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New directions in the pursuit of Majorana fermions in solid state systems

Jason Alicea1

1Department of Physics and Astronomy, University of California, Irvine, California 92697

(Dated: February 8, 2012)

The 1937 theoretical discovery of Majorana fermions—whose defining property is that they are their own

anti-particles—has since impacted diverse problems ranging from neutrino physics and dark matter searches to

the fractional quantum Hall effect and superconductivity. Despite this long history the unambiguous observation

of Majorana fermions nevertheless remains an outstanding goal. This review article highlights recent advances

in the condensed matter search for Majorana that have led many in the field to believe that this quest may soon

bear fruit. We begin by introducing in some detail exotic ‘topological’ one- and two-dimensional superconduc-

tors that support Majorana fermions at their boundaries and at vortices. We then turn to one of the key insights

that arose during the past few years; namely, that it is possible to ‘engineer’ such exotic superconductors in the

laboratory by forming appropriate heterostructures with ordinary s-wave superconductors. Numerous proposals

of this type are discussed, based on diverse materials such as topological insulators, conventional semiconduc-

tors, ferromagnetic metals, and many others. The all-important question of how one experimentally detects

Majorana fermions in these setups is then addressed. We focus on three classes of measurements that provide

smoking-gun Majorana signatures: tunneling, Josephson effects, and interferometry. Finally, we discuss the

most remarkable properties of condensed matter Majorana fermions—the non-Abelian exchange statistics that

they generate and their associated potential for quantum computation.

I. INTRODUCTION

Three quarters of a century ago Ettore Majorana introduced

into theoretical physics what are now known as ‘Majorana

fermions’: particles that, unlike electrons and positrons, con-

stitute their own antiparticles.1 The monumental significance

of this development required many intervening decades to

fully appreciate, and despite being an ‘old’ idea Majorana

fermions remain central to diverse problems across modern

physics. In the high-energy context, Ettore’s original sugges-

tion that neutrinos may in fact be Majorana fermions endures

as a serious proposition even today.2 Supersymmetric theo-

ries further postulate that bosonic particles such as photons

have a corresponding Majorana ‘superpartner’ that may pro-

vide one of the keys to the dark matter puzzle.3 Experiments at

the large hadron collider are well-positioned to critically test

these predictions in the near future. Condensed matter physi-

cists, too, are fervently chasing Majorana’s vision in a wide

variety of solid state systems, motivated both by the pursuit

of exotic fundamental physics and quantum computing ap-

plications. While a definitive sighting of Majorana fermions

has yet to be reported in any setting, there is palpable opti-

mism in the condensed matter community that this may soon

change.3–7

Unlike the Majorana fermions sought by high-energy

physicists, those pursued in solid state systems are not fun-

damental particles—the constituents of condensed matter are,

inescapably, ordinary electrons and ions. This fact severely

constrains the likely avenues of success in this search. In con-

ventional metals, for example, electron and hole excitations

can annihilate, but since they carry opposite charge are cer-

tainly not Majorana fermions. In operator language this is

reflected by the fact that if c†σ adds an electron with spin σ,

then its Hermitian conjugate cσ is a physically distinct oper-

ator that creates a hole. If Majorana is to surface in the solid

state it must therefore be in the form of nontrivial emergent

excitations.

Superconductors (and other systems where fermions pair

and condense) provide a natural hunting ground for such ex-

citations. Indeed, because Cooper pair condensation sponta-

neously violates charge conservation, quasiparticles in a su-

perconductor involve superpositions of electrons and holes.

Unfortunately, however, this is not a sufficient condition for

the appearance of Majorana fermions. With only exceedingly

rare exceptions superconductivity arises from s-wave-paired

electrons carrying opposite spins; quasiparticle operators then

(schematically) take the form d = uc†↑ + vc↓, which is still

physically distinct from d† = v∗c†↓ + u∗c↑. Thus whereas

charge prevents Majorana from emerging in a metal, spin is

the culprit in conventional s-wave superconductors.

As the preceding discussion suggests, ‘spinless’

superconductors—i.e., paired systems with only one active

fermionic species rather than two—provide ideal platforms

for Majorana fermions. By Pauli exclusion, Cooper pairing

in a ‘spinless’ metal must occur with odd parity, resulting in

p-wave superconductivity in one dimension (1D) and, in the

most relevant case for our purposes, p+ ip superconductivity

in two dimensions (2D). These superconductors are quite

special: as Sec. II describes in detail, they realize topological

phases that support exotic excitations at their boundaries

and at topological defects.8–10 Most importantly, zero-energy

modes localize at the ends of a 1D topological p-wave

superconductor9, and bind to superconducting vortices in

the 2D p + ip case11. These zero-modes are precisely the

condensed matter realization of Majorana fermions9,10 that

are now being vigorously pursued.

Let γ denote the operator corresponding to one of these

modes (the specific realization is unimportant for now). This

object is its own ‘anti-particle’ in the sense that γ = γ† and

γ2 = 1. We caution, however, that labeling γ as a particle—

emergent or otherwise—is a misnomer because unlike an ordi-

nary electronic state in a metal there is no meaning to γ being

occupied or unoccupied. Rather, γ should more appropriately

be viewed as a fractionalized zero-mode comprising ‘half’ of
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a regular fermion. More precisely, a pair of Majorana zero-

modes, say γ1 and γ2, must be combined via f = (γ1+iγ2)/2
to obtain a fermionic state with a well-defined occupation

number. While this new operator represents a conventional

fermion in that it satisfies f 6= f† and obeys the usual anti-

commutation relations, f remains nontrivial in two critical re-

spects. First, γ1 and γ2 may localize arbitrarily far apart from

one another; consequently f encodes highly non-local entan-

glement. Second, one can empty or fill the non-local state de-

scribed by f with no energy cost, resulting in a ground-state

degeneracy. These two properties underpin by far the most in-

teresting consequence of Majorana fermions—the emergence

of non-Abelian statistics.

A brief digression is in order to put this remarkable phe-

nomenon in proper perspective. Exchange statistics character-

izes the manner in which many-particle wavefunctions trans-

form under interchange of indistinguishable particles, and is

one of the cornerstones of quantum theory. There indeed

exists a rather direct path from particle statistics to the ex-

istence of metals, superfluids, superconductors, and many

other quantum phases, not to mention the periodic table as

we know it.12,13 It has long been appreciated that for topo-

logical reasons 2D systems allow for particles whose statis-

tics is neither fermionic nor bosonic.14,15 Such anyons come

in two flavors: Abelian and non-Abelian. Upon exchang-

ing Abelian anyons—which arise in most fractional quantum

Hall states12,13,16,17—the wavefunction acquires a statistical

phase eiθ that is intermediate between −1 and 1. Non-Abelian

anyons are far more exotic (and elusive); under their exchange

the wavefunction does not simply acquire a phase factor, but

rather can change to a fundamentally different quantum state.

As a result subsequent exchanges do not generally commute,

hence the term ‘non-Abelian’. An important step toward find-

ing experimental realizations of the second flavor came in

1991 when Moore and Read introduced a set of ‘Pfaffian’ trial

wavefunctions for fractional quantum Hall states that support

non-Abelian anyons.18–22 Several theoretical and experimen-

tal works12,23–29 indicate that the observed quantum Hall state

at filling factor30 ν = 5/2 may provide the first realization

of such a non-Abelian phase. Read and Green10 later pro-

vided a key breakthrough that in many ways served as a step-

ping stone for the new directions reviewed here. In particular,

these authors established an intimate connection between the

superficially very different Moore-Read Pfaffian states and a

topological spinless 2D p+ip superconductor—deducing that

universal properties of the former such as non-Abelian statis-

tics must also be shared by the latter (which crucially can arise

in weakly interacting systems).

With this backdrop let us now describe how non-Abelian

statistics arises in a 2D spinless p + ip superconductor. Con-

sider a setup with 2N vortices binding Majorana zero-modes

γ1,...,2N . One can (arbitrarily) combine pairs of Majoranas

to define N fermion operators fj = (γ2j−1 + iγ2j)/2 cor-

responding to zero-energy states that can be either filled or

empty. Thus the vortices generate 2N degenerate ground

states31 that can be labeled in terms of occupation numbers

nj = f†
j fj by

|n1, n2, . . . , nN 〉. (1)

Suppose that one prepares the system into an arbitrary ground

state and then adiabatically exchanges a pair of vortices.

