
New dimensions on translations between logics

Walter A. Carnielli, Marcelo E. Coniglio and Itala M.L. D’Ottaviano

Dedicated to the memory of Mário Tourasse Teixeira and Antonio Mário Sette

Abstract. After a brief promenade on the several notions of translations that
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1. Interpretations, transformations, translations...

The method of studying inter-relations between logic systems by the analysis
of translations between them was originally introduced by Kolmogorov in 1925
(see [29]). The first known ‘translations’ involving classical logic, intuitionistic
logic and modal logic were presented by Kolmogorov, Glivenko, Lewis and Lang-
ford, Gödel and Gentzen, most of them developed mainly in order to show the
relative consistency of classical logic with respect to intuitionistic logic.

The aim of [29] “is to explain why” the illegitimate use of the principle
of excluded middle in the domain of transfinite arguments “has not yet led to
contradictions”. It introduces the intuitionistic formal logic B and the classical
propositional calculus H and defines inductively a function K associating to every
formula α of H a formula αK of B by adding a double negation in front of every
subformula of α. It is then proven that, given a set of axioms A = {α1, . . . , αn},
A `H α implies AK `B αK , where AK = {αK

1 , . . . , α
K
n }. Kolmogorov suggests that

a similar result can be extended to quantificational systems and, in general, to all
known mathematics, anticipating Gödel’s and Gentzen’s results on the relative
consistency of classical arithmetic with respect to intuitionistic arithmetic.
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Still related to intuitionism, Glivenko in 1929 proves in [20] that, if α is
a theorem of classical propositional logic (CPL), the double negation of α is a
theorem of intuitionistic propositional logic (IPL).

In 1932, during the Mathematical Colloquium held in Vienna, Gödel (appar-
ently not aware of [29]) proved that if α is a theorem of CPL then, under a specific
translation G, the interpretation G(α) of α is a theorem of Heyting’s IPL. Gödel
shows in [21] that this result is also valid relatively to intuitionistic arithmetic
and classical number theory. For him, this result attests that intuitionistic number
theory and arithmetic are only apparently weaker than the classical versions, and
that the former “contain” the latter. He also introduces in [22] an interpretation
i that preserves theoremhood from IPL into a system G, which is “equivalent” to
Lewis’ system of strict implication S4 plus an additional axiom.

The aim of Gentzen in [19] is to show that “the applications of the law of dou-
ble negation in proofs of classical arithmetic can in many instances be eliminated”.
He introduces a “transformation” t from the language of CPL into IPL and proves
that `CPL α if, and only if, `IPL t(α). As a consequence, a constructive proof
of the consistency of classical elementary arithmetic with respect to intuitionistic
arithmetic is obtained.

In spite of dealing with inter-relations among specific logic systems, these
papers are not interested in the meaning of the concept of translation between
logics, several distinct terms having been used by their authors such as interpre-
tation and transformation. Since then, interpretations between logics have been
used to different purposes.

Prawitz and Malmnäs survey in [33] these historical papers, and theirs is the
first paper in which a general definition for the concept of translation between
logic systems is introduced. For them a translation from a logic system S1 into a
logic system S2 is a function t that maps the set of formulas of S1 into the set of
formulas of S2 such that, for every formula α of S1,

`S1 α if and only if `S2 t(α).

The system S1 is then said to be interpretable in S2 by t. Additionally, S1 is said
to be interpretable in S2 by t with respect to derivability if, for every set Γ ∪ {α}
of formulas in S1,

Γ `S1 α if and only if t(Γ) `S2 t(α),

where t(Γ) = {t(β) : β ∈ Γ}. The concept of schematic translation is also defined
in [33].

Brown and Suszko in [3] construct “a general framework of the theory of
abstract logics”, concerned with algebraic properties of abstract logics of a same
similarity type. Though motivating, they are not interested in the study of inter-
relations between general abstract logics (the terms “interpretation” and “trans-
lation” are not explicitly mentioned) and “continuous functions” are defined as
generalizations of the familiar continuous functions between topological spaces.
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Nevertheless, this paper can be considered as an important landmark in the de-
velopment of the theory of logical translations, anticipating some concepts and
results later studied in [8] in a more general setting (see Section 2 below).

Szczerba in [35] defines the concept of interpretation function, that “map
structures onto structures”. The corresponding functions mapping formulas to for-
mulas are called “translations”, but we may say that Szczerba is only concerned
with translations between models, and so do not coincide with the approach de-
scribed in Section 2 below.

Wójcicki in [36] and Epstein in [15] can be considered as the first proposals
towards a general systematic study on translations between logics. For Wójcicki,
logics are seen as algebras with consequence operators: a logic (A, C) is such that A
is a formal language and C is a Tarskian consequence operator in the free algebra
of formulas of A. Given two propositional languages S1 and S2, with the same set
of variables, a mapping t from S1 into S2 is said to be a translation if, and only if:

(i) there is a formula ϕ(p0) in S2 in one variable p0 such that, for each variable
p, t(p) = ϕ(p);

(ii) for each connective µi in S1 of arity k there is a formula ϕi in S2 in the
variables p1, . . . , pk, such that t(µi(α1, . . . , αk)) = ϕi(t(α1), . . . , t(αk)) for
every α1, . . . , αk in S1.

