
 

 

NEW DICTIONARY AND FAST ATOM SEARCHING METHOD FOR MATCHING 
PURSUIT REPRESENTATION OF DISPLACED FRAME DIFFERENCE 

 
Fulvio Moschetti1, Lorenzo Granai1, Pierre Vandergheynst1, Pascal Frossard2 

 
1 ITS Institute of Signal Processing EPFL, CH 1015 Lausanne Switzerland 

2 IBM TJ Watson Research Center PO Box 219, Hawthorne, NY 10598, USA 
 

ABSTRACT 
 
Matching Pursuit decomposes a signal into a linear 
expansion of functions selected from a redundant 
dictionary, isolating the signal structures that are coherent 
with respect to a given dictionary. In this paper we focus 
on the Matching Pursuit representation of the displaced 
frame difference (dfd). In  particular, we introduce a new 
dictionary for Matching Pursuit that efficiently exploits the 
signal structures of the dfd. We also propose a fast 
strategy to find the atoms exploiting the max of the 
absolute value of the error in the motion predicted image 
and the convergence of the MSE with the rotation of the 
atoms.   
Results show that the fast strategy is quite robust when 
compared to exhaustive search techniques and it improves 
the results of a suboptimal search strategy based on a 
genetic algorithm. 

 

1. INTRODUCTION 
 
High compression ratios in video coding are achieved by 
adopting hybrid systems that combine two stages. In the 
first stage motion estimation and compensation predict 
each frame from the neighboring frames. At the second 
stage the prediction error is coded. Current video 
compression standards use block based DCT to code the 
residual error. In [1, 2] authors have shown that improved 
coding efficiency can be achieved by replacing the DCT 
with an overcomplete transform. Non orthogonal 
transforms represent indeed a valid alternative to 
orthogonal transforms like DCT or wavelet based scheme 
especially at low bit-rates, where most of the signal energy 
can be captured by only few elements. Matching Pursuit 
(MP) algorithms iteratively decompose a signal in its most 
important features using a set of atoms chosen among a 
redundant dictionary of basis functions. Particular 
attention has to be dedicated to the dictionary design since 
it impacts the coding performance.  
In this paper we present a new dictionary that efficiently 
captures the contour and edges of dfd images. It improves 

the performance of a previously introduced dictionary [3], 
based on oriented and anisotropically refined atoms, 
whose quality performance already overwhelmed the 
commonly used two dimensional separable Gabor 
function. 
The main limitation in the adoption of a redundant 
dictionary remains the encoding complexity. For this 
reason we propose a fast and efficient method for atom 
selection. This method has been compared to another sub-
optimal approach based on a genetic algorithm and to a 
full search based approach. 
 

2. MATCHING PURSUIT  
 
A detailed explanation of the theory of the Matching 
Pursuit can be found in Mallat et Zhang [4]. Here we just 
recall the basics of the iterative process used for the 
selection of the waveforms that represent the signal 
structures.  
Let Γ∈= γγ }{  gD  be a dictionary of unitary norm vectors 

γg called atoms and Γ  represent the set of possible 
indexes. The function f  is first decomposed as follows: 
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where Rf is the residual component after having 
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0γg such that the 
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such a procedure, after N iterations we obtain: 
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where fRn  is the residual at the nth step and ffR =0 . 
As in (2) we can write  
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This equation expresses the energy conservation. 
The convergence of MP depends on both the dictionary 
and the (sub)optimal search strategy. In [4] it has been 
shown that there are two real numbers ] ]1,0 , ∈βα  such that 
for all 0≥m the following relation is valid: 

( ) fRfR mm ⋅−≤+ 2/1221 1 βα .                              (5) 

α is an optimality factor related to the strategy adopted to 
determine the best atom in the dictionary, while β strictly 
depends on the dictionary representing its ability to 
capture the feature of the input function f [5]. 
This dictionary is built acting on a generating function of 
unit L2 norm by means of a family of unitary operators Uγ: 

},{ Γ∈= γγUD ,                                                   (6) 

for a given set of indexes Γ . Basically this set contains 

three types of operations: translation d
r

, rotation θ and 
anisotropic scaling (c1,c2).  
A possible action of Uγ on the generating atom g is thus 
given by: 

gccAdUgU ),(),( 21θγ

r
=                                 
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whereU is an operator that acts on translation and rotation, 
while A is an anisotropic dilation operator. 
The system we implemented for the Matching Pursuit 
representation takes as input the difference between the 
original frame and the motion compensated one. Motion 
estimation-compensation is realized as full search block 
matching. Matching Pursuit decomposition is then applied 
on blocks SxS, with S=32. The decomposition is halted 
when MSE reaches a threshold value of 65, or when the 
number of atoms exceed 7 per block. 

