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New Directions in Adaptive Designs
William F. Rosenberger

Abstract. In any sequential medical experiment on a cohort of human
beings, there is an ethical imperative to provide the best possible medical
care for the individual patient. This ethical imperative may be compro-
mised if a randomization scheme involving 50–50 allocation is used as
accruing evidence begins to favor (albeit not yet conclusively) one exper-
imental therapy over another. Adaptive designs have long been proposed
to remedy this situation. An adaptive design seeks to skew assignment
probabilities to favor the treatment performing best thus far in the study,
proportionately to the magnitude of the treatment effect.

Current researchers in adaptive designs are attempting to provide
physicians with a wide choice of design options, and to address practical
and ethical concerns within a rigorous mathematical framework. This
paper focuses on several broad families of designs, including urn models,
random walk rules and other rules. Numerous examples are given along
with applications, dose–response studies, clinical trials for efficacy and
combined toxicity–efficacy studies.

Key words and phrases: Clinical trials, dose–response studies, ethics,
quantile estimation, random walks, randomized play-the-winner rule,
urn models.

0. INTRODUCTION

0.1 A Motivating Example

Zelen and Wei (1995) describe a recent clinical
trial by Connor et al. (1994) to evaluate the hy-
pothesis that the antiviral therapy AZT reduces
the risk of maternal-to-infant HIV transmission. A
standard randomization scheme was used to obtain
equal allocation to both AZT and placebo, result-
ing in 239 pregnant women receiving AZT and 238
receiving placebo. The endpoint was whether the
newborn infant was HIV-negative or HIV-positive.
An HIV-positive newborn could be diagnosed within
12 weeks; a newborn could be safely claimed to be
HIV-negative within 24 weeks.
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The results of the trial were compelling: at the
conclusion of the trial (which was stopped early), 60
newborns were HIV-positive in the placebo group
and only 20 newborns were HIV-positive in the AZT
group (p < 0:01). However, these numbers mask the
harsh reality that three times as many infants on
placebo have, for all intents and purposes, received
a death sentence by the transmission of HIV from
their mothers. Had they been given AZT, one could
presume that many would have been saved. Some
might say that the high price for medical experi-
mentation on humans is more than made up for by
the impact of these studies on our public health (an
elegant treatise is Byar et al., 1976). Others might
argue that any randomized placebo-controlled clin-
ical trial is unethical. (For a lively interchange, see
Royall, 1991, including, in particular, Byar’s com-
ments and Royall’s rejoinder.) But is there a middle
ground?

The study of antiviral therapy in maternal–infant
HIV transmission is critically important to neonatal
public health—there is no doubt of that. This author
will assume that the information desired from such
a study was best elicited via a randomized placebo-
controlled clinical trial. That being the case, given
the seriousness of the outcome of this study, it is
reasonable to argue that 50–50 allocation was un-
ethical. As accruing information favoring (albeit, not
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conclusively) the AZT arm became available, allo-
cation probabilities should have been shifted from
50–50 allocation proportional to the weight of evi-
dence for AZT. Designs which attempt to do this are
called adaptive designs, response-adaptive designs
or response-driven designs.

0.2 Brief History and a Warning

The literature is replete with the concepts and
philosophy behind adaptive designs. Herbert Rob-
bins (see, in particular, Robbins, 1952) is perhaps
the progenitor, and his work was followed by a
flurry of activity in the 1960s, beginning with
Anscombe (1963) and Colton (1963). Zelen’s (1969)
famous play-the-winner paper built on Robbin’s
ideas. One neglected, but lovely, paper (well ahead
of its time), written by Cornfield, Halperin and
Greenhouse (1969), synthesized Bayesian, adaptive
and multistage designs into an elegant frame-
work. More recent history is discussed by Hardwick
(1989) and Rosenberger and Lachin (1993). It is not
the intention of this paper to discuss in detail the
ethical and logistical aspects of adaptive designs.
Such issues have been hotly debated (for a review,
see Rosenberger and Lachin, 1993). Rather, this pa-
per focuses on new ideas and variants of old ideas
within a rigorous mathematical framework.

Adaptive designs are attractive because they sat-
isfy an ethical imperative of caring for the indi-
vidual patient in a group experiment, while allow-
ing for the same group inferences. They are attrac-
tive to mathematicians and statisticians because
the designs impose dependencies which require the
full arsenal of martingale techniques and stochastic
processes. One important caveat is that in medical
experimentation we are dealing with human lives;
therefore ethical and logistical considerations must
always drive the mathematics. We (the author being
no exception) often forget this in our urge to display
our mathematical prowess. As statisticians, our job
is to develop large families of designs, appropriate
for a wide variety of scenarios. Physicians should
then be heavily involved in selecting a particular
design and its parameters.

Short of writing a book, it would be impossible
to review the rich assortment of adaptive designs
that have been developed over the past few decades.
This paper focuses primarily on designs employ-
ing several types of stochastic processes, including
urn models and random walks, although occasional
mention is made of other types of designs. Also,
passing reference is made to inference, but the pa-
per’s principal theme is design.

Section 1 focuses on the generalized Pólya urn
model, with applications to both early-phase and

phase III clinical trials discussed in Section 2. Sec-
tion 3 deals with adaptive designs for clinical trials
with continuous responses and survival endpoints.
Section 4 focuses on designs for phase I clinical tri-
als, including random walk rules and the continual
reassessment method. These designs and a design
from Section 2 are briefly compared. Finally, in Sec-
tion 5, some conclusions are drawn. All results in
this paper are based on fixed sample size designs,
which are most commonly used in United States
clinical trials. There is no reason, in principle, that
one cannot incorporate stopping rules with adaptive
designs. However, this leads to different inferential
problems (which may well be worth the effort to ex-
plore).

1. GENERALIZED PÓLYA URN

1.1 Model and Mathematics

One large family of randomized adaptive designs
can be developed from the generalized Pólya urn
(GPU) model (originally designated by Athreya and
Karlin, 1968, as the “generalized Friedman’s urn”).
The model can be described as follows. Consider an
urn containing particles of K types. Initially, the
urn contains Y0 = �Y01; : : : ;Y0K� particles, where
Y0i denotes the number of particles of type i, i =
1; : : : ;K. A particle is drawn or split at random from
the urn. Its type is observed and the particle is then
replaced. When a particle of type i is drawn, we
say that a type i split occurs. Following a type i
split, Rij particles of type j, for j = 1; : : : ;K, are
added to the urn, or generated. In the most general
sense, Rij can be random and can be some function
of a random process outside the urn process. This
is what makes the model so appropriate for adap-
tive designs (in our case, Rij will be a random func-
tion of patient response). A particle must always be
generated at each stage (in addition to the replace-
ment), and so P�Rij = 0, for all j = 1; : : : ;K� is
assumed to be 0. Let E be the matrix comprising el-
ements �Eij� ≡ E�Rij�. We refer to R as the rule
and E as the design matrix (although in the branch-
ing processes literature it would be more proper to
refer to E as the generating matrix), and E is as-
sumed to be nonnegative and irreducible. After n
splits and generations, the urn composition is given
by the vector Yn = �Yn1; : : : ;YnK�, where Yni rep-
resents the number of particles in the urn of type i
after n splits.