A propositional calculus is then defined to be a pair C = 〈S,C〉, where C is
a consequence operator over the language S. Finally, C1 = 〈S1, C1〉 is said to be
translatable into C2 = 〈S2, C2〉 if there is a mapping t from S1 into S2, such that
for all X ⊆ S1 and all α ∈ S1,

α ∈ C1(X) if and only if t(α) ∈ C2(t(X)).

As we shall see, this definition of translation is a particular case of conservative
translation (cf. Definition 2.5 below).

By its turn, for Epstein [15] a translation of a propositional logic L into a
propositional logic M is thought in semantical terms as a map t from the language
of L into the language of M such that Γ |=L α if and only if t(Γ) |=M t(α), for every
set Γ ∪ {α} of formulas. He also defines the concept of grammatical translation.

It can be seen that Kolmogorov’s and Gentzen’s interpretations are transla-
tions in the sense of Prawitz, Wójcicki and Epstein. By its turn, Gödel’s ones are
translations only in Prawitz’ sense (cf. Feitosa and D’Ottaviano [17]).

On the other hand, in [23] (see also [24] and [32]), Goguen and Burstall define
a general notion of logic system and his morphisms called institutions, within the
framework of Category Theory. Institutions generalize Tarski’s notion of truth, by
considering (abstract) signatures instead of vocabularies, and abstract (categorial)
signature morphisms in the place of translations among vocabularies. In this way,
the set of sentences are parameterized by abstract signatures. More specifically, it
is considered a functor Sen from the category of signatures to the category of sets.
Additionally, a (contravariant) functor Mod assigns to every signature Σ its class
(category) of models, in such a way that, if f : Σ−→Σ′ is a signature morphism
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then Mod(f) : Mod(Σ′)−→Mod(Σ) is a functor between the respective categories
of models such that the following condition holds:

Mod(f)(M ′) |=Σ ϕ iff M ′ |=Σ′ Sen(f)(ϕ)

for every model M ′ ∈ |Mod(Σ′)| and every sentence ϕ ∈ Sen(Σ).

2. Running definitions of (conservative) translation

D’Ottaviano in [9] studies variants of Tarskian closure operators characterized
by interpretations. Hoppmann in [25]1 uses this characterization and claims that,
from a logical point of view, continuous functions between closure structures cor-
respond to functions that preserve deductions, in a remarkable coincidence with
the underlying approach of [3]. Given two closure structures K1 = 〈L1, C1〉 and
K2 = 〈L2, C2〉, an interpretation or a translation from K1 into K2 is a function
f : P(L1)−→P(L2) such that:

(i) for A,B ⊆ L1, f(C1(A)) ⊆ C2(f(A));
(ii) the inverse image of a closed set of L2 is a closed set of L1;
(iii) if A `C1 B then f(A) `C2 f(B).

This is apparently the first time in the literature the term “translation be-
tween general logic systems” is used to mean a function preserving derivability.

Later on, within a research project coordinated by W.A. Carnielli between
1994 and 1997, “Mathematical and computational aspects of translations between
logics”, sponsored by the Fundação de Amparo à Pesquisa do Estado de São Paulo
(FAPESP, Brazil), which congregated several Brazilian logicians, philosophers and
computer scientists and counted with the participation of foreign colleagues as
Michal Krynicki and Xavier Caicedo, new impetus to a wide investigation on trans-
lations was found2. Da Silva, D’Ottaviano and Sette, motivated by such treatments
and explicitly interested in the study of inter-relations between logic systems in
general, propose in [8] a general definition for the concept of translation between
logics, in order to single out what seems to be in fact the essential feature of a
logical translation: logics are characterized as pairs constituted by an arbitrary
set (without the usual requirement of dealing with formulas of a formal language)
and a consequence operator; translations between logics are then defined as maps
preserving consequence relations. In formal terms:

Definition 2.1. A logic A is a pair 〈A,C〉, where the set A is the domain of A and
C is a consequence operator in A, that is, C : P(A)−→P(A) is a function that
satisfies, for X,Y ⊆ A:

(i) X ⊆ C(X);

1[9] and [25] were supervised by Mário Tourasse Teixeira (1925-1993), who suggested, already in
the seventies, the concepts and definitions they used.
2For the sake of historical consideration, we want to recall here that an unfortunate car accident

in one of the project meetings in May 1996 injured several participants and severely impaired
A.M. Sette (1939-1998).
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(ii) if X ⊆ Y , then C(X) ⊆ C(Y );
(iii) C(C(X)) ⊆ (X).

The usual concepts and known results on closure structures are here assumed.
We call a theory X ⊆ A nontrivial in A if CA(X) 6= A; trivial in A otherwise. We
say that a ∈ A trivializes A if CA({a}) = A. And 〈A,CA〉 is compact if there is a
finite subset X of A such that CA(X) = A; such an X is called a trivializing set.

Of course it is possible to consider logics defined over formal languages:

Definition 2.2. A logic system defined over L is a pair L = 〈L,C〉, where L is a
formal language and C is a structural consequence operator in the free algebra
Form(L) of the formulas of L.

