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THE BULLETIN OF SYMBOLIC LOGIC 

Volume 5, Number 2. June 1999 

NEW DIRECTIONS IN DESCRIPTIVE SET THEORY 

ALEXANDER S. KECHRIS 

?1. I will start with a quick definition of descriptive set theory: It is the 
study of the structure of definable sets and functions in separable completely 
metrizable spaces. Such spaces are usually called Polish spaces. Typical 
examples are R'n, Cn, (separable) Hilbert space and more generally all sep- 
arable Banach spaces, the Cantor space 2N, the Baire space NN, the infinite 
symmetric group SO, the unitary group (of the Hilbert space), the group of 
measure preserving transformations of the unit interval, etc. 

In this theory sets are classified in hierarchies according to the complexity 
of their definitions and the structure of sets in each level of these hierarchies 
is systematically analyzed. In the beginning we have the Borel sets in Polish 
spaces, obtained by starting with the open sets and closing under the op- 
erations of complementation and countable unions, and the corresponding 
Borel hierarchy (12, Ho?, A? sets). After this come the projective sets, ob- 
tained by starting with the Borel sets and closing under the operations of 

complementation and projection, and the correspondingprojective hierarchy 
(pI, HIl, A' sets). 

There are also transfinite extensions of the projective hierarchy and even 
much more complex definable sets studied in descriptive set theory, but I 
will restrict myself here to Borel and projective sets, in fact just those at the 
first level of the projective hierarchy, i.e., the Borel (Al), analytic (21) and 
coanalytic (Hn1) sets. 

Over the last one hundred years a great deal has been learned about the 
structure of definable sets in Polish spaces, and a very extensive theory has 
been developed (see, e.g., Moschovakis [25], Kechris [20]). My goal here 
is not to review these developments, which I could not possibly hope to do 
in a reasonably short article, but rather to discuss some new directions into 
which descriptive set theory has been moving over the last decade or so. 
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?2. Although Polish spaces and their definable subsets include a great 
many of the spaces studied in mathematics, there are also spaces of major 
importance which cannot be realized in any reasonable way as subsets of 
Polish spaces and are therefore genuinely new objects of study. These spaces 
have the form of quotients X/E for some Polish space X and a definable 
equivalence relation E on X. Here are some typical examples: 

(i) The orbit spaces of definable actions of Polish groups (i.e., topological 
groups whose topology is Polish). Here if (g, x) i- g . x is an action of the 
group G on the set X, the orbit space of the action is the set of all orbits 
{ G x : x E X }. This is X/E, where E is the corresponding orbit equivalence 
relation: x E y == G ? x = G . y. For instance, these include the orbit 

space of an irrational rotation on the unit circle T, the so-called dual of a 
second countable locally compact group G (e.g., a Lie group), i.e., the space 
of all irreducible unitary representations of G modulo unitary equivalence, 
or the space of all isomorphism classes of countable structures of a given 
(countable) language L. 

(ii) The "moduli space" of Riemann surfaces, i.e., the space of equivalence 
classes of Riemann surfaces modulo conformal equivalence. 

(iii) The space of measure classes of probability Borel measures on a Polish 
space, i.e., the quotient space of measures under the measure equivalence 
relation: ,u ~ v if and only if ,u, v are absolutely continuous with respect to 
each other, that is, have the same null sets. 

(iv) The set of Turing (arithmetical, etc.) degrees of subsets of N. 

It has long been recognized in diverse areas of mathematics that in many 
important cases such quotient spaces X/E cannot be viewed as reasonable 
subsets of Polish spaces and therefore the usual methods of topology, geom- 
etry, measure theory, etc., are not directly applicable for their study. Thus 
they are often referred to as singular spaces. Instead, the very popular these 
days, non-commutative counterparts of these classical mathematical disci- 
plines have been developed to provide the tools for their study. See Connes 
[2] for an illuminating discussion of these issues. 

The goal of a lot of recent work in descriptive set theory has been the 
development of the descriptive set theory of these singular spaces. This 
essentially amounts to the study of definable equivalence relations on Polish 
spaces and the closely related study of definable actions of Polish groups on 
such spaces. 

