
New DFM Approach Abstracts AltPSM Lithography Requirements  
for sub-100nm IC Design Domains 

 
Pradiptya Ghosh, Chung-shin Kang, Michael Sanie and David Pinto 
Numerical Technologies, 70 West Plumeria Dr., San Jose, CA 95134 

 
Abstract 

Since the semiconductor industry hit the 0.18-micron 
generation, device feature sizes have become increasingly 
smaller than the wavelength of light used by available 
optical-lithography equipment. In this subwavelength 
arena, manufacturing requirements must be handled up 
front in the IC design stage—while changes can still be 
made—to enhance quality and yield. This paper defines 
the components needed to get clean alternating phase-
shifting masks (altPSM) that ensure the manufacturability 
of subwavelength circuit designs. The authors present a 
new design for manufacturability (DFM) approach, 
creating an abstract set of rules that can be used to 
advantage in various IC CAD tool domains, especially for 
100nm and below design rules. A new methodology and 
algorithm are presented that can quickly and easily 
integrate altPSM into existing and future tools earlier in 
the IC design flow. Finally, experimental results show 
how the methodology and algorithm is used to debug 
process-aware designs and make them altPSM-compliant. 
 
 
1. Introduction 
 

The shift to the subwavelength realm [1] has impacted 
semiconductor manufacturing and physical design at all 
levels, prompting both sides to explore DFM solutions 
that improve quality, predictability and yield. In 
subwavelength manufacturing, optical distortions and 
other process (etch, resist) effects deform the patterns, 
which are described in the design (GDSII) and printed 
onto a photomask. Line-width variations and other 
distortions significantly decrease IC performance. In the 
worst case, they could cause missing, incomplete or 
shorted structures that result in hard failure. 

 A 10% margin for proximity errors is now 
unacceptable, driving the need for post-GDSII design 
corrections. Optical Proximity Correction (OPC) and 
attenuated PSM help correct subwavelength distortions 
for control of critical dimensions (CD), and have become 
an integral part of the lithography process [2]. With 
advances in the process node, these traditional methods 
may soon reach their limit. For example, at the 90- and 
65-nm nodes the minimum gate lengths will be 50nm and 
35nm, and the poly-interconnect line widths will be 90nm 
and 65nm, respectively [1]. This will force manufacturers 
to utilize other more enabling approaches such as 
alternating phase-shift masks (altPSM). 

In 1982, Levenson et al [3] proposed the concept of 
using the phase information of light to improve 
lithographic patterning properties. AltPSM is based on 
these principles, wherein destructive optical interference 
helps improve depth of focus and resolution in 
lithography. The technique involves etching selected 
areas of regular chrome-on-glass masks to selectively 
change the phase of light used to expose IC features on a 
silicon wafer.  

Advanced ICs are now produced at 0.1-micron design 
rules, with transistor gate sizes of 70nm or just one-third 
of the actinic wavelength. Combined with OPC 
techniques, altPSM has presented the most effective 
solution to date for these process generations. Possibly its 
most important benefit is the improved statistical process 
control of the CD, which results from both the large 
depth-of-focus and the favorably low values (~0.5) of 
mask-error-enhancement-factor (MEEF), as has been 
experimentally demonstrated through pitch and even at 
defocus [4].  

This paper focuses on altPSM, proposing a simplified 
view that will help designers to know whether their 
designs are altPSM-compliant. Furthermore, experimental 
results show that it is easy to implement altPSM-
compliant IC CAD tools by making incremental changes 
in terms of the methodology and algorithms used in the 
design flow. 

 
2. Need for a DFM approach 
 

The subject of using OPC and altPSM has been 
covered in detail in the survey paper [5]. Most of the prior 
focus was centered on post-processing modifications, 
which works with minor geometric corrections like OPC. 
With altPSM, the phase-shifter geometry and topology 
must be planned earlier in the design phase. 

Many examples indicate that subwavelength re-
quirements must be handled earlier in the design process. 
One example is the phase conflict—an area where 
locations that are reserved for phase-shifters of opposite 
phase overlap, resulting in a misprinted feature. Resolving 
a phase conflict is a full-chip challenge, since addressing 
a phase conflict in one corner of the design might force 
conflicts elsewhere. Resolving conflicts requires making 
adjustments to design spacing and topology. These 
adjustments should be made during physical design—not 
during post-tapeout processing. Previous research has 
proposed doing this in the library flow [6]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0-7695-1881-8/03 $17.00  2003 IEEE 



The DFM solution proposed in this paper defines the 
problem abstractly and applies specific rules and 
algorithms to various domains of IC development, such as 
verification and P&R. As indicated in earlier studies, the 
first step is to identify and correct only those geometries 
that can be made altPSM-compliant [7]. Checking 
whether the shifter can be added to the geometry using 
only two phases has also been studied [8].  