Thus, the only difference between logics and logic systems is that the latter
are defined over a formal language.

The proposed general notion of translation between logics (and, in particular,
between logic systems) is the following:

Definition 2.3. (cf. [8]) A translation from a logic A into a logic B is a mapping
t : A−→B such that t(CA(X)) ⊆ CB(t(X)) for any X ⊆ A.

Clearly, Definition 2.3 can be presented in terms of consequence relations.
Thus, if A and B are logics with associated consequence relations `CA

and `CB
,

respectively, then a function t : A−→B is a translation if, and only if, for every
Γ ∪ {α} ⊆ Form(A): Γ `CA

α implies t(Γ) `CB
t(α).

When formal languages are involved, it is useful to consider translations fol-
lowing a well-defined (syntactical) pattern. This motivates the following definition:

Definition 2.4. Let L1 be a language containing only unary and binary connectives.
If L2 is a language, a translation t : L1−→L2 is schematic if there are formulas
α(p), β](p) of L2 (for every unary connective ] of L1) depending just on proposi-
tional variable p, and formulas γ•(p, q) of L2 (for every binary connective • of L1)
depending just on propositional variables p, q, such that:

(i) t(p) = α(p), for every atomic formula p of L1;
(ii) t(]ϕ) = β](t(ϕ));
(iii) t(ϕ • ψ) = γ•(t(ϕ), t(ψ)).

An initial treatment of a theory of translations between logics is presented
in [8], where some connections linking translations between logics and uniformly
continuous functions between the spaces of their theories are also investigated. An
important subclass of translations, the conservative translations, is investigated
by D’Ottaviano and Feitosa in [16], [17] and [10].

Definition 2.5. Let A and B be logics. A conservative translation from A into B is
a function t : A−→B such that, for every set X ∪ {x} ⊆ A,

x ∈ CA(X) if and only if t(x) ∈ CB(t(X)).



6 W.A. Carnielli, M.E. Coniglio and I.M. Loffredo D’Ottaviano

The notion of translation in Definition 2.3 accommodates certain maps that
seem to be intuitive examples of translations, such as the identity map from intu-
itionistic into classical logic and the forgetful map from modal logics into classical
logic; such cases would be ruled out if the stricter notion of conservative transla-
tion were imposed. In this sense, the more abstract notion of translations given in
Definition 2.3 is a genuine advance in the scope of relating logic systems, based
upon which further unfoldings can be devised.

Note that, in terms of consequence relations, t : Form(L1)−→Form(L2) is
a conservative translation when, for every Γ ∪ {α} ⊆ Form(L1):

Γ `C1 α if and only if t(Γ) `C2 t(α).

Translations in the sense of Prawitz and Malmnäs do not coincide with con-
servative translations, nor with translations in the sense of Definition 2.3. Trans-
lations in Wójcicki’s sense are particular cases of conservative translations, being
derivability preserving schematic translations in Prawitz and Malmnäs’ sense. Ep-
stein’s translations are instances of conservative translations, and his grammatical
translations are particular cases of Prawitz and Malmnäs’ schematic translations
with respect to derivability (and coincide with schematic conservative transla-
tions). None of them attempted a more general conception as in Definition 2.3.

Though meaningful extensions of Gödel’s well-known interpretability results
between IPL and S4 and from S4 (and IPL) into classical arithmetic have been
obtained by McKinsey and Tarski, Rasiowa and Sikorski, Solovay, Goldblatt, Boo-
los and Goodman, Gödel’s interpretations do not preserve derivability even in the
propositional level, and hence are not translations in the sense of Definition 2.3.

Example 1. The identity function i : IPL−→CPL, both logics considered in the
connectives ¬,∧,∨,→, is a translation; but it is not a conservative translation: it
suffices to observe that p ∨ ¬p 6∈ CIPL(∅), while i(p ∨ ¬p) = (p ∨ ¬p) ∈ CCPL(∅).
The same occurs with the “forgetful translation” from a modal logic not deriving
the formula �p→ p into CPL.

The next results, taken from [16] and [17] are relevant to the study of general
properties of logic systems from the point of view of translations between them.

Theorem 2.6. (i) A translation t : A1−→A2 is conservative if and only if

t−1(C2(t(A))) ⊆ C1(A)

for every A ⊆ A1.
(ii) If there is a recursive and conservative translation from a logic system L1 into
a decidable logic system L2, then L1 is also decidable.
(iii) Let L1 be a logic system with an axiomatics Λ. If there is a surjective and con-
servative translation t : L1−→L2, then t(Λ) is an axiomatics for L2. Additionally,
conservative translations preserve non-triviality.

As an easy consequence, there is no recursive conservative translation from
first order logic into CPL.
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A logic L has a deductive implication if there is a formula ϕ(p, q) depending
on two variables such that: Γ, α ` β iff Γ ` ϕ(α, β). The next result presents condi-
tions for the preservation of Deduction Meta-theorems in the context of deductive
implications.