?3. To start with, a basic set theoretic question arising in this study is 
the problem of the definable cardinality of singular spaces. According to the 
classical Cantor cardinality theory, these spaces turn out in practice to be 
quite often equinumerous with the continuum R. However in these cases one 
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makes essential use of the Axiom of Choice in establishing a bijection with 
the reals. It is much more interesting and relevant in this context, however, 
to ask whether there is actually a definable such correspondence. In fact, it 
has long been understood that this is not the case. Indeed in many interesting 
cases these spaces have definable cardinality strictly greater than that of the 
continuum, in the sense that there is a definable embedding of the reals into 
them but not vice-versa. See, for example, the discussion in Connes [2], p. 
74. A standard example is the classical Vitali equivalence relation Eo on R, 
defined as follows: 

xEoy =>' x - y Q. 

Then it is easy to see that there is a Borel function f: IR -R IR with 

x y =--f (x) E f (y) 

but there is no Borel function g: R - IR with 

xE y g g(x) = g(y), 

so that there is a definable embedding of IR into IR/Eo = IR/Q but not 
vice-versa. 

Let me formalize these ideas: Suppose E, F are equivalence relations on 
Polish spaces X, Y respectively. A Borel reduction of E into F is a Borel 
map f: X -- Y such that 

(*) x E y ? f(x)F f(y) 

If such an f exists, we say that E Borel reduces to F and write 

E BF. 

(Other, more complex, notions of definability can be used instead of 
Borel but, by and large, the theory is quite analogous, and this is the most 
interesting and natural context anyway.) 

Since (*) above simply means that there is an embedding from X/E to 
Y/F with a Borel lifting, we think of it as saying that X/E Borel embeds in 
Y/F or that X/E has Borel cardinality at most that of Y/F. We take this as 
the basic notion of definable cardinality theory, playing the role of injection 
in classical Cantor cardinality theory. We also let 

E -B F E E<B F&F B E, 
E <BF = E <B F&F B E. 

So E B F intuitively means that X/E, Y/F have the same Borel cardi- 
nality and E <B F means that X/E has (strictly) smaller Borel cardinality 
than that of Y/F. 

Identifying the Polish space X with the equality relation =x on X, we can 
say that 

I <B Eo, 
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i.e., that R/Q has bigger Borel cardinality than the continuum (although it 
is obvious that classically IR and R/Q are equinumerous). 

One basic ingredient of current work in this area is the study and clas- 
sification of Borel cardinalities under <B. Although in classical Cantor 
theory quite often the cardinality of such a quotient space is just that of the 
continuum, it turns out that there is a rich and intricate structure of Borel 
cardinalities, which unveils many new and interesting phenomena. 

?4. Before I discuss specific results in this theory, it will be important 
to reinterpret these concepts in a different way, which actually motivates 
philosophically a lot of work in this area, since it deals with what appears to 
be a very interesting foundational problem. 

Mathematicians frequently deal with problems of classification of objects 
up to some notion of equivalence by invariants. Quite often these objects 
can be represented by elements of some Polish space X and the equivalence 
by a definable equivalence relation E on X. A complete classification of X up 
to E therefore consists of finding a set of invariants I and a map c: X -I I 
such that 

xE y = c(x) c(y). 

For this to have any meaning both I, c must be explicit or definable too and 
as simple and concrete as possible. For example, taking c(x) = [x]E = the 
equivalence class of x, or using the Axiom of Choice to select a point f (C) 
for each C e X/E and letting c(x) = f ([x]E) is clearly not an illuminating 
choice of invariants. What constitutes an interesting and useful complete 
classification is hard to define precisely, and varies from the very concrete, 
e.g., classification of finitely generated abelian groups up to isomorphism 
by invariants which are finite lists of integers, or Ornstein's classification of 
Bernoulli automorphisms up to conjugacy by the entropy, which is a real 
number, to somewhat more abstract and set theoretic, e.g., the Ulm classifica- 
tion of countable abelian p-groups up to isomorphism, where the invariants 
are essentially countable transfinite sequences from N U {oo}. However, 
the preceding ideas can be used to develop a mathematical framework for 
measuring the complexity of classification problems and understanding the 
nature of their complete invariants. 