Because this process swaps the positions of two Majorana

modes, each being ‘half’ of a fermion, the system generally

ends up in a different ground state from which it began. More

formally the exchange unitarily rotates the wavefunction in-

side of the ground-state manifold in a non-commutative fash-

ion. The vortices—because of the Majorana zero-modes that

they bind—therefore exhibit non-Abelian statistics.10,32–34

One might naively conclude that in this regard the Majo-

rana zero-modes bound to the ends of a 1D topological p-

wave superconductor are substantially less interesting than

those arising in 2D. After all, exchange statistics of any type

is ill-defined in 1D because particles inevitably ‘collide’ dur-

ing the course of an exchange.12 This is the root, for instance,

of the equivalence between hard-core bosons and fermions in

1D. Fortunately this obstacle can be very simply surmounted

by fabricating networks of 1D superconductors; envision, say,

an array of wires forming junctions, with topological p-wave

superconductors binding Majorana zero-modes interspersed

at various locations. Such networks allow the positions of

Majorana zero-modes to be meaningfully exchanged,35 which

remarkably still gives rise to non-Abelian statistics despite

the absence of vortices.35–38 Thus 1D and 2D topological su-

perconductors can both be appropriately described as non-

Abelian phases of matter. [As an interesting aside, Teo and

Kane first showed that non-Abelian statistics can even appear

in three dimensions, where exchange has long been assumed

to be trivial.38–41]

The observation of Majorana fermions in condensed mat-

ter would certainly constitute a landmark achievement from a

fundamental physics standpoint, both because it could mean

the first realization of Ettore Majorana’s theoretical discovery

and, far more importantly, because of the non-Abelian statis-

tics that they harbor. Moreover, success in this search might

ultimately prove essential to overcoming one of the grand

challenges in the field—the synthesis of a scalable quantum

computer.12,42–46 The basic idea is that the occupation num-

bers nj = 0, 1 specifying the degenerate ground states of

Eq. (1) can be used to encode ‘topological qubits’.45 Cru-

cially, this quantum information is stored highly non-locally

due to the arbitrary spatial separation between pairs of Majo-

rana modes corresponding to a given nj . Suppose now that

temperature is low compared to the bulk gap; if manipula-

tions are carried out adiabatically the system then essentially

remains confined to the ground-state manifold. The user can

controllably manipulate the state of the qubit by adiabatically

exchanging the positions of Majorana modes, owing to the ex-

istence of non-Abelian statistics. In principle the environment

can also induce (unwanted) exchanges, thereby corrupting the

qubit, but this happens with extraordinarily low probability

due to the non-locality of such processes. This is the basis of

fault-tolerant topological quantum computation schemes that

elegantly beat decoherence at the hardware level.12,42–46 While

braiding of Majorana fermions alone permits somewhat lim-
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ited topological quantum information processing,12 the addi-

tional unprotected operations needed for universal quantum

computation come with unusually high error thresholds.47,48

The search for Majorana fermions is thus fueled also by the

potential for revolutionary technological applications down

the road.

In the beginning of this introduction we noted that re-

searchers are optimistic that this search may soon come to

fruition. One might reasonably wonder why, given that we

live in three dimensions, electrons carry spin, and p-wave

pairing is scarce in nature. To a large extent this opti-

mism stems from the recent revelation that one can engineer

low-dimensional topological superconductors by judiciously

forming heterostructures with conventional bulk s-wave su-

perconductors. This new line of attack could eventually lead

to ‘designer topological phases’ persisting up to relatively

high temperatures, perhaps measuring in the 10K range or

beyond. The conceptual breakthrough here originated with

the seminal work of Fu and Kane in the context of topologi-

cal insulators,49,50 which paved the way for many subsequent

proposals of a similar spirit. We devote a large fraction of this

review—Secs. III and IV—to discussing these new routes to

Majorana fermions. ‘Classic’ settings such as the ν = 5/2
fractional quantum Hall state and Sr2RuO4 (which of course

remain highly relevant to the field) will also be discussed, but

only briefly. An omission that we regret is a discussion of

Helium-3, where seminal work related to this subject was car-

ried out early on by Volovik and others; see the excellent book

in Ref. 8. Section V explores the key question of how one ex-

perimentally identifies Majorana modes once a suitable topo-

logical phase is fabricated. The long-term objectives of ob-

serving non-Abelian statistics and realizing quantum compu-

tation are taken up in Sec. VI. Finally, we offer some closing

thoughts in Sec. VII. For additional perspectives on this fas-

cinating problem we would like to refer the reader to several

other reviews and popular articles: Refs. 3–7, 12, 13, 51–53.

II. TOY MODELS FOR TOPOLOGICAL

SUPERCONDUCTORS SUPPORTING MAJORANA MODES

This section introduces toy models for topological 1D and

2D superconductors that support Majorana fermions. We will

explore the anatomy of the phases realized in these exotic su-

perconductors and elucidate how they give rise to Majorana

modes in some detail. Later parts of this review rely heavily

on the material discussed here. Indeed, our perspective is that

all of the recent experimental proposals highlighted in Secs.

III and IV are, in essence, practical realizations of these toy

models. The ideas developed here will also prove indispens-

able when we discuss experimental detection schemes in Sec.

V and non-Abelian statistics in Sec. VI.

A. 1D spinless p-wave superconductor

We begin by reviewing Kitaev’s toy lattice model9, intro-

duced nearly a decade ago, for a 1D spinless p-wave super-

conductor. This model’s many virtues include the fact that in

this setting Majorana zero-modes appear in an extremely sim-

ple and intuitive fashion. Following Kitaev, we introduce op-

erators cx describing spinless fermions that hop on an N -site

chain and exhibit long-range-ordered p-wave superconductiv-

ity. The minimal Hamiltonian describing this setup reads

H = −µ
∑

x

c†xcx − 1

2

∑

x

(tc†xcx+1 +∆eiφcxcx+1 + h.c.),

(2)

where µ is the chemical potential, t ≥ 0 is the nearest-

neighbor hopping strength, ∆ ≥ 0 is the p-wave pairing am-

plitude and φ is the corresponding superconducting phase. For

simplicity we set the lattice constant to unity.

It is instructive to first understand the chain’s bulk prop-

erties, which can be conveniently studied by imposing peri-

odic boundary conditions on the system (thereby wrapping

the chain into a loop and removing its ends). Upon passing to

momentum space and introducing a two-component operator

C†
k = [c†k, c−k], one can write H in the standard Bogoliubov-

de Gennes form:

H =
1

2

∑

k∈BZ

C†
kHkCk, Hk =

(

ǫk ∆̃∗
k

∆̃k −ǫk

)

, (3)

with ǫk = −t cos k − µ the kinetic energy and ∆̃k =
−i∆eiφ sin k the Fourier-transformed pairing potential. The

Hamiltonian becomes simply

H =
∑

k∈BZ

Ebulk(k)a
†
kak (4)

when expressed in terms of quasiparticle operators

ak = ukck + vkc
†
−k (5)

uk =
∆̃

|∆̃|

√
Ebulk + ǫ√
2Ebulk

, vk =

(

Ebulk − ǫ

∆̃

)

uk, (6)

where the bulk excitation energies are given by

Ebulk(k) =

√

ǫ2k + |∆̃k|2. (7)

Equation (7) demonstrates that the chain admits gapless bulk

excitations only when the chemical potential is fine-tuned to

µ = t or −t, where the Fermi level respectively coincides with

the top and bottom of the conduction band as shown in Fig.

1(a). The gap closure at these isolated µ values reflects the p-

wave nature of the pairing required by Pauli exclusion. More

precisely, since ∆̃k is an odd function of k, Cooper pairing at

k = 0 or k = ±π is prohibited, thereby leaving the system

gapless at the Fermi level when µ = ±t. Note that the phases

that appear at µ < −t and µ > t are related by a particle-

hole transformation; thus to streamline our discussion we will

hereafter neglect the latter chemical potential range.