Theorem 2.7. Let L1 and L2 be two logics, ϕ1(p, q) ∈ Form(L1) and ϕ2(p, q) ∈
Form(L2). Let t : L1−→L2 be a conservative translation such that t(ϕ1(α, β)) =
ϕ2(t(α), t(β)). Then: if ϕ2 is a deductive implication in L2 then ϕ1 is a deductive
implication in L1; if t is surjective and ϕ1 is a deductive implication in L1 then ϕ2

is a deductive implication in L2.

A useful method to define conservative translations, as shown in [16] and [17],
is the following: given a logic A, consider the equivalence relation

x ∼ y iff C(x) = C(y)

defined over A, and let Q : A−→A�∼ be the quotient map.

Theorem 2.8. Let A1 and A2 be logics, with the domain of A2 being denumerable;
and let A1�∼1

and A2�∼2
be the logics co-induced by A1, Q1 and A2, Q2 respec-

tively.3 Then there is a conservative translation t : A1−→A2 if, and only if, there
is a conservative translation t∗ : A1�∼1

−→A2�∼2
. Moreover, if such a t∗ exists,

then it is injective.

We observe that the denumerability of A2 in the hypothesis of the theorem
is not necessary if the Axiom of Choice is (explicitly) used in the proof.

Translations into CPL seem to be hard to obtain. In particular, [15] proves
that, under certain circumstances, such translations do not exist. However, D’Otta-
viano and Feitosa present in [12] and [10], respectivelly, non-constructive proofs of
the existence of a conservative translation from IPL into CPL, and from the finite
 Lukasiewicz’ logics into CPL.

Conservative translations do not exist in all cases: Scheer in [34], for instance,
showed that there is no conservative translation from a cumulative non-monotonic
logic into a Tarskian logic, and that there is no surjective conservative translation
from a Tarskian logic into a non-monotonic cumulative logic.

D’Ottaviano and Feitosa in [16] and [17] prooved that the category whose
objects are topological spaces and whose morphisms are the continuous functions
between them is a full sub-category of the bi-complete category of logics and
translations; and the category of logics and conservative translations between them
is a co-complete subcategory of the category of logics and translations. This is in
line with our intuition (shared with [3], [9] and [25]) that topological spaces can
be seen as particular cases of logics.

Other developments of the wider notion of translation sprung forth: Carnielli
in [4] proposed a new approach to formal semantics for non-classical logics using
translations, the so-called possible-translations semantics, further investigated by

3The logic co-induced by A, Q is 〈A�∼ , C�∼ 〉 such that a set X ⊆ A�∼ is closed iff the set

{x ∈ A : x�∼ ∈ X} is closed in A.
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João Marcos in his Master Dissertation [31]. D’Ottaviano and Feitosa in [11], [12]
and [14] introduced several conservative translations involving classical logic, intu-
itionistic logic, modal logics, paraconsistent logics and many-valued logics. Mauro
César Scheer, in his Master Dissertation [34] initiated the study of translations
involving cummulative non-monotonic logics. Juliana Bueno-Soler, in her Master
Dissertation [2] introduced the possible-translations algebraic semantics, in which
translations play an essential role for providing an algebraic approach to logics
non-algebraizable by traditional methods. Vı́ctor Fernández, in his Ph.D. Thesis
[18] used translations in order to investigate combinations of logics, more particu-
larly fibring of logics (cf. Carnielli, Coniglio et al in [5]).

3. Transfers: a model-theoretic dimension to translations

The notion of isomorphism is the indiscernibility principle among algebraic struc-
tures, as much as elementary equivalence is the indiscernibility property between
logic structures (in the sense that they model the same class of sentences of a given
language). The notion of translation between logics seeks to identify the deductive
capability and the ability to draw distinctions (the “discriminatory strength”, in
Humberstone’s [27] terminology) of a logic inside another (a non-surjective trans-
lation) or onto another (a surjective translation). Now, propositional logics can be
advantageously seen as special first-order structures, and in this way we can com-
pare translations with the notions of isomorphism and elementary equivalence.
Several properties of logics can be formalized in this way (not all: for instance,
compactness is not first-order definable). Also, properties of translations can be
imparted and evaluated: so we see the convenience of broader concepts of logic
indiscernibility. Such is the aim of the notion of transfer.

This section briefly explains the idea of transfers and the underlying model-
theoretic approach to translations between logics as developed by Coniglio and
Carnielli in [7] (from where all definitions and results in this section are taken).

The basic idea is to consider a formal first-order meta-language to express
theoretical (meta)properties of (propositional) logics. Thus the basic language of
abstract logics is the first-order two-sorted language L given by

{form,Sform} ∪ {ε,`} ∪ {d, s} ∪ {0}

where:

• {form,Sform} is the set of basic sorts of L;
• ε and ` are symbols for predicates of sort form×Sform and Sform× form,

respectively;
• d : Sform× Sform−→Sform and s : form−→Sform are symbols for func-

tions;
• 0 is a constant of sort Sform.
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Basically, form and Sform are the sorts for formulas and set of formulas,
respectively; ε and ` stand for the membership and consequence relation, respec-
tively; d stands for union of sets; s(x) represents the singleton set {x}; and 0 stands
for the empty set. But of course non-standard interpretation for these symbols are
possible.