Section 3 defines the concepts around altPSM and 
related terminologies. Section 4 formally discusses the 
problem. Section 5 outlines the methodology, the rules 
and algorithms. Section 6 presents studies on full chips 
and blocks with experimental results. 
 
3. AltPSM terms and constraints 
 

The altPSM technology proposed by Pati and Wang 
[9] enables clear regions of a mask to transmit light with a 
prescribed phase shift. Light entering the two transparent 
regions and the diffracted light cancel each other as they 
are out of phase (figure 1), improving image contrast. 

 These open regions are called shifters. One of the 
shifters has the same phase of light as other openings in 
the mask and is called 0 phase shifter. The other opening 
(around a geometry) has a phase shift of 180 degrees and 
is called 180 phase shifter. Any geometry that can benefit 
from an altPSM approach is called a critical polygon in 
this paper.  

Figure 1: Alternating phase shifting mask. 
  
Two positive constants (b < B) define a simplified 

relationship between printability and the distance between 
two clear regions (or between shifters) [5]. Now any two 
shifters that are separated by a distance less than B will 
share the same phase.  

If phase assignment leads to a critical polygon having 
the same phase shifters on either side, then the two 
shifters are said to be in phase conflict. 

Another factor to consider is the phase-assignment 
constraint (figure 2), whereby all shifters of a given layout 
that are conflicting are assigned the opposite phase.  

The manufacturing process introduces further 
constraints. Thus, a design that does not meet the phase-
assignment constraint cannot use altPSM technology. But 
the converse is not necessarily true, in that a design that 
does meet the phase-assignment constraints may also be 
unsuitable for altPSM technology.  

This paper discusses the additional conditions that 
must be met for a design to qualify for the benefits of the 
altPSM approach. 

 
Figure 2: Phase-assignment constraint. 
 
Another important term used is the endcap. It is 

located at the end of a polygon abutted to or along the 
critical polygon. Depending on the application type used 
(detailed in the following sections), it may appear in the 
form of a polygon or just an edge. It inherits all the 
placement rules from critical polygon and is treated as the 
extension of a critical polygon. 

Finally, we call the rest of the polygon (excluding the 
critical and endcap polygon area) a field polygon. It is 
important to understand that both endcap and field 
polygons are non-critical polygons (i.e., they do not need 
altPSM). The main purpose of having two different types 
of non-critical features is to apply different rules to them, 
therefore improving CD control and/or preventing line-
end shortening (endcap). Non-critical polygons also 
signify change in phases for a critical polygon and we 
often refer to them as the exit of a critical polygon. If we 
add shifters to the endcap or field polygons, we call them 
endcap shifters or field shifters respectively.  
 

 
Figure 3: Full-feature altPSM. 

 
When altPSM is applied to the entire polygon of a 

layer, it is called full-feature altPSM (figure 3). In other 
words, all geometries in that layer are considered critical. 
Moreover, it requires very complicated methods when 
selecting critical and non-critical polygons.  

 

                             b1                              b1 > B 
 
 
 
 
 
                              b2                                  b2 < B 

 
 
 
 
             180 phase             0 phase 
                      critical polygon (chrome)     chrome

diffusion                                   180 phase shifter
                                                  poly 
 
 
 
 
                                                                             
 
                                                   0 phase shifter 
                                                                             



4. Problem definition 
 

A design’s compliance with altPSM technology can be 
divided into three main categories. The first check is to 
see if there is any critical polygon that--in isolation--
cannot be made using altPSM. This is resolved in the 
research paper [7]. Next step is to check if the geometries 
are laid out in such a way that manufacturable shifters can 
be applied. This process helps to detect and remove any 
manufacturability and colorability problems that are local 
between edges and are directly in line of sight with each 
other. Finally we need to verify that the shifter created 
does not create any global colorability problems. Other 
papers have solved this problem [8] [10]. 
 