The physics of the chain is intuitively rather different in the

gapped regimes with µ < −t and |µ| < t—the former con-

nects smoothly to the trivial vacuum (upon taking µ → −∞)

where no fermions are present, whereas in the latter a partially
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topological 

(weak pairing) 

non-topological 

(strong pairing) 

non-topological 

(strong pairing) 

(a)

k

(b)

(c)

(trivial)

(topological)

ν = 1

ν = −1

µ = −t

µ = t

−t cos k

FIG. 1. (a) Kinetic energy in Kitaev’s model for a 1D spinless p-

wave superconductor. The p-wave pairing opens a bulk gap except at

the chemical potential values µ = ±t displayed above. For |µ| > t
the system forms a non-topological strong pairing phase, while for

|µ| < t a topological weak pairing phase emerges. The topological

invariant ν distinguishing these states can be visualized by consid-

ering the trajectory that ĥ(k) [derived from Eq. (10)] sweeps on the

unit sphere as k varies from 0 to π; (b) and (c) illustrate the two types

of allowed trajectories.

filled band acquires a gap due to p-wave pairing. One can

make this distinction more quantitative following Read and

Green10 by examining the form of the ground-state wavefunc-

tion in each regime. Equation (4) implies that the ground state

|g.s.〉 must satisfy ak|g.s.〉 = 0 for all k so that no quasiparti-

cles are present. Equations (5) and (6) allow one to explicitly

write the ground state as follows,

|g.s.〉 ∝
∏

0<k<π

[1 + ϕC.p.(k)c
†
−kc

†
k]|0〉

ϕC.p.(k) =
vk
uk

=

(

Ebulk − ǫ

∆̃

)

, (8)

where |0〉 is a state with no ck fermions present with mo-

menta in the interval 0 < |k| < π. One can loosely inter-

pret ϕC.p.(k) as the wavefunction for a Cooper pair formed

by fermions with momenta k and −k. An important differ-

ence between the µ < −t and |µ| < t regimes is manifested

in the real-space form ϕC.p.(x) =
∫

k
eikxϕC.p.(k) at large

x:54

|ϕC.p.(x)| ∼
{

e−|x|/ζ , µ < −t (strong pairing)
const, |µ| < t (weak pairing).

(9)

It follows that µ < −t corresponds to a strong pairing

regime in which ‘molecule-like’ Cooper pairs form from two

fermions bound in real space over a length scale ζ, whereas

in the weak pairing regime |µ| < t the Cooper pair size is

infinite10. We emphasize that this distinction by itself does

not guarantee that the weak and strong pairing regimes con-

stitute distinct phases. Indeed, similar physics occurs in the

well-studied “BCS-BEC crossover” in s-wave paired systems

where no sharp transition arises55,56. The fact that the weak

and strong pairing regimes are distinct phases separated by

a phase transition at which the bulk gap closes is rooted in

topology.

There are several ways in which one can express the ‘topo-

logical invariant’ (akin to an order parameter in the theory of

conventional phase transitions) distinguishing the weak and

strong pairing phases9. We will follow an approach that

closely parallels the 2D case we address in Sec. II B. Let us

revisit the Hamiltonian in Eq. (3), but now allow for addi-

tional perturbations that preserve translation symmetry.57 The

resulting 2×2 matrix Hk can be expressed in terms of a vector

of Pauli matrices σ = σxx̂+ σyŷ + σz ẑ as follows,

Hk = h(k) · σ (10)

for some vector h(k). (A term proportional to the identity

can also be added, but will not matter for our purposes.) Al-

though we are considering a rather general Hamiltonian here,

the structure of h(k) is not entirely arbitrary. In particu-

lar, since the two-component operator Ck in Eq. (3) satisfies

(C†
−k)

T = σxCk, the vector h(k) must obey the important

relations

hx,y(k) = −hx,y(−k), hz(k) = hz(−k). (11)

Thus it suffices to specify h(k) only on the interval 0 ≤ k ≤
π, since h(k) on the other half of the Brillouin zone follows

from Eq. (11).

Suppose now that h(k) is non-zero throughout the Brillouin

zone so that the chain is fully gapped. One can then always

define a unit vector ĥ(k) = h(k)/|h(k)| that provides a map

from the Brillouin zone to the unit sphere. The relations of

Eq. (11) strongly restrict this map at k = 0 and π such that

ĥ(0) = s0ẑ, ĥ(π) = sπẑ, (12)

where s0 and sπ represent the sign of the kinetic energy (mea-

sured relative to the Fermi level) at k = 0 and π, respectively.

Thus as one sweeps k from 0 to π, ĥ(k) begins at one pole of

the unit sphere and either ends up at the same pole (if s0 = sπ)

or the opposite pole (if s0 = −sπ). These topologically dis-

tinct trajectories, illustrated schematically in Figs. 1(b) and

(c), are distinguished by the Z2 topological invariant

ν = s0sπ, (13)

which can only change sign when the chain’s bulk gap closes

[resulting in ĥ(k) being ill-defined somewhere in the Brillouin

zone].58 Physically, ν = +1 if at a given chemical potential

there exists an even number of pairs of Fermi points, while

ν = −1 otherwise. From this perspective it is clear that ν =
+1 in the (topologically trivial) strong pairing phase while

ν = −1 in the (topologically nontrivial) weak pairing phase.

The nontrivial topology inherent in the weak pairing phase

leads to the appearance of Majorana modes in a chain with

open boundary conditions, which we will now consider. The

new physics associated with the ends of the chain can be most

simply accessed by decomposing the spinless fermion opera-

tors cx in the original Hamiltonian of Eq. (2) in terms of two

Majorana fermions via

cx =
e−iφ/2

2
(γB,x + iγA,x). (14)
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(b)

(a)

γA,1 γB,1 γB,2γA,2 γA,3 γB,3 γB,NγA,N

γA,1 γB,1 γB,2γA,2 γA,3 γB,3 γB,NγA,N

FIG. 2. Schematic illustration of the Hamiltonian in Eq. (16) when

(a) µ 6= 0, t = ∆ = 0 and (b) µ = 0, t = ∆ 6= 0. In the

former limit Majoranas ‘pair up’ at the same lattice site, resulting

in a unique ground state with a gap to all excited states. In the lat-

ter, Majoranas couple at adjacent lattice sites, leaving two ‘unpaired’

Majorana zero-modes γA,1 and γB,N at the ends of the chain. Al-

though there remains a bulk energy gap in this case, these end-states

give rise to a two-fold ground state degeneracy.

The operators on the right-hand side obey the canonical Ma-

jorana fermion relations

γα,x = γ†α,x, {γα,x, γα′,x′} = 2δαα′δxx′ . (15)

In this basis H becomes

H = −µ
2

N
∑

x=1

(1 + iγB,xγA,x)

− i

4

N−1
∑

x=1

[(∆ + t)γB,xγA,x+1 + (∆− t)γA,xγB,x+1].(16)

Generally the parameters µ, t, and ∆ induce relatively com-

plex couplings between these Majorana modes; however, the

problem becomes trivial in two limiting cases9.

The first corresponds to µ < 0 but t = ∆ = 0, where the

chain resides in the topologically trivial phase. Here the sec-

ond line of Eq. (16) vanishes, leaving a coupling only between

Majorana modes γA,x and γB,x at the same lattice site as Fig.

2(a) schematically illustrates. In this case there is a unique

ground state corresponding to the vacuum of cx fermions.

Clearly the spectrum is gapped since introducing a spinless

fermion into the chain costs a finite energy |µ|. Note that this

is entirely consistent with our treatment of the chain with pe-

riodic boundary conditions; in the trivial phase the ends of the

chain have little effect. We emphasize that these conclusions

hold even away from this fine-tuned limit provided the gap

persists so that the chain remains in the same trivial phase.