 
3. NEW DICTIONARY 

 
In our case we are targeting a particular set of images, 
which are the by product of the motion compensation. 
They have a particular signal structure, characterized by 
edges.  To capture these features the proposed dictionary 
is composed of anisotropically refined atoms. Anisotropy 
increases the redundancy in the dictionary because of the 
introduction of an extra parameter to code, but as it has 
been shown in [3] this produces an overall increase in 
efficiency. In our experiments [6]we chose as generating 
function, the combination of a gaussian and a triangular 
function, that is 
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We have compared this dictionary with the one introduced 
in [3], that uses the combination of a gaussian and its 
second derivative, as expressed by : 
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A possible way to compare two dictionaries consists in 
considering the convergence speed of Matching Pursuit, 
that corresponds to its ability to extract the maximum 
signal energy in a few iterations. Namely, the decay rate of 
the residue represents the coding efficiency of the 
Matching Pursuit.  
From (5) we can see that the error decay rate involves two 
parameters α and β . Using an exhaustive searching 
strategy of the parameters of the atoms, α becomes not 
influential anymore (since equal to 1), so we can try to 
estimate β , which depends solely on the dictionary 
construction. In this case we have: 
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Eq. (10) sets an upper limit for β which can be estimated 

measuring the values
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We can also notice that the efficiency of the dictionary 
might change at each iteration, as a result of the changing 
nature of the residue in the iterative Matching Pursuit 
operation. For three different sequences (Stefan, Akiyo 
and Coastguard) of five images, we have measured the 
values of Tm at each iteration for all the blocks into which 
the image has been divided. We have estimated in this way 
the value of β . Results show an improvement for the 
dictionary obtained using g0 rather than g1 of about 4%, 
with values of β respectively 0.50 and 0.48. 
These results represent an upper bound in the decay of the 
residual images. In section 5 we will see that in the 
practical case the spread between the two dictionaries is 
more pronounced.  
 

4. NEW FAST CONVERGING ALGORITHM 
 
The direct application of the Matching Pursuit algorithm 
would require us to test each 2-D basis function at all 
possible integer-pixels locations in the image and compute 
all of the resulting inner products.  
In this section we introduce a fast atom selection algorithm 
that reduces the number of position searched and the 
number of angles evaluated. 
  
4.1. Coordinates selection 
In order to reduce this computationally demanding task, 
we make some assumptions about the residual image to be 
coded. We assume that the energy in the image is 
concentrated in the areas where the motion predicted 
model was inadequate. In particular, the points where the 
atoms have to be set are chosen by selecting the maximum 
value of the absolute difference in the motion residual 
frame. In the exhaustive search approach each dictionary 



 

 

structure is centered at each location in the block area and 
the inner product between the structure and the SxS region 
of image data is computed.  
Choosing directly the position where the atom has to be 
set, brings an improvement of a factor S2 in the number of 
times the inner product has to be computed. 
  
4.2. Angle selection  
Atoms are identified by position, scale factors and 
rotation. We propose an algorithm to reduce the 
operations needed to compute the exact rotation for the 
atom. The full search procedure tests every angle from the 
smallest to the largest, selecting the one whose projection 
has the highest value. Let’s remind that [ [πθ ,0∈ and we 

express it using an integer n such that 
128

πθ ⋅= n . 

The assumption we made is that the value of the scalar 
product between the residual image and the atom increases 
as soon as we are getting closer to the right angle, for most 
of the atoms. We propose a method based on a 
dichotomist search.  
First the algorithm tests four angles set at iδ, with i=[0..3] 
and δ=Π/4; these are called respectively A,B,C,D in Fig.1. 
Once found the best matching angle, then a dichotomist 
process starts which keeps on dividing by two the angle 
until we get to the unit angle γ=Π/128. At each step two 
comparisons are made and the rotation angle for which the 
best angle is found becomes the angle around which the 
new rotation angles are searched.  
Indicating with N=128 the possible angles to be searched, 
then the complexity Nr of the proposed search can be 
expressed as follows: 
Nr = 4 + 2log2 δ/ γ .    (11) 
The gain G in  terms of complexity of the proposed 
approach when compared to the full search is the 
following. 
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5.  EXPERIMENTAL RESULTS 
 