Suppose two classification problems are represented by equivalence rela- 
tions E, F on Polish spaces X, Y respectively. Then E <B F simply means 
that any complete invariants for F work as well for E (after an appropriate 
composition by a Borel function), so in some sense E has a classification 
problem which is at most as difficult as that of F. In particular, E -B F 
means that E and F have, in some sense, equivalent classification problems, 
and E <B F means that E has a (strictly) simpler classification problem 
than F. 
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To cite a classical example, if we denote by E the unitary equivalence 
of normal operators on Hilbert space and by F the measure equivalence 
relation on any uncountable Polish space, then the Spectral Theorem implies 
that E EB F. 

?5. In describing the emerging picture of the hierarchy of complexity of 
classification problems, I will concentrate on analytic equivalence relations, 
which contain the vast majority of concrete examples occuring in practice. 
Among them, the most interesting subclasses are the Borel equivalence rela- 
tions and the orbit equivalence relations induced by Borel actions of Polish 
groups on Polish spaces. (Typical examples of Polish groups are the Lie 
groups, the infinite symmetric group Soo, the unitary group, the group of 
measure preserving transformations on [0, 1], the homeomorphism group of 
a compact metric space, etc.) These orbit equivalence relations are analytic 
but not always Borel. For example, the isomorphism relation on countable 
graphs, with say standard universe N, is the orbit equivalence relation of a 
Borel action of Soo and is not Borel. 

I will mostly in fact concentrate in this article on Borel equivalence re- 
lations. The theory of Polish groups and their actions is a whole subject 
in itself and its study also involves quite different issues not necessarily re- 
lated to the classification of their orbit spaces. I will not attempt to discuss 
this here except in connection with certain aspects of the theory of Borel 
equivalence relations that will come up later. Suffice it to say that some 
fundamental early work has been done by Glimm and Effros in the 1960s 
and Vaught, Burgess, Miller, Sami in the 1970s, and, in particular, the key 
Vaught transform was then introduced. An account of recent developments 
can be found in Becker-Kechris [1]. 

?6. So I will start by looking at the picture of the hierarchy of classifi- 
cation problems of Borel equivalence relations, i.e., the structure of Borel 
equivalence relations under the partial (pre)order <B. In the beginning 
things are simple enough. Denoting by X also the equality relation =x on 
X, we have that the following is an initial segment of <B: 

1<B 2 < 3 <B <B N, 

and N <B E for any Borel equivalence relation E not in this list. Next we 
have the Silver Dichotomy: (Silver [27]) If E is a Borel (even nI ) equivalence 
relation, then exactly one of the following holds: 

(i) E <B N 

or 

(ii) R <B E. 
This simply says that either E has countably many classes or perfectly 

many classes, i.e., there is a perfect set of E-inequivalent elements. 
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Thus 

1 <B 2 <B 3 <B *. <B N <B 

is an initial segment of <B and IR <B E for any Borel equivalence relation 
E not in this list. 

A well-known problem here is to find out if this dichotomy is also true 
for the orbit equivalence relation induced by a Borel action of any given 
Polish group G. This is the Topological Vaught Conjecture, TVC(G), for 
G, proposed by D. Miller in the 1970s, generalizing the famous Vaught 
Conjecture, which asserts that a first order theory (in a countable language) 
has either countably many or continuum many models up to isomorphism, 
and its stronger version (also referred to as the Vaught Conjecture) that an 
Lc,,ol-theory has either countably many or perfectly many countable models, 
up to isomorphism. In fact, it turns out, as shown in [1], that this last form of 
Vaught's Conjecture is equivalent to TVC(Soo). This is still open, but Hjorth 
[11] has recently made major progress by characterizing group theoretically 
the Polish groups G for which TVC(G) holds in a stronger form, namely for 
analytic sets, i.e., for any Borel action of G on X and any analytic invariant 
set A C X, A contains either countably many or perfectly many orbits. This 
fails for S,o and thus for any G which has a closed subgroup with quotient 
SO. Hjorth's result is that the TVC(G) for analytic sets holds exactly for 
all Polish groups G that do not contain closed subgroups with quotient S,. 
This has as a corollary that if the Vaught Conjecture (even for L,,,) fails, 
which some people believe to be the case, then TVC(G) is completely solved, 
because it holds for exactly the same G for which Hjorth's above mentioned 
characterization works. 