The matrix E has a maximal eigenvalue ρ with
associated left eigenvector v = �v1; : : : ; vK� with∑K
i=1 vi = 1 (see, e.g., Gantmacher, 1959). The eigen-

vector v plays an important role in limiting results
for various designs defined by E. Define Xj ≡ i
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if the jth split was type i, i = 1; : : : ;K, and let
Iji = 1 if Xj = i, and Iji = 0 otherwise. Then the
proportion of type i splits after n splits isNi�n�/n ≡∑n
j=1 Iji/n. Athreya and Karlin (1967, 1968) prove

that

�1� Ni�n�
n
→ vi almost surely as n→∞;

and

�2� Yni∑K
i=1Yni

→ vi almost surely as n→∞:

1.2 Treatment Allocation

If one labels theK particle types with “treatment”
identification, then the GPU becomes a randomiza-
tion machine. Patients are sequentially assigned to
a treatment corresponding to the split type, and a
rule R is established for generating new particles
based on each possible patient response. The design
matrix E is then the rules averaged over the pos-
sible patient responses, and the �i; j� element indi-
cates the expected number of particles added to the
urn representing treatment j, given that the previ-
ous patient was assigned to treatment i.

Assume that subject response is dichotomous.
Let Tj = 1 if subject j’s response was a “success”
(loosely defined), 0 otherwise. We now impose a sim-
ple population model which is homogeneous within
treatment. Define pi ≡ P�Tj = 1 �Xj = i�, for j =
1; : : : ; n and i = 1; : : : ;K. Define p ≡ �p1; : : : ; pK�
and let qi ≡ 1− pi.

Remark 1. The Tj need not be dichotomous, as
we shall see in Section 2.5.

Remark 2. The assumption that the probability
of success is homogeneous within a treatment group
is not always reasonable over the course of recruit-
ment. There may be a drift in patient characteristics
over time. Relaxing this assumption is usually diffi-
cult in a rigorous mathematical context. Coad (1991,
1992) proposes prestratification and poststratifica-
tion techniques to deal with this problem.

For a rule R, the corresponding design matrix E
will be a function of p and the number of particles
generated at each stage. If we assume that the row
sums of E are equal (i.e., E is a scalar multiple ρ of
a stochastic matrix), then ρ, the common row sum,
is the maximal eigenvalue of E. This assumption
is reasonable in our context and will be assumed
throughout. Under this assumption, the computa-
tion of v is much simpler.

Remark 3. One exception to the constant row
sum assumption is if one wanted to define a rule
which generates more particles for some treatments
than others. This may be applicable in the dose–
response context, to be discussed in Section 2.4.

Thus Ni�n�/n is the proportion of patients as-
signed to level i, i = 1; : : : ;K, after n stages, and, by
�1�, we have that v, the left eigenvector correspond-
ing to ρ, is the asymptotic distribution of treatment
assignments. Rosenberger and Sriram (1996) show
that

�3�
∑n
j=1TjIji

n
→ p · v almost surely,

that is, that the total proportion of successes in the
trial has an easily calculable limit, a result of con-
siderable interest from an ethical standpoint.

1.3 Likelihood Results

The maximum likelihood (ML) estimator of pi is
p̂i =

∑
jTjIji/

∑
j Iji, the observed proportion of

successes observed on treatment i. Rosenberger and
Sriram (1996) show that p̂i is strongly consistent for
pi. Rosenberger, Flournoy and Durham (1996) show
that the vector comprising elements n1/2�p̂i−pi� is
jointly asymptotically normal with mean vector 0,
variances piqi/vi and covariances 0. By Slutsky’s
theorem, we can obtain a similar result with a ran-
dom norming �Ni�n��1/2 replacing n1/2, except that
the asymptotic variances are piqi. Note that this is
the same result one would obtain had independent
multinomial sampling been employed, except that
the normalization factor is random. Asymptotic in-
ference on the pi’s can be done in the same manner
as for the independent case, and the usual contrasts
and χ2 statistics apply.

Remark 4. One would presume that the rate of
convergence for the GPU, with its imposed depen-
dencies, would be considerably slower than for inde-
pendent multinomial sampling. An Edgeworth-type
expansion would allow us to see how the design pa-
rameters figure in the rate of convergence. This is
an area for future research.

2. APPLICATIONS OF THE GPU

2.1 Randomized Play-the-Winner Rule

The randomized play-the-winner (RPW) rule is
an adaptive design introduced by Wei and Durham
(1978), motivated as an extension to Zelen’s (1969)
play-the-winner rule. Wei (1979) first noted that the
RPW rule could be formulated as a GPU model.
Much of the recent literature on adaptive designs
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has focused exclusively on appropriate inferential
procedures after a design is implemented (see Wei,
1988; Begg, 1990; Wei, Smythe, Lin and Park, 1990;
Rosenberger, 1993; Farewell, Viveros and Sprott,
1993) rather than on the design itself.

Remark 5. One should mention, but only in
passing, that the RPW rule was applied rather dis-
astrously in a very small clinical trial in neonates
(see Bartlett et al., 1985). This trial is now part of
the clinical trials folklore. The reasons for its failure
have been well discussed (see, e.g., Royall, 1991)
and argue for considerable care when designing an
adaptive clinical trial with a small sample size.

The formulation of the RPW rule as a GPU is as
follows:

RPW rule. Assume there are two treatments
(say, A and B), and dichotomous response (success
or failure). We start with Y0 = �α; α� particles in
the urn. If a type A split occurs, the patient is as-
signed to treatment A; if a type B split occurs, the
patient is assigned to treatment B. The particle is
replaced and patient response is observed. A success
on treatment A or a failure on treatment B gener-
ates a type A particle; a success on treatment B or a
failure on treatment A generates a type B particle.

If A is “doing better,” the urn composition is
skewed to favor treatment A. Under a simple
population model pA = P�success �A�, pB =
P�success �B�, qA = 1− pA, qB = 1− pB, it is easy
to see we have a GPU with

E =
[
pA qA

qB pB

]
:

From �1�, we can obtain results on the proportion
of patients assigned to each treatment as

�4� NA�n�
n

→ qB
qB + qA

almost surely

and

�5� YnA

YnA +YnB

→ qB
qB + qA

almost surely.