4.1. Manufacturability and local inter-geometry 
colorability problem 
 

From an altPSM manufacturability perspective, there 
are three types of broad errors. They are shifter error, 
margin error, and endcap error. The inter-geometry 
colorability problem is a subset of the global colorability 
problem. It can be detected locally, which is easier than 
detecting the global colorability problem. 

Shifter error: This error happens either between 
critical polygons or between critical and non-critical 
polygons (figure 4). This is a fatal spacing problem, since 
it states that within the given technology there is no way 
to insert shifters without violating the manufacturing 
spacing and size requirements.  

Figure 4: Shifter errors. 
 

Endcap error: This kind of error occurs at line ends 
(endcap edge away from critical polygon) where a 
polygon is very close to an endcap (figure 5). This is 
important to consider when checking the quality of the 
critical polygon close to the line ends, but is not as crucial 
as shifter errors. 

Margin error: Endcap and field shifters are often 
added to improve CD control near the junction of critical 
and non-critical features. Endcap shifters can also prevent 
line-end shortening. They may be reduced or dropped 
entirely if they cause manufacturing problems. These 
spacing violations are called margin errors (figure 6). 

 
Figure 5: Endcap errors. 

 

Figure 6: Margin errors. 
 
4.2. Local inter-geometry edge color problem 

 
These are coloring problems that occur in a space 

surrounded by edges. A good example is the inverse T 
(figure 7). Unlike the global coloring problem, it is local 
to a space and can be detected by simple DRC rules. 

 

 
Figure 7: Local inter-geometry edge color 

problem. 
 
5. Proposed solution and methodology 
 

We propose a set of checks that can be applied to a 
given design layout or used as constraints for layout 
creation. If a design passes, it qualifies as altPSM-
compliant.  

The methodology is to detect each of the geometries 
independently (single geometry colorability problem). We 
propose that each one is qualified or changed such that 
each one meets the phase-assignment constraint 
individually and is also manufacturable [7]. Next, we look 
at all the spaces between the polygons in the design to 
make sure they can satisfy both manufacturing and 
process constraints. Finally, we look at the entire 
geometry and try to solve the potential shifter phase-
assignment problem [4]. 
 

0 phase shifter       shifter error 
                                                 non-critical  
                                                 polygon    
                                                           180 phase 
                                                            shifter 
 
                                                               critical 
                                                               polygon 

keepout 
 
 
 
                                   endcap errors 

critical polygon                              non-critical 
                                                          Polygon 
 
                                                 margin error 
                                                  margin shifter 

180 phase shifters                      critical polygon
 
 
 
 
 
                                                               0 phase 
local color problem                               shifter

180 phase shifters                      critical polygon
 
 
 
 
 
                                                               0 phase 
local color problem                               shifter



5.1. Manufacturability and local inter-geometry 
colorability solution 
 

These problems can be converted into edge-spacing 
problems. The trick is to have the right set of edge types 
and then come up with the correct spacing requirements 
between the various edges. Section 5.2 discusses the 
various classes of edges while Section 5.4 classifies the 
various checks. Section 5.5 shows how each check maps 
into the various problems. Section 5.6 provides the 
algorithm used to apply the checks. 
 
5.2. Edges classification 

 
Figure 8 depicts the various classes of edges described 

in the following sections. 

Figure 8: Edge classification. 
 
endEdge: This is the edge of the endcap that is 

opposite to the edge abutting the critical polygon.  
shifterEdge: This is the edge of the critical polygon 

where the shifter will be placed.  
mainMarginEdge: This is the extension of the shifter 

edge. It may abut to a field or endcap polygon, in which 
case the shifter placed is called field or endcap main 
margin shifter respectively. It shares the same placement 
parameter—shifter width—as that of the main shifters. 

endMarginEdge: This is the extension of the 
mainMarginEdge away from shifterEdge. These shifters 
are called endcap or field shifters. Unlike margin shifters, 
they have their own endcap or field shifter widths. 

 
5.3. Region definition 
 

Figure 9 shows the two “keep outs” that we care about. 
Based on these two clearance requirements, along with 
the minimum shifter width and endcap shifter width for a 
given process technology, we break the endEdge region 
into four regions as listed below: 

LineEndRegion: This is the region directly above the 
endcap. 

EndcapShifterRegion: This is the region around the 
endEdge where an endcap shifter would extend. 

 
 

 
Figure 9: Various regions. 

 
MainShifterRegion: This is the region around the 

endEdge where a minimum width shifter would extend 
beyond the endcapShifterRegion. 