The second simplifying limit corresponds to µ = 0 and

t = ∆ 6= 0, where the topological phase appears. Here the

Hamiltonian is instead given by

H = −i t
2

N−1
∑

x=1

γB,xγA,x+1, (17)

which couples Majorana fermions only at adjacent lattice sites

as Fig. 2(b) illustrates. In terms of new ordinary fermion oper-

ators dx = 1
2 (γA,x+1+iγB,x), the Hamiltonian can be written

H = t
N−1
∑

x=1

(

d†xdx − 1

2

)

. (18)

In this form it is apparent that a bulk gap remains here

too—consistent with our results with periodic boundary

conditions—since one must pay an energy t to add a dx
fermion. However, as Fig. 2(b) illustrates the ends of the

chain now support ‘unpaired’ zero-energy Majorana modes

γ1 ≡ γA,1 and γ2 ≡ γB,N that are explicitly absent from

the Hamiltonian in Eq. (17). These can be combined into an

ordinary—though highly non-local—fermion,

f =
1

2
(γ1 + iγ2), (19)

that costs zero energy and therefore produces a two-fold

ground-state degeneracy. In particular, if |0〉 is a ground state

satisfying f |0〉 = 0, then |1〉 ≡ f†|0〉 is necessarily also a

ground state (with opposite fermion parity). Note the stark

difference from conventional gapped superconductors, where

typically there exists a unique ground state with even parity so

that all electrons can form Cooper pairs.

The appearance of localized zero-energy Majorana end-

states and the associated ground-state degeneracy arise be-

cause the chain forms a topological phase while the vacuum

bordering the chain is trivial. (It may be helpful to imag-

ine adding extra sites to the left and right of the chain, with

µ < −t for those sites so that the strong pairing phase forms

there.) These phases cannot be smoothly connected, so the

gap necessarily closes at the chain’s boundaries. Because this

conclusion has a topological origin it is very general and does

not rely on the particular fine-tuned limit considered above,

with one caveat. In the more general situation with µ 6= 0
and t 6= ∆ (but still in the topological phase) the Majorana

zero-modes γ1 and γ2 are no longer simply given by γA,1 and

γB,N ; rather, their wavefunctions decay exponentially into the

bulk of the chain. The overlap of these wavefunctions results

in a splitting of the degeneracy between |0〉 and |1〉 by an en-

ergy that scales like e−L/ξ, where L is the length of the chain

and ξ is the coherence length (which diverges at the transition

to the trivial phase). Provided L ≫ ξ, however, this splitting

can easily be negligible compared to all relevant energy scales

in the problem; unless specified otherwise we will assume that

this is the case and simply refer to the Majorana end-states as

zero-energy modes despite this exponential splitting.

Finally we comment on the importance of the fermions be-

ing spinless in Kitaev’s toy model. This property ensures that

a single zero-energy Majorana mode resides at each end of the

chain in its topological phase. Suppose that instead spinful

fermions—initially without spin-orbit interactions—formed a

p-wave superconductor. In this case spin merely doubles the

degeneracy for every eigenstate of the Hamiltonian, so that

when |µ| < t each end supports two Majorana zero-modes,

or equivalently one ordinary fermionic zero-mode. Unless

special symmetries are present these ordinary fermionic states
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will move away from zero energy upon including perturba-

tions such as spin-orbit coupling. (Note that even for a spin-

less chain it is in principle possible for multiple nearby Majo-

rana modes to coexist at zero energy if certain symmetries are

present; see Refs. 59–61 for examples. Time-reversal sym-

metry can also protect pairs of Majorana end-states in ‘class

DIII’ 1D superconductors with spin.62–64)

This by no means implies that it is impossible to experimen-

tally realize Kitaev’s toy model and the Majorana modes it

supports with systems of electrons (which always carry spin).

Rather these considerations only imply that a prerequisite to

observing isolated Majorana zero-modes is lifting Kramer’s

degeneracy such that the electron’s spin degree of freedom be-

comes effectively ‘frozen out’. We will discuss several ways

of achieving this, as well as the requisite p-wave superconduc-

tivity, in Sec. III.

B. 2D spinless p+ ip superconductor

In two dimensions, the simplest system that realizes a topo-

logical phase supporting Majorana fermions is a spinless 2D

electron gas exhibiting p+ip superconductivity. We will study

the following model for such a system,

H =

∫

d2r

{

ψ†

(

−∇2

2m
− µ

)

ψ

+
∆

2

[

eiφψ(∂x + i∂y)ψ +H.c.
]

}

, (20)

where ψ†(r) creates a spinless fermion with effective massm,

µ is the chemical potential, and ∆ ≥ 0 determines the p-wave

pairing amplitude while φ is the corresponding superconduct-

ing phase. For the moment we take the superconducting or-

der parameter to be uniform, though we relax this assumption

later when discussing vortices. To understand the physics of

Eq. (20) we will adopt a similar strategy to that of the previ-

ous section—first identifying signatures of topological order

encoded in bulk properties of the p + ip superconductor, and

then turning to consequences of the nontrivial topology for the

boundaries of the system.

In a system with periodic boundary conditions along x and

y (i.e., a superconductor on a torus with no edges) translation

symmetry allows one to readily diagonalize Eq. (20) by going

to momentum space. Defining Ψ(k)† = [ψ†(k), ψ(−k)], one

obtains

H =
1

2

∫

d2k

(2π)2
Ψ†(k)H(k)Ψ(k),

H(k) =

(

ǫ(k) ∆̃(k)∗

∆̃(k) −ǫ(k)

)

(21)

with ǫ(k) = k2

2m − µ and ∆̃(k) = i∆eiφ(kx + iky). A

canonical transformation of the form a(k) = u(k)ψ(k) +
v(k)ψ†(−k) diagonalizes the remaining 2×2 matrix. In terms

of these quasiparticle operators the Hamiltonian reads

H =

∫

d2k

(2π)2
Ebulk(k)a

†(k)a(k). (22)

topological 

(weak pairing) 

non-topological 

(strong pairing) 

(a)

k

(b)

(c)

k2

2m

µ = 0

(trivial)

(topological)

C = 0

|C| = 1

FIG. 3. (a) Kinetic energy for a spinless 2D electron gas exhibiting

p+ ip superconductivity. The pairing opens a bulk gap except when

µ = 0. This gapless point marks the transition between a weak

pairing topological phase at µ > 0 and a trivial strong pairing phase

at µ < 0. These phases are distinguished by the Chern number C
which specifies how many times the map ĥ(k) [derived from Eq.

(26)] covers the entire unit sphere as one sweeps over all momenta

k. As |k| increases from zero, in the trivial phase ĥ(k) covers the

shaded area in (b) but then ‘uncovers’ the same area, resulting in

Chern number C = 0, whereas in the topological phase the map

covers the entire unit sphere once as illustrated in (c) leading to |C| =
1.

The coherence factors u(k) and v(k) take the same form as

in Eq. (6), and the bulk excitation energies are similarly given

by

Ebulk(k) =

√

ǫ(k)2 + |∆̃(k)|2. (23)

For any µ > 0 the bulk is fully gapped since here the pairing

field ∆̃(k) is non-zero everywhere along the Fermi surface.

As one depletes the band the bulk gap decreases and eventu-

ally closes at µ = 0, where the Fermi level resides precisely

at the bottom of the band as shown in Fig. 3(a). (The gap

closure here arises because Pauli exclusion prohibits p-wave

pairing at k = 0.) Further reducing µ reopens the gap, which

remains finite for any µ < 0.

As in the 1D case the intuitively different µ > 0 and µ < 0
gapped regimes can be quantitatively distinguished by exam-

ining the ground-state wavefunction10, which can be written

as

|g.s.〉 ∝
∏

kx≥0,ky

[1 + ϕC.p.(k)ψ(−k)†ψ(k)†]|0〉

ϕC.p.(k) =
v(k)

u(k)
=

(

Ebulk − ǫ

∆̃

)

, (24)

where |0〉 is a state with no ψ(k) fermions present with non-

zero momentum. The ‘Cooper pair wavefunction’ ϕC.p.(k)
again encodes a key difference between the µ > 0 and µ < 0
regimes. In real space one finds the asymptotic forms10

|ϕC.p.(r)| ∼
{

e−|r|/ζ , µ < 0 (strong pairing)
|r|−1, µ > 0 (weak pairing).