Remark 6. When pA + pB ≤ 3/2, the joint lim-
iting distribution of the two statistics in (4) and (5),
suitably normalized, is Gaussian, and the asymp-
totic variance–covariance matrix is given in Rosen-
berger (1992). When pA + pB > 3/2, the limiting
distributions of the urn composition and the propor-
tion of patients assigned to A are unknown (see the
Appendix for details).

From �3�, we obtain that the total number of suc-
cesses converges almost surely to

�6� p · v = pAqB + pBqA
qA + qB

:

2.2 Example

To illustrate the utility of the results in Sec-
tion 2.1, we will apply them to the observed data
from the maternal–infant HIV transmission data
from Section 0.1. Suppose we assume the observed
proportions of success (i.e., the newborn is HIV-
negative) are the true proportions of success, that
is, that pA = 0:75 and pB = 0:92, where A is
placebo and B is AZT. Equation �4� tells us that
the 50–50 allocation would be skewed to approxi-
mately 25–75 in favor of the AZT arm and, by (6),
12% of the infants would have been HIV-positive
(compared to approximately 17% in the actual
trial).

As stated earlier, standard inference methods
could be used on p̂A and p̂B. Because of the im-
balance in allocation with the RPW rule, modest
loss of power will result, leading to increased sam-
ple size requirements (therefore dampening some
of the beneficial effects of the adaptive design). For
the 3 : 1 resulting allocation in this example, stan-
dard sample size formulas for the difference of two
proportions indicate an 18% increase in requisite
sample size for the RPW rule. Even so, there would
have been seven fewer treatment failures had the
RPW rule been employed.

Remark 7. The astute reader of Connor et al.
(1994) will note that this discussion has oversimpli-
fied their study, which involved an early stopping
rule and an analysis based on time to transmission.
However, this example was simply an attempt to
show that an adaptive design can be used to ob-
tain more agreeable allocation proportions and to
increase the success rate. A simulation study incor-
porating the delayed response is presented in Yao
and Wei (1996). They conclude that the RPW rule is
better than equal allocation for this example, and,
in fact, there is minimal loss of power.

Remark 8. This illustration should not be con-
fused with a blanket endorsement of the RPW rule.
It is, perhaps, the most simplistic randomized GPU
design for two treatments. However, the rule is quite
arbitrary. In addition, early stopping may have been
a possibility in this illustration, had an appropriate
stopping rule been determined a priori (see Rosen-
berger and Sriram, 1996, for one such rule). Also, pA
and pB are not known in advance. A design should
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be chosen which protects patients well under a va-
riety of models.

Remark 9. Care must be taken in choosing the
initial urn composition, as a very successful exper-
imental therapy may induce a run that results in
little control data—data that may be critical for
long-term follow-up and evaluation. In practice,
simulation may be an essential tool in visualizing
the role of the initial urn composition.

Remark 10. The RPW rule was recently used in
a trial of fluoxetine in depression (Tamura, Faries,
Andersen and Heiligenstein, 1994).

2.3 Extension to K Treatments

Wei (1979) discusses using the GPU for clinical
trials ofK treatments. One example of a GPU would
be that a success on treatment i generates K − 1
type i particles, and a failure on treatment i gener-
ates one particle for each of the K − 1 other types.
However, it may seem counterintuitive to add par-
ticles to an urn of other types when a failure on i
gives you no information about efficacy for the other
K− 1 treatments. In fact, if one treatment is doing
particularly badly, some might argue that it would
be unethical to add particles of that type to the urn
as a result of another treatment’s failure.

Several other methods seem more reasonable in
this scenario. One idea, due to Li (1995), is to gen-
erate particles only of the same type if there is a
success, and to do nothing if there is a failure. This
leads to a diagonal design matrix. This design is no
longer a GPU, but it has other nice properties. In
fact, the urn composition will converge to a single
particle type, representing the best treatment. The
rate of convergence is obviously important here and
should be explored.

An extension of this design is to add particles
representing the same treatment for a success and
to remove particles from the urn representing the
same treatment for a failure (I am indebted to Pro-
fessor Stephen Durham for suggesting this design).
This leads to a class of diagonal design matrices
with potentially negative entries. There is a poten-
tial in the latter design for a particle type to die out.
That may be ethically desirable. If not, one could im-
pose some outside random immigration process to
replenish the urn periodically. Such designs have a
lot of potential theoretically, as they can be embed-
ded into continuous-time birth-and-death processes,
for which exact and asymptotic results are already
established.

Andersen, Faries and Tamura (1994) describe an
urn scheme where a success on treatment i gener-

ates a type i particle, and a failure generates frac-
tional particles for the other K− 1 types, allocated
in the same proportion as the urn composition at the
previous stage. Such a design may provide a more
logical and attractive allocation rule than a GPU,
but theoretical results would be difficult to obtain
because the generations are random functions de-
pendent on all previous splits and generations.

2.4 Dose–Response Studies

Rosenberger, Flournoy and Durham (1996) sug-
gest using the GPU model for a dose–response
study. Consider now the sequential random allo-
cation of K dose-levels, x1 < · · · < xK, of a single
therapy. The goal of the study is to find the optimal
dose level, by estimating a quantile µ correspond-
ing to a target percentile 0 of the dose–response
curve (see Figure 1). Here, instead of p being a vec-
tor of success probabilities, it represents the vector
of toxicity probabilities.

In contrast to the K treatment problem, we can
assume a monotonically nondecreasing response
function, pi = F�xi�, which need not be of any par-
ticular parametric form, and thus we can establish
ethical and logical rules for the generation of new
particles. For example, a toxicity at level xi gener-
ates particles at level xi−1; a nontoxicity at level xi
generates particles at level xi and xi+1, with the
specific rule dependent on ethical considerations
(as is the choice of 0). This gives rise to a class of
tridiagonal design matrices. In Section 5, we will
compare the following specific rule with two other
adaptive designs for dose–response studies:

GPU rule 1. If patient j experiences a toxicity
at level xi add ρ particles at level xi−1; if patient j
does not experience a toxicity, r particles are added
at level xi+1 and ρ−r particles are added at level xi.

Fig. 1. Typical dose–response curve.
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E =




ρ− rq1 rq1 0 0 · · · 0 0

ρp2 �ρ− r�q2 rq2 0 · · · 0 0

0 ρp3 �ρ− r�q3 rq3 · · · 0 0

0 0 ρp4 �ρ− r�q4 · · · 0 0
:::

:::
:::

:::
: : :

:::
:::

0 0 0 0 · · · �ρ− r�qK−1 rqK−1

0 0 0 0 · · · ρpK ρqK




:

Suitable boundary conditions give the design ma-
trix shown above.