LineEndKeepOutRegion: This is the region around the 
endEdge (not endEdge) where no other shifter should be 
created. 

 
5.4. Checks classification 

 
Endcap to endcap checks: These are checks between 

the two endcaps. Different manufacturers specify special 
clearance requirements at the endcaps. There are four 
line-end to line-end checks. They are all separation 
checks, as specified in figure 10. 

Check11. Detects distortion to both the line ends due 
to proximity. 

Check12. Detects distortion in the other line end due to 
the endcap shifter from the original line end. 

Check13. Detects distortion in the other line end due to 
the shifter from the original line end. 

Check14. Mask manufacturer or the fabrication 
process could specify this clearance region. 

Endcap to shifter edge checks: These checks help to 
avoid line-end distortion due to soft coloring error 
(interference due shifters created for other critical 
polygon). There are four checks possible (figure 11). 

Check31. Detects distortion in the line end due to 
another non associated shifter. 

Check32. Detects mask manufacturing problems due 
to minimum space violation between unbalanced shifter 
and endcap shifter. 

Check33. Detects problem as check32 but between 
main shifter and unbalanced shifters. 

Check34. Detects unbalanced shifters that distort 
geometry. 

Line-end to non-critical polygon checks: These are 
checks to detect if there is a non-critical polygon near an 
endcap. Although a typical non-critical polygon is wider 
than a critical polygon, it may get distorted due to its 
proximity with the shifters around the critical polygon. 
Figure 12 proposes two checks to detect this. 

shifter 
edge                                              end edge 
 
                                                         
                       
 
main margin                       endcap margin edge
edge 

                                           Endcap shifter 
                                                  
                                                MainShifterRegion 
 
                                               EndcapShifterRegion 
 
                                                LineEndRegion 
 
                                            End-edge 
 
                                              LineEndKeepOutRegion 



Check21. Detects deformation of non-critical polygons 
due to endcap shifters. 

Check22. Detects deformation of non-critical polygons 
due to main shifter. 

  
Figure 10: Endcap to endcap checks. 
 

 
Figure 11: Endcap to shifter edge checks.  

 

 
Figure12: Line end to non-critical polygon check.  

Shifter edge checks: These two checks try to detect if 
any manufacturing violations may result when shifters are 
put on these edges.  

 
Check41. This checks whether there is any shifter edge 

along the given shifter edge within the check41 separation 
(figure 13). A violation of this check means the space 
between the two shifter edges is too narrow to add another 
shifter and could lead to mask manufacturing problems. 

Check51. This checks whether any non-critical 
polygon (figure 13) is too close to the shifterEdge.  

 

Figure 13: Shifter edge checks. 
 
Margin area checks: The margin area as mentioned 

earlier is the region around the endEdge where shifters 
(both margin and endcap types) are added to avoid the 
distortion of the endEdge. We recommend two checks 
(figure 14) that try to detect any distortion to the non-
critical geometries due to margin shifters. They also 
check to see whether there is enough space to insert the 
margin shifters. 

 

 
Figure 14: Margin area checks. 

 
Check71. This tries to detect if there is any non-critical 

polygon within the check71 separation along the 
mainMarginEdge. 

Check72. This tries to detect if there is a non-critical 
polygon within the check72 separation along the 
endMarginEdge.  

 
5.5. Mapping checks to problems  
 

Table 1 shows how each check maps to different 
problems. Each check has a primary dominant problem 
that causes it, and other secondary side effects. 

 
 

mainShifterRegion                                      check33  
                                                                    check32      
endcapShifterRegion                                         
              
 
 
lineEndRegion 
 
       check31  
 
lineEndKeepOutRegion                   check34 

mainShifterRegion                    check22 separation     
 
 
 
                                                Non-critical polygon 
                                                 check21  separation 
 endcapShifterRegion 
                                                         lineEndRegion 
                                                

non-critical                                          critical polygon 
   polygon                                                         Check41
     Check51  
                                                                    shifter edge

LineEndRegion 
                                                    Check72 separation
                                                    Check71 separation
 
 
                         mainMarginEdge 
                      endMarginEdge 

          Check13 
                        
 mainShifterRegion 
                                                                           Check12 
endcapShifterRegion                                         
 
 
 
 
 
                                             Check11 
lineEndRegion     
 
 
lineEndKeepOutRegion 
 
Check14 



Table 1: Mapping between error types and the 
cause of the problems (S/E=side-effect). 