Let L′ be a first-order two-sorted language extending L. A standard abstract
logic for L′ is a structure L for L′ with domains A (for sort form) and P (for sort
Sform) such that P ⊆ ℘(A) = {Γ : Γ ⊆ A}; εL ⊆ A × P is the (set-theoretic)
membership relation; dL : P × P−→P is the (set-theoretic) join operation ∪;
sL : A−→P is given by sL(a) = {a} for all a ∈ A; and 0L is the empty set ∅.

From Model Theory it is possible to characterize (up to isomorphisms) stan-
dard abstract logics by means of a few set-theoretic axioms. It follows that L is a
standard abstract logic for L′ if and only P ⊆ ℘(A) is a Boolean algebra w.r.t. the
set-theoretic operations such that ∅, A ∈ P ; {a} ∈ P for all a ∈ A; and if Γ ∈ P
then {a ∈ A : Γ `L a} ∈ P .

It is not hard to see that standard abstract logics are defined along the same
lines as Béziau’s Universal Logic (see, for instance, [1]), that is: a logic is basically
a pair formed by a set of entities called formulas and a consequence relation,
without assuming any properties. As expected, function symbols of L′ of type
formn−→form represent n-ary propositional connectives and so a wide class of
well-known propositional logics (in particular, propositional Hilbert calculi) can
be represented within this framework.

Using the formal meta-language L′ it is possible to express meta-properties
of logics such as, for instance, Tarki’s axioms and the Infinite Herz’s law:

(∀Y1)(∀Y2)(∀Y3)(∀x)[(Ent(Y1, Y2) ∧ (Y2 d Y3 ` x)) ⇒ (Y1 d Y3 ` x)]

where Ent(Y1, Y2) stands for (∀x)[(x ε Y2) ⇒ (Y1 ` x)]. On the other hand,
consistency of a theory can be expressed by the existential formula (∃x)¬(X ` x).

The generalization of translation between logics is given by the notion of
homomorphisms between structures (that is, abstract logics):

Definition 3.1. Let Li be abstract logics over L′ such that formLi
= Ai and

SformLi
= Pi are the universes for sorts form and Sform in Li, respectively (for

i = 1, 2). A transfer from L1 into L2 is an homomorphism 〈T, T∗〉 : L1−→L2

between structures such that

T∗(Γ) = T (Γ) = {T (a) : a ∈ Γ} for all Γ ∈ P1.

Since the mapping T∗ : P1−→P2 is derived from T , it can be omitted. An isomor-
phic transfer between L1 and L2 is called an L-homeomorphism from L1 to L2. A
transfer T is conservative if it is an homomorphism such that, for every (n+m)-ary
predicate symbol R of L′:

(~a; ~Γ) ∈ RL1 iff (T (a1), . . . , T (an);T (Γ1), . . . , T (Γm)) ∈ RL2

for all ~a = (a1, . . . , an) ∈ An
1 , ~Γ = (Γ1, . . . ,Γm) ∈ Pm

1 . We say that T is an
elementary transfer if it is an elementary embedding from L1 into L2.
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Clearly, if T : L1−→L2 is a transfer then

Γ `L1 a implies that T (Γ) `L2 T (a),

and if T is conservative the following holds:

Γ `L1 a iff T (Γ) `L2 T (a).

That is, the usual definitions of translation, conservative translation and L-homeo-
morphism mentioned in previous sections can be recaptured. It is worth not-
ing that T is an L-homeomorphism iff T is a bijective conservative transfer. L-
homeomorphisms determine that the logics involved are the same (from the point
of view of the language L′). In other words, logics related by L-homeomorphisms
are indiscernible by sentences in the language L′.

Proposition 3.2. Let T : L1−→L2 be a L-homeomorphism. Then for any formula
Ψ(~x; ~Y ) of L′, ~a ∈ An

1 and ~Γ in Pm
1 :

L1 |= Ψ[~a; ~Γ] iff L2 |= Ψ[T (a1), . . . , T (an);T (Γ1), . . . , T (Γm)]

where Ψ has at most x1, . . . , xn (of sort form) and Y1, . . . , Ym (of sort Sform) as
free variables. In particular, for each sentence Ψ in the language L,

L1 |= Ψ iff L2 |= Ψ.

From Model Theory it is known that, in order to obtain a faithful encoding
of a structure into another (such as the one of Proposition 3.2), it is enough to
have an elementary embedding.

Proposition 3.3. If T is an elementary transfer then, for any formula Ψ(~x; ~X) of
L′ and for any tuples ~a ∈ An

1 , ~Γ ∈ Pm
1 :

L1 |= Ψ[~a; ~Γ] iff L2 |= Ψ[T (a1), . . . , T (an);T (Γ1), . . . , T (Γm)].

For instance, given an elementary transfer T : L1−→L2, if a theory Γ is
consistent in L1 then the theory T (Γ) is consistent in L2 (and even in T (L1)),
because consistency can be expressed through an (existential) formula of the first-
order meta-language, as observed above. In fact, it is easy to see that conservative
transfers already preserve consistency.