Remark 11. Occasionally in toxicity studies, it
will be discovered that p is not monotonic. There
may be a tail-off at the upper end of the dose–
response curve. The GPU designs are inappropri-
ate in this setting. Schmoor and Schumacher (1992)
discuss adaptive designs for this scenario.

Remark 12. Prior information on toxicity can be
incorporated into the design via the initial urn com-
position, and v can be computed under a wide va-
riety of choices of p and different rules, so that an
appropriate design can be established.

Maximum likelihood estimation of µ can be ac-
complished if we assume that pi follows a location-
scale family, that is,

pi = F
(
xi − α
β

)
;

for location-scale parameters α and β. The ML es-
timators α̂ and β̂ can be computed using the chain
rule, and the equation µ = α+βF−1�0� can be used
to estimate µ. The asymptotic normality of µ̂ follows
from the continuous mapping theorem.

Remark 13. If F is, for instance, a logistic dis-
tribution, then α̂ and β̂ are obtainable using a stan-
dard logistic regression procedure, and F−1�0� is
simply ln�0/�1−0��, the logit. The correct variances
can be obtained by computing the Fisher’s informa-
tion matrix directly using the GPU likelihood (see
Rosenberger and Grill, 1996).

E =




2p10 + 2p11 2p12 0 0 0

2p20 + p21 p21 2p22 0 0

p30 p30 + p31 p31 2p32 0

0 p40 p40 + p41 p41 2p42

0 0 p50 p50 + p51 p51 + 2p52



:

2.5 Combination Toxicity–Efficacy Studies

Some dose–response studies are not only inter-
ested in the toxicity of a dose level of a drug, but
also its efficacy in treating the disease. Higher dose
levels may be more efficacious, but there may be
a threshold at which the drug becomes toxic. Like-
wise, nontoxic dose levels that are not efficacious
are of little use. In this section, we consider a GPU
model with trichotomous response. Let pi2 be the
underlying probability that dose level i is nontoxic,
but also not efficacious. Let pi1 be the probability
that dose level i is not toxic and efficacious (what
we want). Let pi0 be the probability of toxicity at
level i (in which case we are not interested in effi-
cacy considerations). Then appropriate designs can
be developed which generate particles at higher lev-
els if there is no toxicity and no efficacy response, at
the same level if there is no toxicity and a response
and at lower levels if there is toxicity.

As an example, consider the following rules.

GPU rule 2. If the patient is assigned to level
xi and there is no response and no toxicity, add two
particles at level xi+1. If there is response and no
toxicity, add one particle at level xi and one at level
xi−1. If there is toxicity, add one particle at level
xi−1 and one at level xi−2. (Of course, we also need
appropriate boundary conditions at i=1 and i=K.)

GPU rule 3. Same as rule 2, except if there is
no response and no toxicity, add one particle to level
xi+1 and one particle to level xi. This rule is slightly
more conservative at the “high end.”

If we have five dose levels, rule 2 gives the design
matrix shown below.
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Table 1
Asymptotic proportions of assignment for a reasonable response
curve; R = efficacy response, NR = no efficacy response, T =

toxicity, NT = no toxicity

i pi2 pi1 pi0 vi

Dose level NR, NT R, NT T Rule 2 Rule 3

1 0.882 0.098 0.020 0.080 0.250
2 0.475 0.475 0.050 0.209 0.351
3 0.414 0.506 0.080 0.258 0.231
4 0.356 0.534 0.110 0.245 0.118
5 0.301 0.559 0.140 0.208 0.050

The design matrix for rule 3 can be similarly de-
rived. Table 1 shows the asymptotic proportions
assigned to each dose level, v, under rules 2 and
3 when a typical dose-response relationship ex-
ists. Table 2 gives v when higher dose levels are
extremely toxic. GPU rule 3 appears to be better
because it protects patients particularly well when
there is extreme toxicity at the higher dose levels.
For the probabilities in Table 1, (3) gives the ex-
pected asymptotic proportion of toxicity as 8.9% for
rule 2 and 6.1% for rule 3. In Table 2, the asymp-
totic proportion of toxicity is 33% for rule 2 and only
22% for rule 3. GPU rule 3 again appears better.
The two designs give surprisingly different results,
given the slight design variations. This emphasizes
the need for careful design selection.

2.6 Preliminary Consideration
of Rates of Convergence

The rate of convergence of Ni�n�/n to vi is of
considerable interest in practice. Some very pre-
liminary simulations have shown that, for K = 2,
the RPW has a very fast rate of convergence. The
asymptotic distribution was approximated in some
cases for trials as small as 7–12. Similarly, GPU rule
1 in Section 2.4 converged very rapidly. However,
tridiagonal designs in Section 2.4 were very slow
to converge and were quite unstable when K = 6.

Table 2
Asymptotic proportions of assignment when high dose levels are
very toxic; R = efficacy response, NR = no efficacy response, T =

toxicity, NT = no toxicity

i pi2 pi1 pi0 vi

Dose level NR, NT R, NT T Rule 2 Rule 3

1 0.855 0.045 0.100 0.195 0.403
2 0.400 0.400 0.200 0.320 0.366
3 0.610 0.030 0.360 0.216 0.146
4 0.430 0.010 0.560 0.168 0.066
5 0.260 0.000 0.740 0.100 0.020

Some conclusions can be drawn from these prelim-
inary simulations and also some theoretical results
on rates of convergence in the GPU (see the Ap-
pendix):

1. The rate of convergence is highly dependent upon
how “spread out” the mass in the matrix E is. In
particular, convergence is slower when most of
the mass is near the diagonal.

2. The largerK is, the slower convergence is (unless
the mass is well distributed throughout E).

3. The initial urn composition is critical in the rate
of convergence.

Point 3 is obvious, as one would expect more
rapid convergence when the initial urn distribution
is close to the asymptotic distribution. Points 1 and
2 are more subtle, and although the theoretical jus-
tification is available (see the Appendix), one can
offer the following heuristic justification. Putting
most of the mass of E on or close to the diagonal al-
lows generations only around the same levels as the
previous splits. So reaching the stationary distribu-
tion in the tails may take longer than if generations
occurred over a wider spread. There is a potential,
when most of the mass is on the diagonal, to get
“hung up” at a specific treatment or level for a long
period of time. The three points listed above merit
further theoretical study and simulation.