It is clear that the classification problems corresponding to equivalence 
relations (X, E) with E <B IR are exactly those for which there is a Borel 
map f: X - Y, Y some Polish space, with 

xEy f(x) = f(y), 

i.e., for which complete invariants can be found which are real numbers, 
complex numbers, or more generally members of a Polish space, and are 
therefore fairly concrete. We thus call such E concretely classifiable. (Other 
terminologies that are used for this concept are: E is smooth or E is tame.) 
In that case X/E can simply be viewed as an analytic subset of a Polish 
space, so it is well understood. It is therefore those E for which IR <B E that 
represent genuinely different, i.e., singular, quotient spaces X/E. The first 
main fact about these singular spaces is that there is a smallest possible one. 
Recall the Vitali equivalence relation Eo. As mentioned earlier, R <B Eo, 
so Eo is not concretely classifiable. We now have the General Glimm-Effros 
Dichotomy: (Harrington-Kechris-Louveau [10]) If E is a Borel equivalence 
relation, then exactly one of the following holds: 

(i) E <B IR 
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or 

(ii) Eo <B E. 

Thus the following is an initial segment of <B: 

1 <B 2 <B 3 <B '' <B N <B I <B Eo, 

and any Borel equivalence relation E not in this list satisfies Eo <B E. 
The attribute "Glimm-Effros" in this theorem signifies the fact that this 

result generalizes some special cases originally proved by Glimm [9] and 
Effros [5], motivated by the theory of operator algebras. One interesting 
point concerning the general version of this theorem is that the only known 
proof makes crucial use of effective descriptive set theory, although the 
statement of the result is clearly understood in the classical Borel theoretic 
context. 

Beyond Eo the linearity of <B breaks down and this order becomes quite 
complex. This non-linearity seems to be a basic feature of Borel cardinality as 
compared with classical Cantor cardinality. There are in fact uncountably 
many incomparable under <B Borel equivalence relations (Woodin) and, 
even more, the partial order (p(N), C*), where C* is inclusion modulo finite 
sets, embeds into <B (Louveau-Velickovic [24]). It also turns out that <B 
is unbounded. In fact, there is an analog of Cantor's Theorem: For each 
Borel equivalence relation E on a Polish space X, if F on XN is defined by: 

(xn) F (y,) -==> {x : n C N }, { Yn : n E N } meet the same E-classes 

(so that X/F is essentially the same as p (X/E) = { A C X/E : IA <_ o }), 
then E <B F, provided E has at least two classes (Friedman-Stanley [7]). 

?7. Most of the natural examples of classification problems that can be 
represented by Borel equivalence relations have special properties and this, 
as usual, motivates restricting attention to important subclasses. 

The first one that I will consider here is the class of countable Borel equiv- 
alence relations, where E is countable if every equivalence class is countable. 
Examples include Eo, the Turing equivalence relation, and any orbit equiv- 
alence relation induced by a Borel action of a countable group. In fact, 
Feldman-Moore [6] showed that any countable Borel equivalence relation E 
is induced by such an action of a countable group. The results below, unless 
otherwise stated, come from Dougherty-Jackson-Kechris [4] and Jackson- 
Kechris-Louveau [18]. Often methods and results of ergodic theory play a 
crucial role in this study. 

First, among the countable Borel equivalence relations it turns out that 
there is a largest one, in the sense of <B, denoted by E,, which is naturally 
called universal. Thus, among non-concretely classifiable countable E, there 
is a smallest one, Eo, and a largest one, E, so they all fall in the interval 

Eo <B E <B Ec. 
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There are also intermediate ones 

Eo <B E <B Eo, 

but remarkably at this time only two distinct ones are known, say E, F, and 
they satisfy Eo <B E <B F <B Eoo. In particular, it is unknown if there 
exist infinitely many or two incomparable ones. [Addendum. It has been now 
shown in S. Adams and A. S. Kechris, Linear algebraic groups and countable 
Borel equivalence relations, preprint, 1999, that there are indeed uncountably 
many incomparable countable Borel equivalence relations.] 