(25)

demonstrating that µ < 0 corresponds to a ‘BEC-like’ strong

pairing regime, whereas with µ > 0 a ‘BCS-like’ weakly
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paired condensate forms from Cooper pairs loosely bound in

space.

Also as in the 1D case, topology underlies the fact that the

weak and strong pairing regimes constitute distinct phases that

cannot be smoothly connected without closing the bulk gap.

To expose the topological invariant that distinguishes these

phases, consider a 2D superconductor described by a Hamil-

tonian of the form65

H(k) = h(k) · σ (26)

with h(k) a smooth function that is non-zero for all momenta

so that the bulk is fully gapped. One can then define a unit vec-

tor ĥ(k) that maps 2D momentum space onto a unit sphere.

Assuming that ĥ(k) tends to a unique vector as |k| → ∞ (in-

dependent of the direction of k), the number of times this map

covers the entire unit sphere defines an integer topological in-

variant given formally by the Chern number

C =

∫

d2k

4π
[ĥ · (∂kx

ĥ× ∂ky
ĥ)]. (27)

The integrand above determines the solid angle (which can

be positive or negative) that ĥ(k) sweeps on the unit sphere

over an infinitesimal patch of momentum space centered on

k. Performing the integral over all k yields an integer that

remains invariant under smooth deformations of ĥ(k). The

Chern number can change only when the gap closes, making

ĥ(k) ill-defined at some momentum.

Consider now the Hamiltonian in Eq. (21) for which

hx(k) = Re[∆̃(k)], hy(k) = Im[∆̃(k)], and hz(k) = ǫ(k).

Notice that for momenta with fixed |k|, ĥx and ĥy always

sweep out a circle on the unit sphere at height ĥz . As |k|
increases from zero in the µ < 0 strong pairing phase, ĥz
begins at the north pole, descends towards the equator, and

then returns to the north pole as |k| → ∞. Thus in the (topo-

logically trivial) strong pairing phase ĥ(k) initially sweeps

out the shaded region in the northern hemisphere of Fig. 3(b)

but then ‘unsweeps’ the same area, resulting in a vanishing

Chern number. In contrast, for the (topologically nontrivial)

µ > 0 weak pairing phase ĥz transitions from the south pole

at k = 0 to the north pole when |k| → ∞; the map ĥ(k)
therefore covers the entire unit the sphere exactly one time as

shown schematically in Fig. 3(c), leading to a nontrivial Chern

number C = −1. [Note that other integer Chern numbers are

also possible. For instance, a p − ip superconductor carries a

Chern number C = +1 in the topological phase. An f -wave

superconductor with ∆̃(k) ∝ (kx + iky)
3 provides a more

nontrivial example. In this case for momenta with fixed |k|,
ĥx and ĥy trace out a circle on the unit sphere three times,

yielding a Chern number C = −3 in the weak pairing phase

(see, e.g., Ref. 66).]

We will now explore the physical consequences of the non-

trivial Chern number uncovered in the topological weak pair-

ing phase. Consider the geometry of Fig. 4(a), where a topo-

logical p+ ip superconductor occupies the annulus and a triv-

ial phase forms elsewhere. We will model this geometry by

H in Eq. (20) with a spatially dependent µ(r) that is positive

inside the annulus and negative outside. Since these regions

realize topologically distinct phases one generically expects

edge states at their interface, which we would like to now un-

derstand following various authors10,67–69. Focusing on low-

energy edge modes and assuming that µ(r) is slowly varying,

one can discard the −∇2/(2m) kinetic term in H . A minimal

Hamiltonian capturing the edge states can then be written in

polar coordinates (r, θ) as

Hedge =

∫

d2r

{

− µ(r)ψ†ψ

+

[

∆

2
eiφeiθψ

(

∂r +
i∂θ
r

)

ψ +H.c.

]}

. (28)

Because of the eiθ factor above, the p + ip pairing field cou-

ples states with orbital angular momentum quantum numbers

of different magnitude. In what follows it will be convenient

to gauge this factor away by defining ψ = e−iθ/2ψ′. (Note

that i∂θ → i∂θ + 1/2 under this change of variables, though

the constant shift vanishes in the pairing term by Fermi statis-

tics.) Crucially, the new field ψ′ must exhibit anti-periodic

boundary conditions upon encircling the annulus.

In terms of Ψ′†(r) = [ψ′†(r), ψ′(r)], the edge Hamiltonian

becomes

Hedge =
1

2

∫

d2rΨ′†(r)H(r)Ψ′(r),

H(r) =

(

−µ(r) ∆e−iφ(−∂r + i∂θ

r )
∆eiφ(∂r +

i∂θ

r ) µ(r)

)

.(29)

To find the edge state wavefunctions satisfying H(r)χ(r) =
Eχ(r), it is useful to parametrize χ(r) as

χn(r) = einθ
(

e−iφ/2[f(r) + ig(r)]
eiφ/2[f(r)− ig(r)]

)

, (30)

where n is a half-integer angular momentum quantum number

to ensure the proper anti-periodic boundary conditions. The

functions f and g obey

(E + n∆/r)f = −i[µ(r)−∆∂r]g

(E − n∆/r)g = i[µ(r) + ∆∂r]f. (31)

For modes well-localized at the inner/outer annulus edges, it

suffices to replace r → Rin/out on the left-hand side of Eqs.

(31). Within this approximation one finds that the energies of

the outer edge states are

Eout =
n∆

Rout
, (32)

while the corresponding wavefunctions follow from f = 0
and [µ(r)−∆∂r]g = 0. The latter equations yield

χout
n (r) = einθe

1

∆

∫
r

Rout
dr′µ(r′)

(

ie−iφ/2

−ieiφ/2
)

, (33)

which indeed describes modes exponentially localized around

the outer edge. Similarly, the inner-edge energies and wave-

functions are given by

Ein = −n∆
Rin

(34)

χin
n (r) = einθe

− 1

∆

∫
r

Rin
dr′µ(r′)

(

e−iφ/2

eiφ/2

)

. (35)
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topological 

trivial

trivial

Rin

Rout

µ < 0

µ > 0

µ < 0

(a) (c)

Φ =
hc

2e

n

E

n

E(b) (d)

γ2

γ1

γ1

(e)

hc/2e

γ2

hc/2e

FIG. 4. (a) A topological p + ip superconductor on an annulus sup-

ports chiral Majorana edge modes at its inner and outer boundaries.

(b) Energy spectrum versus angular momentum n for the inner (red

circles) and outer (blue circles) edge states in the setup from (a). Here

n takes on half-integer values because the Majorana modes exhibit

anti-periodic boundary conditions on the annulus. An hc
2e

flux pierc-

ing the central trivial region as in (c) introduces a branch cut (wavy

line) which, when crossed, leads to a sign change for the Majorana

edge modes. The flux therefore changes the boundary conditions to

periodic and shifts n to integer values. This leads to the spectrum

in (d), which includes Majorana zero-modes γ1 and γ2 localized at

the inner and outer edges. The two-vortex setup in (e) supports one

Majorana zero-mode localized around each puncture, while the outer

boundary remains gapped.

Figure 4(b) sketches the energies versus angular momentum n
for the inner (red circles) and outer (blue circles) edge states.

These edge modes exhibit several remarkable features.

First, they are chiral—the inner modes propagate clockwise

while the outer modes propagate counterclockwise, as is clear

from Fig. 4(b). (For a p − ip superconductor, the chiralities

are reversed.) While this is reminiscent of edge states found

in the integer quantum Hall effect, there is an important dis-

tinction. The edge states captured above correspond to chiral

Majorana modes which, roughly, comprise ‘half’ of an inte-

ger quantum Hall edge state. To be more precise let us expand

Ψ′(r) in terms of edge-mode operators Γ
in/out
n :

Ψ′(r) =
∑

n

[χin
n (r)Γin

n + χout
n (r)Γout

n ]. (36)

Since the upper and lower components of Ψ′(r) are related

by Hermitian conjugation, Eqs. (33-36) imply that Γ
in/out
n =

(Γ
in/out
−n )†. This property in turn implies that (i) only edge

modes with energyE ≥ 0 [solid circles in Fig. 4(b)] are phys-

ically distinct, and (ii) the real-space operators

Γin/out(θ) =
∑

n

einθΓin/out
n = [Γin/out(θ)]† (37)

are in fact Majorana fermions.