3. MORE GENERAL RESPONSES

3.1 Continuous Outcomes

The urn models we have discussed thus far are
applicable for binary or polychotomous response.
Some clinical trials have continuous outcomes, such
as blood pressure, for instance. Rosenberger (1993)
develops a biased coin randomization scheme for
continuous outcomes based on a linear rank statis-
tic. Assume there are two treatments, say A and B.
Define Tn to be 1 if patient n was assigned to A, 0
otherwise. Each patient is randomized with a prob-
ability that is a function of the current value of the
rank statistic. Let rij be the rank of the ith patient
based on some outcome variable after j outcomes
are available (i < j�, and let aij be some score
function of the rij’s. Let the scores be centered so
that

∑j
i=1 aij = 0. Then patient n is randomized to

treatment A with probability

pn =
1
2

{
1+

∑n−1
i=1 ai;n−1�Tj − 1

2�∑n−1
i=1 a

+
i;n−1

}
;

where the denominator represents the sum of the
positive scores.
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One can use a permutation test based on the rank
scores to test hypotheses of the treatment effect. The
form of the statistic is given in Rosenberger (1993),
and simulations indicate that it is asymptotically
standard normal.

3.2 Survival Trials

Many clinical trials are survival trials with stag-
gered entry and censoring. The adaptive designs
discussed so far are inappropriate for this type of
trial, where events may occur years after random-
ization. An idea similar to that in the previous sec-
tion was proposed, but never explored, by Rosen-
berger and Lachin (1993). The proposal is random-
ization according to an adaptive biased coin, the
bias being some function of the difference in the
survival curves for two competing treatments. The
Kaplan–Meier estimate is not appropriate, due to
the instability in the tails. One possibility is using
the standard Mantel (1966) formulation of the lo-
grank statistic. The idea is similar in principle to
that proposed by Flehinger and Louis (1971), who
assumed exponential survival, established a stop-
ping rule and studied adaptive allocation schemes
(primarily involving the absolute difference in num-
bers of events between two treatments). Recently,
Yao and Wei (1996) proposed a similar technique
using the Gehan–Wilcoxon statistic.

Let �0 < t1 < · · · < tL� be ordered event times for
all patients in the trial (where ti is the time from
randomization to event; i.e., allowing for staggered
entry). In the Mantel formulation, at each event
time ti, a 2 × 2 table is constructed with δi = 1
if the event occurred on treatment 1, δi = 0 oth-
erwise (in the continuous time model, ties are as-
sumed not to occur). Let nji be the number of pa-
tients at risk on treatment j, j = 1;2, immediately
prior to the event time, and let Ni = n1i+n2i. Then
under the hypergeometric model, the numerator of
the logrank statistic computed at time t is given by∑L�t�
i=1 �δi−n1i/Ni�, where, for convenience, we make

L a function of t (i.e., the total number of events
occurring up to and including the time of computa-
tion, t).

Now the idea is to find a mapping of the logrank
statistic to a function on �0;1� which is symmetric
(to the extent possible) about 1/2. Note that when
there is no censoring

−n1

L�t�∑
i=1

1
N− i ≤

L�t�∑
i=1

{
δi −

n1i

Ni

}
≤ n2

L�t�∑
i=1

1
N− i ;

where nj is the total number randomized to treat-
ment j up to time t and N = n1+n2. (This bound is
conservative if there is censoring.) Let =t− be the his-

tory of the events and censorings to t. Let Y�t� = 1
if a patient is randomized to treatment 1 at time t,
and 0 if the patient is randomized to treatment 2 at
time t. It seems that the most natural mapping for
an adaptive biased coin parameter would be

pt− ≡ E�Y�t��=t−�

= 1
2

(
1−

∑L�t−�
i=1 �δi − �n1i/Ni��

max�n1; n2�
∑L�t−�
i=1 �1/�N− i��

)
:

Properties of the allocation scheme, in particular
the proportion assigned to the inferior treatment,
should be explored by simulation. Of particular con-
cern with staggered entry is that the allocation rule
may put heavy weight on the early events. Note that
the logrank statistic is simply the coefficient in the
Cox proportional hazard model if there are no co-
variates (see, e.g., Kalbfleisch and Prentice, 1980).
Hence, the treatment effect coefficient in the Cox
model can be used in the mapping if there are co-
variates. This is an important point, because most
survival trials have numerous covariates which are
being constantly monitored besides end-point sta-
tus.

Remark 14. Some clinical trials are long-term
survival trials, where outcomes are sometimes not
available until years after the accrual period. Obvi-
ously, adaptive designs are not applicable for these
trials.

4. MORE DESIGNS FOR DOSE–RESPONSE

4.1 Random Walk Rules

Let us return to the dose–response scenario of
Section 2.4. While randomization may be desirable
to protect from selection bias, and has been pro-
moted by many (see, e.g., Temple, 1981, and Storer,
1989), the GPU allows positive probabilities of large
jumps in dose levels between successive patients.
Clinicians may be wary about this. An alternative
to the GPU, with similar goals, is the random walk
rules of Durham and Flournoy (1994). These ran-
dom walk rules are a variant on the familiar up-and-
down rules (see Anderson, McCarthy and Tukey,
1946; Dixon and Mood, 1948; Derman, 1957). Here,
if the previous patient was assigned to level xi,
i = 2; : : : ;K−1, the next patient will be assigned to
level xi+1 with probability pi, to level xi with prob-
ability ri and to level xi−1 with probability qi, such
that pi + ri + qi = 1 (with suitable boundary con-
ditions for i = 1 and i = K). The parameters pi,
ri and qi depend on the previous patient’s response
and some random event, such as the result of a bi-
ased coin flip, where the bias is b.
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From random walk theory, we have Ni�n�/n con-
verges to a constant πi almost surely, where πi is the
ith element of the solution to the equation pP = p;
where P is the random walk transition matrix (see
Karlin and Taylor, 1975). Exact results are derived
both for the treatment assignment distribution
(Durham, Flournoy and Montazer-Haghighi, 1993)
and for the total number of toxicities (Flournoy,
Durham and Rosenberger, 1995).

One example of a random walk rule is as follows:

RWR rule 1. If patient j experiences a toxicity
at level xi, assign patient j to level xi−1. If patient
j has no toxicity at level xi, flip a biased coin. If the
coin lands heads up, assign patient j + 1 to level
xi+1. If the coin lands heads down, assign patient
j+ 1 to level xi. (Again, we require suitable bound-
ary conditions.)

Obviously, the bias b will depend on ethical re-
quirements. In our case, referring to Figure 1, b will
depend on the choice of 0. Heuristically, in targeting
low values of 0, it would make sense not to go up
too quickly. A small value of b will allow for this. In
fact, Durham and Flournoy (1994) prove the elegant
result that if b = 0/�1 − 0�, 0 ≤ 0:5; for RWR rule
1, the asymptotic distribution of assignment πi will
be unimodal around the target quantile µ. Similar
results are obtainable for any random walk design,
assuming certain monotonicity conditions.

The maximum likelihood theory for the GPU
applies analogously for random walk rules (Rosen-
berger, Durham and Flournoy, 1996). Again, there
is no requirement that responses be dichotomous,
and designs similar to those in Section 2.5 are
possible. Finally, there is some work being done
now to formulate random walk designs under a
delayed-response model (personal communication,
Nancy Flournoy).