Elementary transfers offer in this way an intermediate concept between con-
servative translation and isomorphism, that is a strict case of conservative transla-
tion; this allows to faithfully shift a logic into another, while preserving the meta-
properties of the source logic which can be expressed in the formal meta-language
L′. As observed in [7], a translation can be considered as “good” whenever it pre-
serves existential formulas (as elementary translations do): the more existential
formulas are preserved, the “better” the translation.
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4. Contextual translations: still another dimension

The model-theoretic approach typified by transfers as described above is very
general but, on the other hand, it requires that every connective of the source
logic L1 (a function symbol of L′) must be translated into another connective.
This is a bit restrictive, because often translations between languages are defined
in a more liberal way.

Coniglio proposes in [6] a different approach to translations by means of
contextual translations,4 which are mappings between languages preserving cer-
tain meta-properties of the source logic. As in the case of transfers, these meta-
properties are defined in a formal first-order meta-language, acting as a kind of
sequent calculus whose rules govern the consequence relation of the logic. This
accords with the idea of inferential basis of a logic introduced by J.  Loś and R.
Suszko in [30]. In this section we present a simplified version of the definitions and
results given in [6].

Consider a set X = {Xi : i ∈ N} of set variables, a set Ξ = {ξi : i ∈ N}
of schema variables and a set V = {pi : i ∈ N} of propositional variables. A
propositional signature is a set C = {Ci : i ∈ N} of sets such that V ⊆ C0.
Elements of Cn are connectives of arity n. Let L(C,Ξ) and L(C) be the C-algebra
freely generated by C0 ∪ Ξ and C0, respectively.

An assertion over C is a pair 〈Υ, ϕ〉, written as Υ ` ϕ, such that Υ is a
finite subset of X ∪ L(C,Ξ) and ϕ ∈ L(C,Ξ). A meta-property over C is a pair
〈{S1, . . . , Sn}, S〉, written as

S1 · · · Sn

S

such that Si (for i = 1, . . . , n) and S are assertions over C.
Consider, for instance, a signature C containing a negation symbol ¬ in C1,

a disjunction ∨ and a conjunction ∧ in C2. Then

X1, ξ1 ` ξ2 X1,¬ξ1 ` ξ2
X1 ` ξ2

X1, ξ1 ` ξ3 X1, ξ2 ` ξ3
X1, ξ1 ∨ ξ2 ` ξ3

X1 ` ξ1 X2 ` ξ2
X1, X2 ` ξ1 ∧ ξ2

are meta-properties over C which play the role of logic rules, in which the schema
variables ξ1, ξ2, ξ3 act as arbitrary formulas, and the set variables X1, X2 act as
arbitrary sets of formulas (the context of the rule). This intuition will be formalized
below.

A meta-property over C is called structural if there is no occurrences of
connectives. For instance,

X1 ` ξ1 X2, ξ1 ` ξ2
X1, X2 ` ξ2

X1 ` ξ1
X1, X2 ` ξ1 X1 ` ξ1

4Called meta-translation in [6].



12 W.A. Carnielli, M.E. Coniglio and I.M. Loffredo D’Ottaviano

are structural meta-properties, corresponding to Cut rule, Monotonicity and Triv-
iality. By the very definition, structural meta-properties are defined over any sig-
nature.

A substitution over C is a map σ : Ξ→ L(C). We denote by

σ̂ : L(C,Ξ)→ L(C)

the unique homomorphic extension of σ to L(C).
An instantiation over C is a map π : X → ℘F (L(C)), where ℘F (L(C))

denotes the set of finite subsets of L(C).
By instantiating set variables and substituting schema variables, the schematic

meta-properties introduced above define concrete instances of meta-properties of
logics. Thus, if L is a propositional logic defined over the language L(C) and (P )
is a meta-property over C, we say that L has the meta-property (P ) if, for every
substitution σ and every instantiation π, L satisfies the concrete meta-property
obtained by applying (σ, π) to (P ) (where commas act as unions).

If L is defined by a sequent calculus with sequents of the form Γ ` ϕ such
that Γ ∪ {ϕ} ∈ ℘F (L(C)) then the sequent calculus for L (written in the formal
language proposed above) constitutes a basic set of meta-properties of L which
generates every meta-property of L. This is why meta-properties can be seen as
formal rules of a formal sequent calulus.

Now we turn our attention to translations. If f : L(C,Ξ)−→L(C ′,Ξ) is a map-
ping such that f(ξ) = ξ for every ξ ∈ Ξ, and S = 〈Υ, ϕ〉 is an assertion over C, then
f̂(S) is the assertion 〈f̂ [Υ], f̂(ϕ)〉 over C ′ such that f̂(ψ) = f(ψ) if ψ ∈ L(C,Ξ),
f̂(X) = X if X ∈ X and f̂ [Υ] = {f̂(s) : s ∈ Υ}. If (P ) = 〈{S1, . . . , Sn}, S〉 is a
meta-property over C then f̂(P ) is the meta-property 〈{f̂(S1), . . . , f̂(Sn)}, f̂(S)〉
over C ′. Note that, if (P ) is structural, then f̂(P ) coincides with (P ).