While these chiral Majorana edge modes become gap-

less when the topological and trivial regions are thermody-

namically large, in any finite system there remains a unique

ground state. This is a direct consequence of the anti-periodic

boundary conditions on Ψ′(r) which led to half-integer val-

ues of n and hence minimum edge-excitation energies of

∆/(2Rin/out). The physics changes qualitatively when a flux

quantum Φ = hc
2e threads the central trivial region as shown

in Fig. 4(c). This flux induces a vortex in the superconducting

pair field so that (say) ∆ → ∆e−iθ in Eq. (28). The edge

Hamiltonian in the presence of this vortex can be written in

terms of our original fermion fields Ψ†(r) = [ψ†(r), ψ(r)]
(which exhibit periodic boundary conditions) as

Hv
edge =

1

2

∫

d2rΨ†(r)H(r)Ψ(r) (38)

with H(r) again given by Eq. (29). The Hamiltonians with

and without a vortex appear identical, so the edge-state en-

ergies and wavefunctions again take the form of Eqs. (32-

35), with one critical difference. Since Ψ(r) exhibits periodic

boundary conditions, the angular momentum quantum num-

ber n now takes on integer values. The edge state spectrum

sketched in Fig. 4(d) then includes two zero-energy Majorana

modes γ1 and γ2, one localized at each interface. These Ma-

jorana zero-modes are the counterpart of the Majorana end-

states discussed in Sec. II A and similarly result in a two-fold

ground state degeneracy for the p+ ip superconductor. (Tech-

nically, the edge-state wavefunctions overlap if the topologi-

cal region is finite, splitting this ground-state degeneracy by an

energy that is exponentially small in the width of the annulus.

Throughout we will neglect such a splitting unless specified

otherwise.)

The shift in boundary conditions underlying the formation

of Majorana zero-modes can be intuitively understood as fol-

lows. First, note that sending ψ → eiδφ/2ψ is equivalent to

changing the phase of the superconducting pair field by δφ.

Thus a δφ = 2π shift in the superconducting phase, while ir-

relevant for Cooper pairs, effectively leads to a sign change for

unpaired fermions [such as the edge mode operators Γ
in/out
n ;

see the wavefunctions in Eqs. (33) and (35)].32 To account

for such sign changes it is useful to take the superconducting

phase in the interval [0, 2π) and introduce branch cuts indicat-

ing where the phase jumps by 2π. The wavy line in Fig. 4(c),

for instance, represents the branch cut arising due to the hc
2e

flux. A Majorana fermion crossing that branch cut acquires a

minus sign, thereby changing the anti-periodic boundary con-

ditions to periodic as we found above in our analytic solution.
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This perspective is exceedingly valuable partly because it al-

lows one to immediately deduce where Majorana zero-modes

form even when an analytic treatment is unavailable. In the

two-vortex setup of Fig. 4(e), for example, chiral Majorana

edge states at the inner boundaries exhibit periodic boundary

conditions and therefore host zero-modes, whereas the outer

edge modes suffer anti-periodic boundary conditions and ex-

hibit a finite-size gap. Furthermore, this picture will prove es-

sential for understanding interferometry experiments and non-

Abelian statistics later in this review.

So far we have discussed chiral Majorana modes resid-

ing at fixed boundaries of a topological p + ip superconduc-

tor. An interface between topological and trivial regions can

also form dynamically when a magnetic flux penetrates the

bulk of a (type II) topological superconductor. In this case

the vortex core—which has a size of order the coherence

length ξ ∼ vF /(kF∆), with vF and kF the Fermi velocity

and momentum—forms the trivial region. Adapting Eq. (34)

to this situation, the energies of the chiral Majorana modes

bound to an hc
2e vortex are given roughly by

|Evortex| ∼
|n|∆
ξ

∼ |n|(kF∆)2

EF
, (39)

where kF∆ is the bulk gap, EF is the Fermi energy, and n
takes on integer values.70 The spectrum of Eq. (39) reflects the

p+ ip analog11 of Caroli-de Gennes-Matricon states71 bound

to vortices in s-wave superconductors.32 Since n is an integer

the vortex binds a single Majorana zero-mode (unlike the s-
wave case where all bound states have finite energy). It is im-

portant to observe, however, that this zero-mode is separated

by a ‘mini-gap’ Emini−gap ∼ (kF∆)2/EF from the next ex-

cited state. In a ‘typical’ superconductorEmini−gap can easily

be a thousand times smaller than the bulk gap, which can pose

challenges for some of the proposals we will review later on.

In this regard, an appealing feature of the 1D p-wave super-

conductor discussed in Sec. II A is that there the Majorana

zero-modes are generally separated from excited states by an

energy comparable to the bulk gap.

Because we considered a spinless p + ip superconductor

above, each hc
2e vortex threading a topological region binds

a single localized Majorana zero-mode. Remarkably, stable

isolated Majorana zero-modes can also form in a spinful 2D

electron system exhibiting spin-triplet p+ ip superconductiv-

ity. For such a superconductor the pairing term in Eq. (20)

generalizes to8

Htriplet =

∫

d2r
∆

2

[

eiφψσy(d̂ · σ)(∂x + i∂y)ψ +H.c.
]

,

(40)

where ψ†
α(r) creates an electron with spin α =↑, ↓ and spin

indices are implicitly summed. Note that Htriplet is invari-

ant under arbitrary spin rotations about the d̂ direction, ψ →
ei

θ
2
d̂·σψ, but transforms nontrivially under all other spin ro-

tations, reflecting the spin-triplet nature of Cooper pairs. In

the presence of an ordinary hc
2e vortex, the superconducting

phase φ rotates by 2π around the vortex core. This vortex

binds a pair of Majorana zero-modes (one for each electron

spin) which generically hybridize and move to finite energy

upon including spin-mixing perturbations such as spin-orbit

coupling.

The order parameter in Eq. (40), however, supports addi-

tional stable topological defects.8,32,72–75 This is tied to the fact

that Htriplet is invariant under combined shifts of φ → φ+ π

and d̂ → −d̂, which allows for hc
4e half quantum vortices in

which the superconducting phase φ and d̂ both rotate by π
around a vortex core. As a concrete example, consider the

order parameter configuration75

eiφ(r) = ie−iθ/2, d̂(r) = cos(θ/2)x̂+ sin(θ/2)ŷ, (41)

where (r, θ) are polar coordinates. Inserting this form into Eq.

(40), one finds

Htriplet →
∫

d2r
∆

2
[ψ↑(∂x + i∂y)ψ↑

− e−iθψ↓(∂x + i∂y)ψ↓ +H.c.], (42)

revealing a key feature of half quantum vortices—these de-

fects are equivalent to configurations in which only one spin

component ‘sees’ an ordinary hc
2e vortex.32 Thus a half quan-

tum vortex binds a single zero-energy Majorana mode, just as

for vortices in the spinless p + ip superconductor discussed

earlier. Typically, however, nucleating half quantum vortices

costs more energy than ordinary hc
2e vortices due to spin-orbit

coupling, though clever routes of avoiding this outcome have

been proposed75–78. In fact evidence of half quantum vortices

in mesoscopic Sr2RuO4 samples was very recently reported

experimentally79 (see Sec. IV C).

Finally, we note in passing that it is also in principle pos-

sible for a time-reversal-invariant 2D superconductor to form

such that one spin undergoes p+ ip pairing while its Kramer’s

partner exhibits p − ip pairing80–83. Provided time-reversal

symmetry is present, such phases support stable counter-

propagating chiral Majorana modes at the boundaries between

topological and trivial regions. These can be viewed as a

superconducting analog of 2D topological insulators, where

counter-propagating edge states formed by Kramer’s pairs are

similarly stable due to time-reversal symmetry84.