4.2 Continual Reassessment Method

If targeting a specific quantile is the primary
goal of the study rather than estimation, then one
may not need to spread the allocations unimodally
around the target quantile. Instead, one might want
to converge successively closer to the target quan-
tile, and choose the last experimental design point
as the optimal dose level. These goals closely relate
to the stochastic approximation methods originated
by Robbins and Monro (1951) and expanded upon by
Wu (1985). While these methods are more relevant
to large sample sequential experiments, O’Quigley,
Pepe and Fisher (1990) have developed an adaptive
Bayesian design called the continual reassessment

method (CRM), which has performed quite well in
small sample dose–response study simulations.

CRM rule. In the CRM subjects are sequen-
tially entered into the study, and, after each ob-
servation, Bayes’s formula is used to estimate the
dose level x∗ associated with the target probability
of response 0. The original paper considers a one-
parameter model Fa�xi�, the one-parameter logistic
distribution with parameter a ∈ A. (O’Quigley and
Chevret, 1991, also explore a two-parameter logis-
tic model where one parameter is known.) An initial
prior g�a� is assumed. (Chevret, 1993, explores var-
ious priors, although a gamma prior was suggested
initially.) In the notation of O’Quigley, Pepe and
Fisher (1990), let �j denote the prior history of allo-
cation and responses of the previous j− 1 subjects,
and let f�a;�j� be a nonnegative function summa-
rizing accumulated information about the parame-
ter a. Associated prior probabilities of toxicity, pi,
are chosen at each prespecified dose level xi. Ex-
perimentation begins at level xs, 1 ≤ s ≤ K, the
level at which the chosen prior probability of tox-
icity is closest to 0. Given the observed response
on subject j, f�a;�j+1� is computed from f�a;�j�
using Bayes’s formula. Estimates of response prob-
abilities at dose level i, denoted 0ij, are reevaluated
via

∫
AFa�xi�f�a;�j�da. The jth patient is then

assigned to the level xi so that 0ij is closest to 0.
Absolute or squared error can be used as the loss
function.

The recommended dose calculated after n patients
is the estimate of x∗. Other estimators are explored
by O’Quigley (1992).

A drawback of this design, as compared to the
RWR rules already discussed, is that exact results
are intractable, and the performance of the design
must rely on simulation results. It also relies on
a parametric model, unlike the previous nonpara-
metric designs, although the design appears to be
robust to other distributions (personal communica-
tion, John O’Quigley).

4.3 A Comparison of Three Designs
for Dose–Response

It can be shown (thanks to Professor Stephen D.
Durham for originally pointing this out) that any
random walk rule has a corresponding tridiagonal
GPU rule with the same stationary distribution (i.e.,
p for the random walk is the same as v for the
GPU). In fact, if we choose ρ and r from GPU rule
1 so that 0 = r/�r + ρ�, then, asymptotically, dose
levels are allocated unimodally around the unknown
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quantile µ corresponding to the value of 0 (using the
same argument as given by Durham and Flournoy,
1994, for the random walk rules). This is analogous
to setting the bias of the coin to be 0/�1−0� for RWR
rule 1. So we now have three rules which target any
unknown quantile of the dose–response curve: GPU
rule 1 and RWR rule 1, which asymptotically cen-
ter the dose level assignments unimodally around
µ, and the CRM rule, which sequentially gets closer
to µ. It is important to note that, for years, prac-
titioners have used ad hoc adaptive designs with
no theoretical analysis of their consequences (see,
e.g., Storer, 1989; Flournoy, 1993; and the “standard
method” of Korn et al., 1994).

It would be interesting to compare the three
methods discussed here for a given value of 0.
Depending on the goals of the study, many dose–
response studies (i.e., phase I clinical trials) draw
conclusions on the basis of very small numbers of
patients. We performed a simple simulation study
to compare GPU rule 1, RWR rule 1 and the CRM
rule for very small samples. The simulation is
similar to that described by Korn et al. (1994).

Details of the simulation. We simulated 2,000 repli-
cations of GPU rule 1 and RWR rule 1 and com-
pared results on the CRM rule contained in Korn
et al. (1994, Table I). Unfortunately, no measures of
variability are given in Korn et al. (1994). In Table
3, we present results for 0 = 0:25 and six dose lev-
els. For GPU rule 1, we therefore chose r = 1 and
ρ = 3: For RWR rule 1, we set b = 1/3. We used
the same start-up and stopping rules as did Korn et
al. (1994): we start at level 1 and go up successively
until there is a toxicity, and then begin implement-
ing the rule; we stop when a patient is assigned
to a dose level at which six previous patients have
already been assigned. In Table 3, we report the
percentages treated at each dose level, the average
number of patients treated, the average number of
toxicities and the observed proportion of toxicity.

GPU rule 1 appears to do slightly better with re-
gard to requiring fewer patients to be treated and
fewer toxicity per trial, on average, but the total tox-
icity is identical for the three rules. All three have
unimodal assignment distributions around the true
25th percentile. We tried simulations to target other
quantiles and found similar results. All three rules
behave similarly, with the RWR rule generally re-
quiring slightly more patients per trial.

Given that the three designs are comparable,
which should be used? This depends on the goal
of the experiment. The GPU has the disadvantage
of potentially skipping dose levels. The CRM can
be restricted (as it was in the simulations of Korn

Table 3
Simulation results comparing GPU rule 1, RWR rule 1 and CRM
rule; p = �0:05;0:10;0:25;0:35;0:50;0:70�, 0 = 0:25 �true µ = 3�,

2,000 replications

GPU RWR CRM

Percentage treated at each level
Level 1 15 13 13
Level 2 22 24 22
Level 3 24 27 28
Level 4 21 21 21
Level 5 14 11 12
Level 6 4 4 3

Average number of patients
treated per trial 12.5 15.1 13.4

(25th percentile, 75th percentile) �10;15� �12;18� �12;15�
Average number of toxicities

per trial 3.3 3.9 3.5
Total toxicities (%) 26 26 26

et al., 1994) to assigning only adjacent dose lev-
els, and the RWR rule can only assign to adjacent
levels. It is interesting to note that, even though
very slow rates of convergence to v were reported
for tridiagonal GPU rules in Section 2.6, the uni-
modality around the target quantile appears to
become evident quite quickly from our simulations.
Certainly, the random walk rules are easiest to
implement. The CRM has the disadvantage of re-
quiring numerical integration. It should be noted
that simulation was not necessary for the random
walk rules. For a fixed n, the exact distributional
results of the total toxicity and the assignment dis-
tribution is worked out. For details, see Durham,
Flournoy and Rosenberger (1996). Software is cur-
rently being developed which will give the exact
distributional results for any random walk design.
In terms of quantile estimation, we have discussed
only maximum likelihood estimation in the con-
text of the random walk rules and the GPU rules.
Other estimators for the random walk rules are
explored and compared in Durham, Flournoy and
Rosenberger (1996). Finally, if selection bias is an
issue, the GPU would be the best choice, as it is
completely randomized. Selection bias could be a
potential problem in particular with the CRM rule.