It turns out that a lot of classification problems are represented by Borel 
equivalence relations E which, although not necessarily themselves count- 
able, are -B to some countable F, and so their complexity can be measured 
in the hierarchy of countable Borel equivalence relations. They include, for 
example, any orbit equivalence relation induced by a Borel action of a Polish 
locally compact group (e.g., a Lie group) or the isomorphism relation on 
various classes of countable models that in some sense have "finite type", for 
instance finitely generated groups or locally finite (i.e., having finite degree 
at each vertex) connected graphs. 

Let me next discuss some results concerning classification of equivalence 
relations within the interval [Eo, Eo]. 

(A) Eo. 
The countable E which are <B Eo turn out to be exactly those induced by 

a Borel action of the simplest (infinite) countable group, Z, i.e., by the orbits 
of a single Borel automorphism. They can be also characterized as those of 
the form E = Un E,, with En C En+l finite Borel equivalence relations, i.e., 
having finite classes (Weiss [32], Slaman-Steel [28]). For that reason they are 
called hyperfinite. So, up to FB, Eo is the unique non-concretely classifiable 
hyperfinite equivalence relation. 

It is natural to ask what countable groups G always produce hyperfinite 
Borel equivalence relations. It can be shown that any such G must be 
amenable, i.e., carry a left-invariant finitely additive probability measure (see, 
e.g., Kechris [19]). Weiss [32] raised the question of whether, conversely, any 
Borel action of a countable amenable group gives rise to a hyperfinite orbit 
equivalence relation. (This turns out to be true in the measure theoretic 
context, i.e., neglecting null sets, for any given Borel probability measure 
on the underlying space, see Ornstein-Weiss [26], Connes-Feldman-Weiss 
[3].) Weiss proved it is true for G = nZ, and this was extended later in 
[18] to the following theorem which is essentially the best result known to 
date: Any orbit equivalence relation induced by a Borel action of a finitely 
generated group of polynomial growth is hyperfinite. (These groups can be 
also characterized as the finitely generated nilpotent-by-finite groups, by a 
theorem of Gromov.) 
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Here are some other examples of equivalence relations E which, up to ~B, 
are hyperfinite: 

(i) Any orbit equivalence relation induced by a Borel action of IR (i.e., a 
Borel flow) or even R". 

(ii) The isomorphism relation on torsion-free abelian groups of rank 1 (i.e., 
subgroups of (Q, +)). Up to -B this turns out to be exactly Eo0. 

A lot more is known about hyperfinite Borel equivalence relations, includ- 
ing a complete classification up to Borel isomorphism. But many important 
open questions still remain, for which I refer to the above papers. 

(B) E0. 
Here are some examples of equivalence relations and classifications of 

complexity Eoo (i.e., `B Eoo). 

(i) The equivalence relation induced by the translation action of the free 
group on two generators, F2, on its subsets. (Note here that replacing 
F2 by Z we get Eo.) 

(ii) (Thomas-Velickovic [31]) Conjugacy of subgroups of F2. 
(iii) Isomorphism of locally finite connected graphs or trees. 
(iv) (Thomas-Velickovic [31] and [30]) Isomorphism of finitely generated 

groups, and also fields of finite transcendence degree over Q. 
(v) (Slaman-Steel) Arithmetic equivalence for subsets of N. 

(vi) (Hjorth-Kechris [14]) Conformal equivalence of planar domains and 
also Riemann surfaces. Thus the "moduli space" of general Riemann 
surfaces is very complicated. In contrast, conformal equivalence of 
compact Riemann surfaces is concretely classifiable and the "moduli 
space" in this particular case has a well-known rich geometric structure. 

There are also some important conjectures here: 
(a) Let _T be the Turing equivalence relation on p(N). Conjecture: 

(=T) -B Eo. By results of Slaman-Steel [28], Eo <B (=T). A positive 
answer would compute the exact Borel cardinality of the set of Turing de- 
grees but would also have some other interesting implications. It would 
disprove, for example, the well-known Martin Conjecture concerning the 
structure of Turing-invariant definable functions (the Fifth Victoria Delfino 
Problem; see [22]), which is open since the 1970s, since it would imply the 
existence of strange functions, like for instance a Borel pairing function on 
the Turing degrees. 