 
Er-
ror 
type 

Endcap 
Errors 

Shifter 
Errors 

Margin 
errors 

Local 
coloring 
errors 

1.1 Dominant    

1.2   S/E Dominant 

1.3   S/E Dominant 

1.4 Dominant    

2.1   Dominant  

2.2   Dominant  

3.1 Dominant S/E   

3.2 S/E S/E S/E Dominant 

3.3 S/E S/E S/E Dominant 

3.4 Dominant S/E   

4.1  Dominant   

5.1  Dominant   

7.1  S/E Dominant  

7.2  S/E Dominant  

 
5.6. Algorithm 
 

We recommend a simple algorithm for detecting the 
various error types. It is similar to those used to check 
design-rule violations.  

 
begin
/* Get the checkboxes to be used for

detecting various errors */
myCheckBoxCt = NTIPSgetCheckBoxes(true,
checkBox);
/*For each of the checks apply it on the

edgeToApply type of edges. This edge being
searched is edgeToSearch */

foreach myCheckBox in checkBox
do
begin
/* Get the edges of the type

edgeToApply*/
for myEdges of type myCheckBox->
edgeToApply;
do
case(myCheckBox->checkType)
edgeCheck : do

myNewEdge is myEdge
offEdgeCheck: do

create myNewEdge that is offset by
myCheckBox->parallelOffset and spans
myCheckBox->parallelSpan on both ends of
the myEdge.
overEdgeCheck: do

create myNewEdge that spans myCheckBox->
parallelSpan beyond the two ends of myEdge.

case end
/* create the search box at an offset of

perpendicularOffset and
extends perpendicularSpan */
error = separation check to find

myCheckBox->edgeToSearch within

myCheckBox-> perpendicularSpan but
greater than

myCheckBox-> perpendicularOffset on
myNewEdges

finalError[myCheckBox->type] = error
end //for loop

end
 

Figure 15: Algorithm applying the various errors 
to detect manufacturability and DRC problems. 

 
In the algorithm (figure 15), the check box has six 

basic parameters: 
1. Edge to apply the check box (edgeToApply) 
2. Edge to search in the check box (edgeToSearch) 
3. Offset in the direction of the edgeToApply 

beyond the edgeToApply (parallelOffset) 
4. Offset perpendicular to edgeToApply 

(perpendicularOffset) 
5. The distance over which the check spans 

(parallelSpan) 
6. The separation check itself (perpendicularSpan) 
 
These check boxes are created based on the technology 

parameters used and correspond to the checks in Section 
5.4. The algorithm is the driver program that uses these 
checks to apply them on a given layout.  

In the case of an IC CAD P&R tool like a router for 
example (where the driver engine is a creation engine), 
each of the checkboxes would be converted into 
constraints. Thus in this situation, instead of simply 
detecting final errors, the driver engine would prevent 
these errors. 
 
6. Experimental setup and results 
 

We performed verification on real designs targeted at 
the 0.13- and 0.18-micron process nodes with 248DUV. 
We ran two test cases for full-feature altPSM. Our aim 
was to detect if there were any potential PSM design 
errors using psmLint, and to qualify them using 
Cadence’s Assura PSM tool. We were also interested in 
other benefits like performance gain or in terms of 
helping users to quickly resolve the PSM design errors. 
 
6.1. Setup 

 
We used Numerical Technologies’ PSM technology for 

design placement and phase assignment. We used the 
Assura environment (versions 2.0 and 3.0) as the 
geometry engine for the edge detection as well as for 
applying the checks to designs and creating error markers 
accordingly. We implemented the checks based on 
Numerical’s process technology in C++. The algorithm 
was in SKILL (Assura extended language). For the global 
colorability check, we placed coarse shifters in the Assura 
environment and the graph color conflict detection was 



done using Numerical’s PSM engine (iN-PhaseTM). Runs 
were made on a single-processor Solaris7 Sun Ultra-4. 
 
6.2. Results 
 

For performance gain/PSM design error comparison, 
all these test cases were run through Assura PSM 
normally. We then ran the same tests through the psmLint 
flow and tweaked some of the technology parameters 
(within the process limits).  

We also ran psmLint and Assura PSM and compared 
the PSM design errors found. Next, we estimated the 
runtimes to process the design, both with and without 
psmLint. One component that we could not quantify was 
the time that users could save as a result of sub-typing or 
categorization of errors. 

 We ran two test cases for full-feature altPSM (table 
2); the first a RAM block and the second a control block 
from a fab vendor at 0.18-micron technology. 

