Nucl Chem 316:775-780
1175	168.	Kazakov AG, Aliev RA, Bodrov AY, Priselkova AB, Kalmykov SN (2018)
1176		Separation of radioisotopes of terbium from a europium target irradiated with 27
1177		MeV α-particles. Radiochim Acta 106:135-140
1178	169.	Lahiri S, Nayak D, Das SK, Ramaswami A, Manohor SB, Das NR (1999)
1179		Separation of carrier free ^{152,153} Dy and ¹⁵¹⁻¹⁵³ Tb from ¹⁶ O irradiated CeO ₂ by liquid-
1180		liquid extraction. J Radioanal Nucl Chem 241:201-206
1181	170.	Nayak D, Lahiri S, Ramaswami A, Manohar SB, Das NR (1999) Separation of
1182		carrier free ^{151,152} Tb produced in ¹⁶ O irradiated lanthanum oxide matrix. Appl
1183		Radiat Isot 58:631-636
1184	171.	Beyer GJ, Comor JJ, Dakovic M, Soloviev D, Tamburella C, Hagebo E, Allen B,
1185		Dmitriev SN, Zaitseva NG, Starodub GY, Molokanova LG, Vranjes S, Miederer M
1186		(2002) Production routes of the alpha emitting ¹⁴⁹ Tb for medical application.
1187		Radiochim Acta 90:247-252
1188	172.	Beyer GJ, Miederer M, Vranjes-Duric S, Comor JJ, Künzi G, Hartley O,
1189		Senekowitsch-Schmidtke R, Soloviev D, Buchegger F (2004) Targeted alpha

- therapy in vivo: direct evidence for single cancer cell killing using ¹⁴⁹Tb-rituximab.
 Eur J Nucl Med Biol Imaging 31:547-554
- 1192173.Lehenberger S, Barkhausen C, Cohrs S, Fischer E, Grünberg J, Hohn A, Köster U,1193Schibli R, Türler A, Zhernosekov K (2011) The low-energy β^- and electron emitter1194 161 Tb as an alternative to 177 Lu for targeted radionuclide therapy. Nucl Med Biol119538:917-924
- 1196 174. Müller C, van der Meulen NP, Benesova M, Schibli R (2017) Therapeutic 1197 radiometals beyond ¹⁷⁷Lu and ⁹⁰Y: production and application of promising alpha-1198 particle, β^{-} -particle, and Auger electron emitters. J Nucl Med 58:91S-96S
- 1199175.Champion C, Quinto MA, Morgat C, Zanotti-Fregonara P, Hindié E (2016)1200Comparison between three promising β^- -emitting radionuclides, 67 Cu, 47 Sc and1201 161 Tb, with emphasis on doses delivered to minimal residual disease. Theranostics12026:1611-1618
- 1203 176. Jennewein M, Qaim SM, Kulkarni PV, Mason RP, Hermanne A, Rösch F (2005)
 1204 A no-carrier-added ⁷²Se/⁷²As radionuclide generator based on solid phase
 1205 extraction. Radiochim Acta 93:579-583
- 1206 177. Ballard B, Wycoff D, Birnbaum ER, John KD, Lenz JW, Jurisson SS, Cutler CS,
 1207 Nortier FM, Taylor WA, Fassbender ME (2012) Selenium-72 formation via
 1208 natBr(p,x) induced by 100 MeV protons: steps towards a novel ⁷²Se/⁷²As generator
 1209 system. Appl Radiat Isot 70:595-601
- 1210 178. Oláh Z, Szücs Z, Varga Z, Dóczi R (2015) Development of ⁷⁷Ge/⁷⁷As parent1211 daughter system for periodic removal of ⁷⁷As for environmental sanitation and
 1212 biochemical purposes. Appl Radiat Isot 122:111-115
- 1213


Figures

1216Fig. 1Thick target yields of ${}^{44g}Sc$ calculated from the excitation functions of1217 ${}^{44}Ca(p,n){}^{44g}Sc, {}^{44}Ca(d,2n){}^{44g}Sc$ and ${}^{41}K(\alpha,n){}^{44g}Sc$ reactions reported in refs. [25,121826, 28, 30-32]. The values are shown as curves as a function of the particle1219energy.

1222Fig 2. Calculated integral yields of radionuclides of Sr formed in the interaction of 85 Rb1223with protons of increasing energies. The optimum energy range for the production1224of 83 Sr is $E_p = 37 \rightarrow 30$ MeV (after Kastleiner et al. [131]).

1227Fig 3. Excitation function of the 155Gd(p,4n)152Tb reaction and the calculated integral1228yield of 152Tb assuming a 100 % enrichment of the target (adapted from Steyn et1229al. [162]).