(b) Let rn be the isomorphism relation of rank < n torsion free abelian 
groups (i.e., subgroups of (Qn, +)). Conjecture: For n > 2, we have that 
(-n) ~-B E, (see Hjorth-Kechris [15].) The problem of finding a reasonable 
classification of such groups is a classical question in abelian group theory 
(see Fuchs [8]). A well known result of Baer provides a satisfactory classifi- 
cation in the rank 1 case and implies that it has complexity Eo. Hjorth [12] 
has already shown that Eo <B (-2) (and in fact a combination of Hjorth's 
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work and recent work of Kechris shows that Eo0 <B (-2)). So the rank 2 
case necessarily involves a more complex classification problem. A proof 
of the above conjecture would be strong evidence that there cannot be a 
reasonable classification in this case. 

Finally, there are as yet very few natural examples of classification prob- 
lems that correspond to intermediate Eo <B E <B E0. One such is the 
isomorphism on rigid locally finite trees (as opposed to general locally finite 
trees which have complexity E, ). S. Thomas has also suggested the possibil- 
ity that another example might be the conjugacy equivalence of subgroups of 
certain Burnside groups. [Addendum. Recently, S. Adams and A. S. Kechris, 
Linear algebraic groups and countable Borel equivalence relations, preprint, 
1999, have found many new such examples.] 

?8. Beyond the countable Borel equivalence relations, another natural 
subclass consists of the orbit equivalence relations induced by Borel actions 
of the infinite symmetric group, S,, and its closed subgroups. These include 
all the countable ones. It turns out (see Becker-Kechris [1]) that up to ~B 
these are the same as the isomorphism relations - on the countable models 
of some L,,, theory a, hence their obvious interest to logicians. 

It should be pointed out that there are theories a for which ' might not 
be Borel, e.g., y, where y is the theory of graphs. In fact, -y is the largest 
possible _- in the sense of the order <B. 

Restricting attention to isomorphism relations ~ which are Borel (model 
theoretically this means that the Scott ranks of countable models of a are 
bounded below col), we have the following general picture: There is a trans- 
finite sequence of theories a,, with Borel F, = (, ), ac < col, so that 

F1 = R <B EO <B F2 <B *. <B Fa < ... 

and the transfinite sequence (F,) is cofinal among the equivalence relations 
<7 which are Borel. Roughly speaking, F, is such that its quotient space is 

the ath iterated countable powerset of R, so that the quotient space of F2 is 

Pxo (R), of F3 is pxo (pj0 (R)), etc. (Friedman-Stanley [7]). Since every Borel 
=S is <B some F,, this can be used to measure the set theoretic complexity 

of complete invariants for the isomorphism of countable models of a. Thus 
E <B F2 means that invariants are countable (unordered) sets of reals (or 
some other Polish space), E <B F3 means that invariants are countable sets 
of countable sets of reals, etc. 

In Hjorth-Kechris-Louveau [17], it was shown that there is a precise rela- 
tionship between the descriptive complexity of ,, appropriately measured, 
and the type of complete invariants for C. Saying that ~ is potentially 
of class n?f (o ) if (-) ~B E for some equivalence relation E which is 
n? ( ), we have, as special cases of the results in that paper, the following: 
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(i) , is potentially I2 if and only if , is concretely classifiable (i.e., the 
invariants are reals or members of some Polish space). 

(ii) , is potentially L? if and only if , is potentially Lo if and only if 
(v) B E for some countable Borel E (so we are now in the domain 
of ?7). 

(iii) -- is potentially 1? if and only if (-) <B F2 (so the invariants are 
countable sets of reals or some other Polish space). 

(iv) "- is potentially Hn if and only if (--) <B F3 (so the invariants are 
countable sets of countable sets of reals), etc. 

For instance, it turns out that isomorphism of locally finite (not necessar- 
ily connected) graphs is NB F2. (Recall that for connected graphs we have 
complexity E, <B F2.) Also isomorphism of countable archimedean to- 
tally ordered abelian groups with a distinguished positive element is ~B F2. 
In a different context, it follows from the classical Halmos-von Neumann 
Theorem that conjugacy ofergodic measure preserving transformations with 
discrete spectrum has also complexity F2. 

?9. It is now interesting to isolate the class of classification problems 
which can be represented by (X,E) which satisfy E <B (-,) for some 
theory a (with , not necessarily Borel). This means that we can assign in 
a Borel way to each x E X a countable model f (x), with universe N, so that 

xEy r= f(x) f(y). 