Definition 4.1. Let L and L′ be logics defined over signatures C and C ′, respec-
tively. A contextual translation f from L to L′, denoted by f : L−→L′, is a mapping
f : L(C,Ξ)−→L(C ′,Ξ) such that L′ satisfies the meta-property f̂(P ) whenever L
satisfies the meta-property (P ). We say that L is contextually translatable into L′
if there exists a contextual translation from L to L′

Clearly, a contextual translation is a translation in the sense of Definition 2.3.
The following results are immediate consequences of the definitions above:

Proposition 4.2. (a) If L satisfies a structural meta-property which is not satisfied
by L′, then L is not contextually translatable into L′.
(b) A trivial logic is not contextually translatable into a non-trivial logic.
(c) A monotonic logic is not contextually translatable into a non-monotonic logic.

The last result shows that, in order to be contextually translatable, the logics
in question must be compatible in some sense: it is not possible to contextually
translate a logic into an arbitrary, unspecified logic. The next examples show that
contextual translations and conservative translations are essentially independent
concepts, and that neither of them entails the other:
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Example 2. Let C be the signature for classical propositional logic CPL containing
V, ¬, ∨, ∧ and →, and let C ′ be the first-order signature obtained from C by
substituting each propositional variable pi ∈ V by an unary predicate symbol Pi,
and unary connectives ∀x and ∃x for every individual variable x. Let MON be
the monadic (classical) predicate logic defined over C ′, and consider a mapping
f : L(C,Ξ)−→L(C ′,Ξ) such that

• f(pi) = Pi(x) and f(ξi) = ξi (for i ∈ N);
• f(ϕ#ψ) = f(ϕ)#f(ψ) for # ∈ {∨,∧,→};
• f(¬ϕ) = ¬f(ϕ).

Then f : CPL−→MON is a conservative translation, but it is not a contextual
translation from CPL to MON. In fact, let (P ) be the following meta-property
of CPL (the Deduction Meta-theorem):

X1, ξ1 ` ξ2
X1 ` ξ1 → ξ2

Then f̂(P ) is (P ), which is not valid in MON: take, for instance, the substitution
σ and the instantiation π over C ′ such that σ(ξ1) = P1(x), σ(ξ2) = ∀xP1(x)
and π(X1) = ∅. Thus P1(x) `MON ∀xP1(x) holds (by Generalization rule), but
`MON P1(x)→ ∀xP1(x) is not true. That is, MON does not satisfy f̂(P ).

Example 3. Let C be as above, and let C ′ be the signature extending C by adding
a unary connective � (the modal “necessity” operator). Consider normal modal
logic S4, in which the consequence relation is defined from theoremhood as usual:
Γ ` ϕ iff there exists {γ1, . . . , γn} ⊆ Γ such that ` (γ1 ∧ · · · ∧ γn)→ ϕ (for Γ 6= ∅).
This forces S4 to satisfy the Deduction Meta-theorem. Let f : L(C,Ξ)−→L(C ′,Ξ)
be a mapping such that

• f(p) = �p (if p ∈ V);
• f(ξ) = ξ (if ξ ∈ Ξ);
• f(ϕ#ψ) = f(ϕ)#f(ψ) for # ∈ {∧,∨};
• f(¬ϕ) = �¬f(ϕ);
• f(ϕ→ ψ) = �(f(ϕ)→ f(ψ)).

Then f : INT−→S4 is a conservative translation (cf. [15]). On the other hand,
f is not a contextual translation: the translation of the Deduction Meta-theorem
(P ) is the meta-property

X1, ξ1 ` ξ2
X1 ` �(ξ1 → ξ2)

which is not valid in S4: take σ(ξ1) = p1, σ(ξ2) = p2 and π(X1) = {p1 → p2}.

Example 4. Let C be as above, and let CPL and IPL be classical and intu-
itionistic propositional logic defined over C, respectively. Then the identity map
i : L(C,Ξ)−→L(C,Ξ) is a contextual translation i : IPL−→CPL, since every
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sequent rule valid in IPL is also valid in CPL. On the other hand, i is not a
conservative translation from IPL to CPL, as observed in Example 1.

Example 5. Let C be as above, and let C ′ be a non-empty subsignature of C, for
instance containing just V, ∧ and ∨. Let L′ be the fragment of CPL defined over
C ′, and let i : L(C ′,Ξ)−→L(C,Ξ) be the inclusion map. Then i : L′−→CPL is
both, a conservative and a contextual translation.

Example 6. Let C be as above, and let C ′ be the signature just containing V, ¬ and
→. Let L′ be the fragment of CPL defined over C ′, and let f : L(C,Ξ)−→L(C ′,Ξ)
be a mapping such that
• f(s) = s for s ∈ V ∪ Ξ;
• f(ϕ ∧ ψ) = ¬(f(ϕ)→ ¬f(ψ));
• f(ϕ ∨ ψ) = ¬f(ϕ)→ f(ψ);
• f(ϕ→ ψ) = f(ϕ)→ f(ψ);
• f(¬ϕ) = ¬f(ϕ).

Then f : CPL−→L′ is both, a conservative and a contextual translation. The
same example applies if C ′ just contains V, ¬ and ∨, or V, ¬ and ∧.