5. CONCLUSION

We have discussed recent areas of research in
adaptive designs for human experimentation, focus-
ing in particular on randomized designs for dose–
response studies and phase III clinical trials. A few
admonitions are advisable at this point regarding
adaptive designs for phase III trials. First, very suc-
cessful treatments may also be toxic, and if prelim-
inary toxicity studies have not been performed, it
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may not be wise to adapt early until toxicity is ruled
out. Perhaps an equal allocation strategy could be
employed for the first m patients, until sufficient
data are accrued; then adaptation can follow for the
remaining n−m patients. Second, there is the sub-
tle potential for bias in that patients aware of the
principles underlying adaptive designs may want to
be randomized late in the trial, to have a better
chance of being assigned to the better therapy. Such
accrual bias may necessitate the blinding of the pa-
tient to his or her sequence in the randomization
scheme, leading to some ethical concerns.

With respect to dose–response studies or phase I
trials, we have focused on adaptive designs which
target an unknown quantile of the underlying
dose–response curve. There is a large recent liter-
ature on designs and methods for phase I clinical
trials that would be relevant here if space allowed.
The interested reader is referred to Flournoy (1993)
(which is based on elegant results of Tsutakawa,
1980), Russek-Cohen and Simon (1994), Gooley,
Martin, Fisher and Pettinger (1994), and Gastonis
and Greenhouse (1992), to name a few.

Potential applications abound in other areas
(see Flournoy and Rosenberger, 1995, a recent
IMS monograph). Recent animal rights activism
may make these designs timely for more efficient
and ethical animal bioassay. Industrial appli-
cations have a big potential, because issues of
cost-effectiveness and efficiency replace ethical
considerations. For example, suppose in a quality
control study different stress levels are applied to
some items sequentially to find the stress–response
relationship. For cost-efficiency, one would like to
destroy as few of the items as possible. Finally, the
author is currently using the GPU in neurophys-
iological threshold experiments (see Rosenberger
and Grill, 1996), where a “hearing threshold” is
determined in a given individual. Randomizing
the sequence of hearing stimuli is desirable, while
efficiently estimating the threshold-response curve.
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APPENDIX:
RATES OF CONVERGENCE FOR THE GPU

Some preliminary theoretical results on rates of
convergence for the GPU are as follows. As before,
let ρ be the maximal eigenvalue for E, and let λ be
the second largest eigenvalue, with corresponding
right eigenvector ξ. By Athreya and Karlin (1968),
we have that if ρ > 2 Reλ, then

�A:1� n−1/2ξ · Yn →L Normal�0; c�;
where c is a constant. If ρ = 2 Reλ, then the same
result holds with a normalization of n lnn. If ρ <
2 Reλ, then

�A:2� n−λ/ρξ · Yn →W a.s.;

where W is an unknown (presumably nonnormal)
random variable (determining the distribution of W
is an open problem). Note that the rate of conver-
gence in (A.2) is the ratio of the second and first
eigenvalues, so their relative magnitude is driving
the speed. (It is also suggestive that the limit, being
nonnormal, may be less stable.) The relative mag-
nitude of ρ and 2 Reλ depends on how much mass
the matrix has on or near the diagonal (to see this,
perturb any diagonal matrix and notice the effect
on the eigenvalues). As discussed in Section 2.6, the
more spread out the mass is throughout the matrix,
the faster the rate of convergence.

The limit laws in (A.1) and (A.2) are rates on the
urn composition vector. How does this relate to the
vector of splits Nn = �N1�n�; : : : ;NK�n��? Smythe
(1996) has shown, under certain conditions on the
eigenvectors of E, that (A.1) holds when Yn is re-
placed by Nn (with different asymptotic variance)
and that n−1/2Nn is jointly asymptotically normal
when ρ > 2 Reλ.

REFERENCES

Andersen, J., Faries, D. and Tamura, R. (1994). A randomized
play-the-winner design for multi-arm clinical trials. Comm.
Statist. A—Theory Methods 23 309–323.

Anderson, T. W., McCarthy, P. J. and Tukey, J. W. (1946).
“Staircase” method of sensitivity testing. Naval Ordinance
Report 65-46, Statistical Research Group, Princeton.

Anscombe, F. (1963). Sequential medical trials. J. Amer. Statist.
Assoc. 58 365–384.

Athreya, K. B. and Karlin, S. (1967). Limit theorems for the
split times of branching processes. Journal of Mathematics
and Mechanics 17 257–277.

Athreya, K. B. and Karlin, S. (1968). Embedding of urn
schemes into continuous time Markov branching processes
and related limit theorems. Ann. Math. Statist. 39 1801–
1817.

Bartlett, R. H., Roloff, D. W., Cornell, R. G., Andrews, A. F.,
Dillon, P. W. and Zwischenberger, J. B. (1985). Extracor-
poreal circulation in neonatal respiratory failure: a prospec-
tive randomized study. Pediatrics 76 479–487.



148 W. F. ROSENBERGER

Begg, C. B. (1990). On inferences from Wei’s biased coin design
for clinical trials, with discussion. Biometrika 77 467–484.

Byar, D. P., Simon, R. M., Friedewald, W. T., Schlesselman,
J. J., DeMets, D. L., Ellenberg, J. H., Gail, M. H. and
Ware, J. H. (1976). Randomized clinical trials—perspectives
on some recent ideas. New England Journal of Medicine 295
74–80.

Chevret, S. (1993). The continual reassessment method in can-
cer phase I clinical trials: a simulation study. Statistics in
Medicine 12 1093–1108.

Coad, D. S. (1991). Sequential tests for an unstable response
variable. Biometrika 78 113–121.

Coad, D. S. (1992). A comparative study of some data-dependent
allocation rules for Bernoulli data. J. Statist. Comput. Sim-
ulation 40 219–231.

Colton, T. (1963). A model for selecting one of two medical treat-
ments. J. Amer. Statist. Assoc. 58 388–401.

Connor, E. M., Sperling, R. S., Gelber, R., Kiselev, P., Scott,
G., O’Sullivan, M. J., VanDyke, R., Bey, M., Shearer, W.,
Jacobson, R. L., Jiminez, E., O’Neill, E., Bazin, B., Del-
fraissy, J., Culnane, M., Coombs, R., Elkins, M., Moye, J.,
Stratton, P. and Balsley, J. (1994). Reduction of maternal-
infant transmission of human immunodeficiency virus type
1 with zidovudine treatment. New England Journal of
Medicine 331 1173–1180. (Report written for the Pediatric
AIDS Clinical Trials Group Protocol 076 Study Group.)