In our experiments we have used the two functions g0 and 
g1 and we have compared the different search strategies. 
FS is the Full Search; Max+FS is the algorithm that places 
the atom at the Max of the MAD of the dfd frame and uses 
a fullsearch for the 3 other parameters. GA is a genetic 
algorithm as described in [7]. Max+GA sets the atom 
adopting the same approach as the previous described 
method and uses a GA for the other parameters. Max+ang 
sets the atoms as the previous two methods and adopts the 
angle selection method described in subsection 4.2; the 
scale parameters are searched using an exhaustive 
approach. 
We have used these different search algorithms with the 
dictionary obtained from the generating functions g0 and 
g1. Results in table 1 have been obtained coding the 
sequence Stefan. We can see that the function g0 shows a 
better behavior than g1. Results are expressed in MSE and 
number of atoms needed to code the frame.  
The spread between the two dictionaries increases when 
sub-optimal search algorithms are used. Probably this is 
due to the fact that the peaky generating function g0 suits 
particularly well when the atom is set in the position where 
there is a peak in the residual.  
We can notice that the criterion of setting the atom in the 
Max of the absolute value introduces a 10% increase in 
MSE when compared to an exhaustive approach. 
On the contrary, the same criterion (Max+GA algorithm) 
introduces a 10% improvement in the MSE when 
compared to a complete GA algorithm. 
Results for the Max+ang. algorithm show that the idea that 
the MSE converges as soon as the atom gets closer to the 
right orientation is quite correct. In fact the drop in MSE, 
when compared to the Max+FS approach is very limited. 
We can state that the logarithmic search doesn’t influence 
so much the quality performance. 
On the contrary a big impact on the final result is given by  
the position chosen to set the atom. 
 
 MSE g0 MSE g1 Atoms g0 Atoms g1 
FS 193    198    382 382 
Max+FS 218    230    387 389 
Max+GA 223    236    393 395 
GA 249    256    401 404 
Max+ang. 221    229    391 388 

 

Fig. 1 Dichotomist algorithm for the angle selection. First four 
positions checked are A,B,C,D. 1 and 2 represent the first two 
steps of the log search. 
 
 
 

Table 1 Comparison of the two dictionaries derived from g0 and g1
and of the various atom selection algorithms for the sequence Stefan

 
Concerning the complexity, we have a great improvement 
over the full search which is expressed in Eq. (12), while 
because of the difficulties to measure the convergence of 
the GA we can in absolute say that implementations of the 



 

 

Max+ang. and GA takes approximately the same time to 
code a frame. 
Fig. 2.a and 2.b are two typical examples of the 

2RfMSE =  behavior when coding a block with the 
different algorithms so far proposed. We have selected a 
good and a bad motion compensated block. MP stops at 
the 7th iteration or when MSE is 65.  FS is the limit to be 
reached. Max+FS works better than GA. 
Another interesting observation that came out of our 
results is that the parameters of the atoms for the 
dictionary obtained from g0 and g1 are quite similar. 
Position, rotation and scale factors are very close, so a 
possible improvement could be to use more dictionaries 
and try different functions once determined the atoms 
parameter. This would imply a limited computational 
impact, since just one more match would be necessary. 
Moreover, the cost of coding another dictionary would be 
just one bit per atom, while adaptive dictionaries could 
probably better match the evolving structure of the 
residual. 
 
 

 

 
 
 
 
 
 

6. CONCLUSIONS 
 
We introduced a new Matching Pursuit dictionary and a 
new strategy for the atom selection. The dictionary 
proposed shows a good behavior for dfd images. 
The search algorithms introduced dramatically reduce the 
computational complexity when compared to the 
exhaustive search, while the quality impact is limited. This 
new methodology shows some improvements when 
compared to another sub-optimal strategy based on a 
genetic algorithm. Parameters of the two examined 
dictionaries are quite similar once the atom is selected, 
which suggests that adapting dictionaries could probably 
better represent the evolving nature of the residual. 
Variable dictionaries might indeed improve the coding 
efficiency and represent an interesting topic for further 
investigations. 
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Fig. 2. MSE versus number of iteration in two blocks of the 
sequence Stefan
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