III. PRACTICAL REALIZATIONS OF MAJORANA

MODES IN 1D p-WAVE SUPERCONDUCTORS

A. Preliminary Remarks

We will now survey several ingenious schemes that have

been proposed to realize Majorana fermions in topological

phases similar to that of Kitaev’s model for a 1D spinless p-

wave superconductor reviewed in Sec. II A. To put the prob-

lem in perspective, it is useful to highlight the basic chal-

lenges involved in realizing Kitaev’s model experimentally.

First, there is a ‘fermion doubling problem’ of sorts that must

be overcome—since electrons carry spin-1/2 one must freeze

out half of the degrees of freedom so that the 1D system ap-

pears effectively ‘spinless’. Stabilizing p-wave superconduc-

tivity for such a ‘spinless’ system poses a still more serious
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challenge. Not only are p-wave superconductors exceedingly

rare in nature, but an attractively interacting 1D electron sys-

tem that conserves particle number can at best exhibit power-

law superconducting correlations in contrast to the long-range

ordered superconductivity assumed in Kitaev’s model. (Re-

markably, power-law superconducting order can be sufficient

to stabilize Majorana modes85–87, though the splitting of the

degenerate ground states in such cases scales as a power-law

of the system size rather than exponentially.) The proposals

we review below employ the same three basic ingredients to

cleverly overcome these challenges: superconducting proxim-

ity effects, time-reversal symmetry breaking, and spin-orbit

coupling.

The essence of the first ingredient is that a 1D system can

inherit Cooper pairing from a nearby long-range-ordered su-

perconductor. Fluctuations of the resulting superconducting

order parameter for the 1D system are largely controlled by

the parent bulk superconductor, and can thus remain unimpor-

tant even at finite temperature despite the low dimensionality

of the parasitic material. Since superconducting proximity ef-

fects are central to much of this review, we will digress briefly

to elaborate on the physics in greater detail. Consider for the

moment some 1D electron system with a Hamiltonian of the

form

H1D =

∫

dk

2π
ψ†
kHkψk (43)

and a conventional bulk s-wave superconductor described by

HSC =

∫

d3k

(2π)3
[ǫsc(k)η

†
k
ηk +∆sc(η↑kη↓−k +H.c.)].(44)

Here ψ†
σk and η†σk add electrons with spin σ to the 1D

system and superconductor, respectively, while ǫsc(k) =
k2/(2msc)−µsc and ∆sc are the superconductor’s kinetic en-

ergy and pairing amplitude. When the 1D system is brought

into intimate contact with the superconductor [as in Fig. 6(a)],

the resulting structure can be described by

H = H1D +HSC +HΓ, (45)

where HΓ encodes single-electron tunneling between the two

subsystems with amplitude Γ. Taking the 1D system to lie

along the line (x, y, z) = (x, 0, 0), one can explicitly write

HΓ = −Γ

∫

dx[ψ†
xη(x,0,0) +H.c.]. (46)

The effect of the hybridization term HΓ can be crudely de-

duced using perturbative arguments and dimensional analy-

sis. Suppose that the superconductor’s Fermi wavevector kscF
greatly exceeds that of the 1D system. Intuitively, in this

regime (which is relevant for all of the setups of interest) the

hybridization between the two subsystems should be primarily

controlled by Γ and properties of the superconductor. When

ΓkscF ≪ ∆sc, it suffices to treat HΓ perturbatively since in

this limit single electron tunneling is strongly suppressed due

to the parent superconductor’s gap. At second order one gen-

erates an effective Cooper-pair hopping term which, using di-

mensional analysis, takes the form

δH ∝ Γ2

kscF ∆sc

∫

dx
(

ψ↑xψ↓xη
†
↓(x,0,0)η

†
↑(x,0,0) +H.c.

)

.

(47)

At low energies one can replace η†↓η
†
↑ → 〈η†↓η

†
↑〉 ∝ ρsc∆sc,

where the brackets denote a ground state expectation value

and ρsc is the superconductor’s density of states at the Fermi

level. In this way one arrives at the following effective Hamil-

tonian for the 1D system,

Heff = H1D +H∆

H∆ = ∆

∫

dx (ψ↑xψ↓x +H.c.) , (48)

with ∆ ∝ Γ2

ksc
F

∆sc
(ρsc∆sc) ∝ ρ2DΓ2 and ρ2D = msc/(2π)

the superconductor’s 2D density of states at kx = 0.

The treatment above captures a simple effective Hamilto-

nian for the 1D system that incorporates proximity-induced

pairing. Similar models appear frequently in the literature and

will be employed often here as well. Several authors have,

however, emphasized the need to treat the proximity effect

more rigorously to obtain a quantitative understanding of the

devices we will explore below88–97. A more accurate way for-

ward involves constructing the Euclidean action correspond-

ing to H in Eq. (45) and then integrating out the parent su-

perconductor’s degrees of freedom. Appendix A sketches the

calculation and yields the following effective action for the 1D

system,

Seff =

∫

dω

2π

dk

2π
Z−1(ω){ψ†

(k,ω)[−iω + Z(ω)Hk]ψ(k,ω)

+ ∆sc[1− Z(ω)][ψ↑(k,ω)ψ↓(−k,−ω) +H.c.]} (49)

As in our perturbative analysis, an effective Cooper pairing

term (now frequency dependent) once again appears. This

more rigorous procedure, however, reveals that the tunneling

Γ also generates a reduced quasiparticle weight Z(ω) for elec-

trons in the 1D system given approximately by94

Z(ω) ≈
[

1 +
πρ2DΓ2

√

ω2 +∆2
sc

]−1

. (50)

The physics underlying Eqs. (49) and (50) is that by enhanc-

ing Γ the wavefunctions for electrons in the 1D system bleed

farther into the parent superconductor, thereby reducing their

quasiparticle weight Z(ω) and enhancing the pairing ampli-

tude that they inherit [which can reach a maximum of ∆sc as

Z(ω) → 0]. The reduced quasiparticle weight also, however,

effectively rescales the original Hamiltonian Hk and dimin-

ishes the energy scales intrinsic to the 1D system.94 [Poles

in the electron Green’s function follow from Z(ω)Hk, rather

than Hk.] In other words, in an effective 1D description of the

hybrid structure, parameters such as spin-orbit coupling, Zee-

man splitting, etc. do not take on the values one would mea-

sure in the absence of the superconductor, but rather are renor-

malized downward due to the hybridization. This aspect of

the proximity effect is often neglected, but as we will see later
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can lead to important and counterintuitive consequences. We

should note that even at this level the modeling of the prox-

imity effect remains rather crude. More sophisticated treat-

ments where one treats the pairing self-consistently are also

possible91–93 but will not be discussed here.

Remarkably, most proposals for engineering Kitaev’s

model for a 1D spinless p-wave superconductor in fact ex-

ploit proximity effects with ordinary s-wave superconductors

like we treated above. (It is hard to overemphasize the im-

portance of this feature insofar as experimental prospects are

concerned, given the many thousands of known s-wave super-

conductors.) While this naively appears somewhat paradoxi-

cal, spin-orbit coupling—typically in conjuction with time-

reversal symmetry breaking—can effectively convert such a

1D system into a p-wave superconductor. We will now ex-

plore a variety of settings in which such a mechanism appears.

B. 2D Topological Insulators

In 2005, a revolution in our understanding of a seemingly

well-understood phase of matter—the band insulator—began

to emerge51,52,84,98. It is now appreciated that such states need

not be trivial in the sense of having no available low-energy

degrees of freedom at zero temperature. Rather, there ex-

ists a class of topological band insulators that while inert in

the bulk necessarily possess novel conducting states at their

boundary. These topological phases can appear in either two-

or three-dimensional crystals and, remarkably, merely require

appreciable spin-orbit coupling and time-reversal symmetry.

The numerous fascinating developments that grew out of the

discovery of topological insulators include Fu and Kane’s pi-

oneering proposals49,50 for generating Majorana fermions at

their edges (in 2D crystals) or surfaces (in 3D). In this section

we will describe how one can engineer a topological super-

conducting state similar to that of Kitaev’s model using the

edge of a 2D topological insulator; the 3D case will be re-

viewed in Sec. IV D. (See also Sec. III D for a proposal in-

volving nanowires built from 3D topological insulators.)