Cornfield, J., Halperin, M. and Greenhouse, S. W. (1969). An
adaptive procedure for sequential clinical trials. J. Amer.
Statist. Assoc. 64 759–770.

Derman, C. (1957). Nonparametric up and down experimenta-
tion. Ann. Math. Statist. 28 795–798.

Dixon, W. J. and Mood, A. M. (1948). A method for obtaining
and analyzing sensitivity data. J. Amer. Statist. Assoc. 43
109–126.

Durham, S. D. and Flournoy, N. (1994). Random walks for
quantile estimation. In Statistical Decision Theory and Re-
lated Topics V (S. S. Gupta and J. O. Berger, eds.) 467–476.
Springer, New York.

Durham, S. D., Flournoy, N. and Montazer-Haghighi, A. A.
(1993). Up-and-down designs. In Computer Science and
Statistics: Interface (M. E. Tarter and M. D. Lock, eds.) 25
375–384. Interface Foundation of North America, Berkeley.

Durham, S. D., Flournoy, N. and Rosenberger, W. F. (1996). A
random walk rule for phase I clinical trials. Biometrics. To
appear.

Farewell, V. T., Viveros, R. and Sprott, D. A. (1993). Statis-
tical consequences of an adaptive treatment allocation in a
clinical trial. Canad. J. Statist. 21 21–27.

Flehinger, B. J. and Louis, T. A. (1971). Sequential treatment
allocation in clinical trials. Biometrika 58 419–426.

Flournoy, N. (1993). A clinical experiment in bone marrow
transplantation: estimating a percentage point of a quantal
response curve. In Case Studies in Bayesian Statistics (C.
Gastonis, J. S. Hodges, R. E. Kass and N. D. Singpurwalla,
eds.) 324–336. Springer, New York.

Flournoy, N., Durham, S. D. and Rosenberger, W. F. (1995).
Toxicity in sequential dose–response studies. Sequential
Analysis 14 217–227.

Flournoy, N. and Rosenberger, W. F., eds. (1995). Adaptive
Designs. IMS, Hayward, CA.

Gantmacher, F. R. (1959). Matrix Theory 2. Chelsea, New York.
Gastonis, C. and Greenhouse, J. B. (1992). Bayesian methods

for phase I clinical trials. Statistics in Medicine 11 1377–
1389.

Gooley, T. A., Martin, P. J., Fisher, L. D. and Pettinger, M.
(1994). Simulation as a design tool for phase I/II clinical

trials: an example from bone marrow transplantation. Con-
trolled Clinical Trials 15 450–462.

Hardwick, J. (1989). Comment: recent progress in clinical trial
designs that adapt for ethical purposes. Statist. Sci. 4 327–
336.

Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical
Analysis of Failure Time Data. Wiley, New York.

Karlin, S. and Taylor, H. M. (1975). A First Course in Stochas-
tic Processes. Academic Press, New York.

Korn, E. L., Midthune, D., Chen, T. T., Rubinstein, L. V.,

Christian, M. C. and Simon, R. M. (1994). A comparison
of two phase I trial designs. Statistics in Medicine 13 1799–
1806.

Li, W. (1995). Sequential designs for opposing failure functions.
Ph.D. dissertation, College of Arts and Sciences, American
Univ., Washington.

Mantel, N. (1966). Evaluation of survival data and two new
rank order statistics arising in its consideration. Cancer
Chemotherapy Reports 50 163–170.

O’Quigley, J. (1992). Estimating the probability of a toxicity at
the recommended dose following a phase I clinical trial in
cancer. Biometrics 48 853–862.

O’Quigley, J. and Chevret, S. (1991). Methods for dose finding
studies in cancer clinical trials: a review and results of a
Monte Carlo study. Statistics in Medicine 10 1647–1664.

O’Quigley, J., Pepe, M. and Fisher, L. (1990). Continual re-
assessment method: a practical design for phase I clinical
trials in cancer. Biometrics 46 33–48.

Robbins, H. (1952). Some aspects of the sequential design of
experiments. Bull. Amer. Math. Soc. 58 527–535.

Robbins, H. and Monro, S. (1951). A stochastic approximation
method. Ann. Math. Statist. 29 400–407.

Rosenberger, W. F. (1992). Asymptotic inference problems aris-
ing from clinical trials using response-adaptive treatment
allocation. Ph.D. dissertation, Graduate School of Arts and
Sciences, George Washington Univ.

Rosenberger, W. F. (1993). Asymptotic inference with response-
adaptive treatment allocation designs. Ann. Statist. 21
2098–2107.

Rosenberger, W. F., Flournoy, N. and Durham, S. D. (1996).
Asymptotic normality of maximum likelihood estimators
from multiparameter response-driven designs. J. Statist.
Plann. Inference. 55.

Rosenberger, W. F. and Grill, S. (1996). A randomized sequen-
tial design for threshold experiments. Revised for Statistics
in Medicine.

Rosenberger, W. F. and Lachin, J. M. (1993). The use of
response-adaptive designs in clinical trials. Controlled Clin-
ical Trials 14 471–484.

Rosenberger, W. F. and Sriram, T. N. (1996). Estimation for an
adaptive allocation design. J. Statist. Plann. Inference. 55.

Royall, R. M. (1991). Ethics and statistics in randomized clini-
cal trials (with discussion). Statist. Sci. 6 52–62.

Russek-Cohen, E. and Simon, R. M. (1994). Selecting the best
dose when a monotonic dose–response relation exists. Statis-
tics in Medicine 13 87–95.

Schmoor, C. and Schumacher, M. (1992). Adaptive statistical
procedures for the analysis of nonmonotone dose–response
relationships. Biometrie und Informatik in Medizin und Bi-
ologie 23 113–126.

Smythe, R. T. (1996). Central limit theorems for urn models.
Stochastic Process. Appl. To appear.

Storer, B. E. (1989). Design and analysis of phase I clinical
trials. Biometrics 45 925–937.



NEW DIRECTIONS IN ADAPTIVE DESIGNS 149

Tamura, R. N., Faries, D. E., Andersen, J. S. and Heiligen-

stein, J. H. (1994). A case study of an adaptive clinical trial
in the treatment of out-patients with depressive disorder.
J. Amer. Statist. Assoc. 89 768–776.

Temple, R. (1981). Government viewpoint of clinical trials. Drug
Information Journal 16 10–17.

Tsutakawa, R. K. (1980). Selection of dose levels for estimating
a percent point of a quantal response curve. J. Roy. Statist.
Soc. Ser. C 29 25–33.

Wei, L. J. (1979). The generalized Pólya urn design for sequen-
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