If this happens, it is natural to say that E admits classification by countable 
structures, since complete invariants of E are isomorphism types of count- 
able structures. I emphasize that I am not necessarily assuming here that 
E is Borel. For example, all the specific classification problems that I have 
discussed until now admit classification by countable structures. However, 
H. Friedman has found some time ago an example of a Borel equivalence 
relation which does not admit classification by countable structures. Re- 
cently Hjorth [13] has developed a powerful machinery, called the theory of 
turbulence, which in the case that E is induced by a continuous action of a 
Polish group, allows one to analyze in an appropriate sense when E cannot 
be classified by countable structures, in terms of the topological dynamics 
(more specifically the local structure of the orbits) of the action. 

As an application of this theory, various interesting classification prob- 
lems have been shown to be complex enough so that they do not admit 
classification by countable structures. Here is a sample: 

(i) (Hjorth [13]) Conjugacy on the group of homeomorphisms of the unit 
square, H(12). (On the other hand, replacing 12 by the unit interval I 
one has classification by countable structures.) 
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(ii) (Hjorth [13]) Conjugacy of ergodic measure preserving transforma- 
tions. (This should be contrasted with the special case of discrete spec- 
trum transformations, where a classification by countable structures 
also exists, as mentioned in ?8.) 

(iii) (Kechris-Sofronidis [23]) Unitary equivalence of unitary or self-adjoint 
operators. 

(iv) (Hjorth-Kechris [14]) Biholomorphic equivalence of 2-dimensional 
complex manifolds. (Again in contrast with the 1-dimensional case, 
i.e., Riemann surfaces, which admit classification by countable struc- 
tures.) 

?10. Finally, there are Borel equivalence relations which are not below, 
in the sense of <B, an orbit equivalence relation induced by a Borel action 
of any Polish group (and not just S,o). Thus complete invariants for them 
cannot be represented by orbits of such actions. The canonical example is 
the equivalence relation E1 on RN defined as follows: 

x El y 3n Vm > n (m = y). 

(It should be noted here that if we replace IR by any countable set with more 
than one element, then the corresponding equivalence relation is, up to ~B, 
the same as Eo.) It was shown in Kechris-Louveau [21] that for any orbit 
equivalence relation E induced by a Borel action of a Polish group we have 

El 3B E. 

Moreover, E1 has the following minimality property 

E <B E1 => E <B Eo or E - E1. 

It turns out that El has many manifestations. To mention a particularly 
interesting one, Solecki showed that if for any indecomposable continuum 
C (i.e., a continuum which cannot be written as the union of two proper 
subcontinua), we denote by Ec the equivalence relation induced by its com- 
posants (where two points are in the same composant if they belong to a 
proper subcontinuum), then Ec -B Eo or Ec -B E1. 

In particular, Ec is never concretely classifiable, which answered an old 
problem in the theory of continua. Moreover, Solecki has shown that there 
are indecomposable continua of both types. In fact, it seems that the topolog- 
ically simpler ones correspond to Eo, while the topologically more complex 
ones correspond to E1. 

It has been conjectured (see Kechris-Louveau [21] and Hjorth-Kechris 
[16]) that E1 is the precise obstruction for non-reducibility into the orbit 
equivalence relation of a Polish group action, i.e., that if E is a Borel equiv- 
alence relation, then exactly one of the following holds: (i) E1 <B E or 
(ii) E <B F, for some F induced by a Borel action of a Polish group. 
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This is open, and perhaps too optimistic in general, but an important 
special case has been verified by Solecki [29], namely when E is of the form 

EI, for some Borel ideal I on N, where for x, y C N 

xEIy - xA y I. 

This relates this area with the theory of Borel p-ideals on the integers 
where Farah, Solecki, Todorcevic and Velickovic have recently obtained 
many interesting results and have found surprising connections with the 
theory of Banach spaces. 

?11. To summarize, it is clear at this stage that the study of singular 
spaces and the hierarchy of classification problems uncovers intriguing new 
phenomena and presents many challenging problems. It also leads to novel 
interactions between descriptive set theory and other areas of logic and math- 
ematics. So it seems to be a very promising area for further investigations. 
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