Examples 2 and 3 above witness cases of conservative but non-contextual
translations, while Example 4 is a contextual but non-conservative translation. On
the other hand, Examples 5 and 6 are paradigmatic cases of translations in both
senses (conservative and contextual): the former concerns embeddings of fragments
of CPL to itself, while the latter concerns rewrittings of CPL into truth-functionally
complete fragments of itself.

Contextual translations between logics refine the concept of mere transla-
tions between logics as much as linguistic contextual translations are preferable
over simple-minded literal linguistic translations. This refined concept helps us to
analyze not only the complicate question of “How a logic can be translated into
another one?”, but also a triad of provoking questions:

• What is the essential meaning of a translation?
• How can a logic be extended?
• When can a logic be seen as a legitimate sublogic of another one?
Towards the first question, it is remarkable that source logics translated by

conservative translations are similar (in a precise way) to their images. But the
image of a logic under a conservative translation could very well be a small, perhaps
banal, fragment of the target logic. Consider, for instance, the following example
adapted from [7]: let L and L′ be Tarskian logics defined over C such that L(C) =
{ψi : i ∈ N} is denumerable (where ψi 6= ψj if i 6= j). Suppose also that L is a
trivial logic and that L′ has a denumerable set T = {ϕi : i ∈ N} of theorems
(where ϕi 6= ϕj if i 6= j). Let f : L(C)−→L(C) such that f(ψi) = ϕi for every
i ∈ N. Then f is an injective conservative translation from L to L′. The image of
L is the restriction of L′ to T which, in fact, is the trivial logic: everything follows
from everything as much as theorems are concerned. This is how a trivial logic is
injectively translated into a (possibly) non-trivial logic: the image (injective copy)
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of L within L′ is banal with respect to the whole logic L′. Does this translation
contribute with some essential information about the target logic? None, not even
that L′ has a trivial sublogic, as L′ can be any logic ( for instance, a logic without
trivializing particle ⊥).

This kind of phenomenon is inherent in the nature of (conservative) transla-
tions, which allow a logic to be translated within a proper fragment of another.
Contextual translations, on the other hand, require that a logic be translated onto
the full target logic, in the sense that meta-rules of the former are globally valid
in the latter.

A translation tradeoff can be identified here: translations, intended in the
sense of Definition 2.3, help to clarify the maxim expressed in [26] and [27] ac-
cording to which the weaker a logic is (in its deductive strength) the stronger it is
in its ability to draw distinctions (in its discriminatory strength). So the weaker
a logic is, the more logics could be translated into it. This point of view is also
supported by Janssen in [28]

But of course, in the opposite direction, conservative contextual translations
are much stronger: examples are hard to find, but widely expressive.

In the direction of the second and third questions above, contextual trans-
lations also pave the way for understanding how a logic can be strengthened: the
schema variables above codify the “logic space” for such expansion.

Also, we may conjecture that a contextual translation from L to L′ is only
possible when the discriminatory strength of L overrides that of L′: all the exam-
ples suggest that L is a sublogic of L′ or L′ extends L while preserving derivability
and meta-properties.

The above examples show, for instance, that IPL is a “good” sublogic of
CPL, in the sense that every meta-property of (or rather, a property in the con-
text of) IPL is enjoyed by CPL. On the other hand, CPL is not “such a good”
sublogic of MON since the latter does not enjoy the Deduction Meta-theorem (cf.
Examples 14(1) and 14(3) above). This may be converted into a very reasonable
criterion to consider a logic as a legitimate sublogic of another one.

At the same time that our account of contextual translations helps to ex-
plicate the meaning of expanding and translating logics, it also opens space for
problems: as two immediate examples, can the problems of admissible and struc-
tural rules in logics be explained or rephrased in terms of translations? Can the
diverse meanings of completeness (Post, Halldén) be elaborated with the help of
translations?

Being able to face problems like those, rooted on more than three decades of
research among Brazilian logicians, is the best our account on translations would
aspire.
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towards a general theory of logic, pages 207-228. Birkhäuser, Basel, 2005.

[28] T. Janssen. Compiler correctness and the translation of logics. ILLC Research Re-
ports and Technical Notes 2007, ReportPP-2007-14, 2007.
URL: www.illc.uva.nl/Publications/ResearchReports/PP-2007-14.text.pdf

[29] A.N. Kolmogorov. On the principle of excluded middle (1925). In: J. Heijenoort,
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Basel, 2005.

[33] D. Prawitz and P.E. Malmnäs. A survey of some connections between classical,
intuitionistic and minimal logic. In: H. Schmidt et al, editors, Contributions to math-
ematical logic, pages 215–229. North-Holland, Amsterdam, 1968.

[34] M. C. Scheer. Para uma teoria de traduções entre lógicas cumulativas (Towards a
theory of translations between cumulative logics), in Portuguese. Master Dissertation,



18 W.A. Carnielli, M.E. Coniglio and I.M. Loffredo D’Ottaviano

IFCH, State University of Campinas, 2002. Available at
URL: http://libdigi.unicamp.br/document/?code=vtls000284889.

[35] L. Szczerba. Interpretability of elementary theories. In: H. Butts and J. Hintikka,
editors, Logic, foundations of mathematics and computability theory, pages 129–145.
D. Reidel, 1977.
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