 
Table 2: Full-feature PSM results. 

 
Test case (process 
node; polygon) 

Memory and 
control block 
(180nm; 558K) 

Control block 
(180nm; 83K) 

Original PSM  
run time 12 minutes 20 minutes 

Run time <80 sec <60 sec 
Initial 
errors 

~700 (~20 
basic types) 

369 (~10 basic 
types) 

Final 
errors 

512 (1 basic 
type) 5 (1 basic type) 

psm-
Lint 
run 
result 

Iterations 2 3 
Run time 6 min 25 sec. 512 min 8 sec. Final 

PSM 
run 

Final 
errors 

512 (1 basic 
type) 5 (1 basic type) 

Without 
psmLint 

16+ min (2* 12 
min) 

60+ min (3 * 
20 min) Flow 

run-
time With 

psmLint 
<9min (2 * 80 
sec + 6.5min) 

~23 min (3* 
60sec +20min) 

 
7. Conclusion 

 
We found that all the PSM design errors found by the 

Assura PSM design run were detected by the psmLint run. 
We observed that the Assura-psmLint run was 
considerably faster. By using the cause-effect information 
we could find a compatible technology or change the 
design quickly (based on the error markers) for several 
design styles and intents.  

We also discovered that Assura PSM ran significantly 
faster when using a compatible technology. Hence, by 
using psmLint, a process engineer could quickly match 
the manufacturing technology parameters to a specific 

design style. Conversely, a designer can easily qualify a 
design for a given technology node. 
 
8. Future work 
 

Existing and next-generation CAD tools can 
incorporate these checks as part of the constraints in 
placement and routing to help designers create altPSM-
compliant layouts that are manufacturable in the first 
pass. These rules are also important in that they allow 
floorplanning of regions that are targeted for different 
technologies.  

Layout engineers could also use this work to 
understand the impact of process information earlier in 
the design domain. Thus, further enhancements to the 
layout editor and all other physical design tools using 
these rules could help communicate more information and 
improve design for manufacturability. Our work currently 
targets four broad categories of problems. We will further 
refine and expand on this work to include newer altPSM 
application approaches [10].  
 
 
References 
 
1. Semiconductor Industry Association, ITRS 1999 edition, 
Austin, TX: International SEMATECH, 1999. 
2. C.H. Park, Y.H. Kim, H.J. Lee, J.T. Kong, S.H. Lee, A 
practical approach to control full chip level gate CD in DUV 
lithography, SPIE vol. 3334,1998. 
3. M.D. Levenson, N.S. Vishwanathan, R.A, Simpson, 
Improving resolution in photolithography with phase shift 
masking, IEEE Trans. on Electron Devices, 29(11),1982,1828-
1836. 
4. G. Vandenberghe, F. Driessen, Paul van Adrichem, K. Ronse, 
J.Li and L. Karklin; Performance Optimization of the Double 
Exposure Alternating PSM for sub-100nm ICs, SPIE 2001 
Proceedings, Vol. 4564. 
5. A.B. Kahng, Y.C. Pati, Subwavelength Optical Lithography: 
Challenges and Impact on Physical Design, Proc. ACM Intn. 
Symposium on Physical Design, April 1999, pp 112-119. 
6. M. Sanie, M. Cote, P. Hurat, V. Malhotra, Practical 
Application of Full-Feature Alternating Phase-Shifting 
Technology for a Phase-Aware Standard Cell Design Flow, 
Design Automation Conference 2001. 
7. L. Liebmann, J.Lund, F. Heng, I. Gruar, Enabling Alternating 
Phase Shift Mask Design for a full Logic Gate Level: Design 
Rules and Design Rule Checking, Design Automation 
Conference 2001. 
8. P. Berman, A.B. Kahng, D. Vidhani, H. Wang, A. 
Zelikovsky, Optical Phase Conflict Removal for Layout of Dark 
Field Alternating Phase Shift Masks, Proc. ACM International 
Symp. on Physical Design, April 1999, pp 121-126. 
9 Y.T. Wang, Y.C. Pati, Phase Shifting Circuit Manufacture 
Method and Apparatus, U.S.Patent 5,858,580, 1999. 
10. C. Pierrat, M. Cote, K. Patterson, New Alternating Phase-
Shifting Mask Conversion Methodology Using Phase Conflict 
Resolution, SPIE 2002, Vol.4691. 