The hallmark of a 2D topological insulator is the presence

of counter-propagating, spin-filtered edge states that are con-

nected by time-reversal symmetry. In an oversimplified pic-

ture that is adequate for our purposes, one can envision spin up

electrons propagating clockwise around the edge while their

Kramer’s partners with spin down circulate counterclockwise

as shown in Fig. 5(a). These low-energy edge modes can be

described by the Hamiltonian

H2DTI =

∫

dxψ†(−iv∂xσz − µ)ψ, (51)

where v is the edge-state velocity, µ is the chemical potential,

and ψ†
σx adds an electron with spin σ at position x along the

edge. The blue and red lines of Fig. 5(b) sketch their disper-

sion. Provided time-reversal symmetry is preserved (elastic)

backscattering between the counter-propagating edge states is

prohibited even in the presence of strong non-magnetic disor-

der. Consequently these modes are robust against localization

(a)

2D TI
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(d)

µ

k

∆
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h/∆

1

(c)

2D TI
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2D TI

s-wave SC
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2D TI

γ2γ1

(f )
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(g) s-wave SC
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B
I

FIG. 5. (a) Schematic of counter-propagating, spin-filtered edge

states in a 2D topological insulator. (b) Edge-state dispersion when

time-reversal symmetry is present (red and blue lines) and with a

Zeeman field h of the form in Eq. (55) (solid curves). (c) A proxi-

mate s-wave superconductor drives the edge into a topological phase

similar to the weak-pairing phase in Kitaev’s toy model for a 1D

spinless p-wave superconductor. When the Zeeman field h is present,

the topological phase survives provided h <
√

∆2 + µ2 leading to

the phase diagram in (d). Domain walls between topological (green

lines) and trivial regions (dashed lines) on the edge trap localized

Majorana zero-modes. As described in the text these can be created

with (e) a ferromagnetic insulator, (f) a Zeeman field combined with

electrostatic gating, or (g) applying supercurrents near the edge.

that plagues conventional 1D systems. Furthermore, by fo-

cusing on these edge states one immediately beats the fermion

doubling problem noted earlier—the spectrum supports only a

single pair of Fermi points as long as the Fermi level does not

intersect the bulk bands, and in this sense the system appears

‘spinless’.

Realizing topological superconductivity then simply re-

quires gapping out the edge via Cooper pairing. Since the

counter-propagating edge modes carry opposite spins, this can

be achieved by interfacing the topological insulator with an or-

dinary s-wave superconductor50; see Fig. 5(c). As discussed

in Sec. III A the superconducting proximity effect on the edge
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can be crudely modeled with a Hamiltonian

H = H2DTI +H∆ (52)

H∆ =

∫

dx∆(ψ↑ψ↓ +H.c.), (53)

where ∆ is the pairing amplitude inherited from the nearby

superconductor. Equation (52) yields quasiparticle energies

E±(k) =
√

(±vk − µ)2 +∆2, (54)

with k the momentum, and describes a gapped topological

superconductor that is a time-reversal-symmetric relative of

the weak-pairing phase in Kitaev’s toy model.50 Let us now

make this connection more precise and elucidate how the spin-

singlet pairing ∆ mediates p-wave superconductivity.

To this end it is instructive to violate time-reversal symme-

try by introducing a Zeeman field that cants the spins away

from the z direction:

H ′ = H2DTI +HZ +H∆ (55)

HZ = −h
∫

dxψ†σxψ (56)

with h ≥ 0 the Zeeman energy. When ∆ = 0 the edge-

state spectrum becomes ǫ±(k) = −µ ±
√

(vk)2 + h2, and

as shown by the solid black lines in Fig. 5(b) exhibits a gap

at k = 0 due to the broken time-reversal symmetry. To un-

derstand the influence of proximity-induced pairing, we first

note that the effect of ∆ is obscured by the fact that Eq. (55)

contains a standard spin-singlet pairing term but an uncon-

ventional kinetic energy form (due to the interplay of spin-

momentum locking and the field). The physics becomes much

more transparent upon expressing H ′ in terms of operators

ψ†
±(k) that add electrons with energy ǫ±(k) to the edge. In

this basis H ′ reads

H ′ =

∫

dk

2π

{

ǫ+(k)ψ
†
+(k)ψ+(k) + ǫ−(k)ψ

†
−(k)ψ−(k)

+
∆p(k)

2
[ψ+(−k)ψ+(k) + ψ−(−k)ψ−(k) +H.c.]

+ ∆s(k)[ψ−(−k)ψ+(k) +H.c.]
}

, (57)

where the pairing functions are

∆p(k) =
vk∆

√

(vk)2 + h2
, ∆s(k) =

h∆
√

(vk)2 + h2
. (58)

The first line of Eq. (57) simply describes the band energies

while the third captures interband s-wave pairing. Most im-

portantly, the second line encodes intraband p-wave pairing.

This emerges because, as shown schematically in Fig. 5(b),

electrons at k and −k in a given band have misaligned spins

and can thus form Cooper pairs in response to ∆. By Fermi

statistics, the effective potential ∆p(k) that pairs these elec-

trons must exhibit odd parity since they derive from the same

band. (Physically, the odd parity reflects the fact that the elec-

tron spins rotate as one sweeps the momentum from k to −k.)

This is the first of many instances we will encounter in which

an s-wave order parameter effectively generates p-wave pair-

ing by virtue of spin-orbit coupling.

The connection to Kitaev’s model becomes explicit in the

limit where h≫ ∆ and µ resides near the bottom of the upper

band as in Fig. 5(b). In this case the lower band plays essen-

tially no role and can be projected away by simply sending

ψ− → 0. Furthermore, only momenta near k = 0 are impor-

tant here so it suffices to expand ǫ+(k) ≈ −(µ−h)+ v2

2hk
2 ≡

−µeff + k2/(2meff) and ∆p(k) ≈ v∆
h k ≡ ∆effk. With these

approximations, one obtains an effective Hamiltonian that in

real space reads

Heff =

∫

dx

[

ψ†
+

(

− ∂2x
2meff

− µeff

)

ψ+

+
∆eff

2
(−ψ+i∂xψ+ +H.c.)

]

, (59)

which describes Kitaev’s model for a 1D spinless p-wave su-

perconductor in the low-density limit [i.e., near µ = −t in

Fig. 1(a)]. A similar mapping can be implemented for µ near

the top of the lower band in Fig. 5(b). These considerations

show that for h ≫ ∆, the edge forms a trivial strong pairing

phase when |µ| . h and a topological weak pairing phase at

|µ| & h.

A more accurate phase diagram valid at any h,∆ can be

deduced by studying the unprojected Hamiltonian in Eq. (57),

which yields quasiparticle energies

E′
±(k) =

√

∆2 +
ǫ2+ + ǫ2−

2
± (ǫ+ − ǫ−)

√

∆2
s + µ2.(60)

The quasiparticle gap extracted from Eq. (60) vanishes only

when h2 = ∆2 + µ2. Matching onto the h ≫ ∆ results

derived above, we then conclude that the edge forms a topo-

logical superconductor provided

h <
√

∆2 + µ2 (topological criterion). (61)

Physically, the edge forms a topological phase if supercon-

ductivity dominates the gap but a trivial phase if the gap is

driven by time-reversal symmetry breaking. Figure 5(d) illus-

trates the resulting phase diagram. Note that topological su-

perconductivity persists even in the time-reversal-symmetric

limit with h = 0; this has important physical consequences

as we discuss shortly. We also note that electrons on the

edge are additionally subject to Coulomb repulsion, which

have dramatic consequences in 1D and have so far been ne-

glected. References 99 and 100 find that while strong inter-

actions (with a Luttinger parameter g < 1/2) can destroy the

topological phase, milder repulsion (1/2 < g < 1) leaves the

phase diagram of Fig. 5(d) qualitatively intact.

Thus far we have only shown how to utilize the edge to

construct a 1D topological superconductor on a ring, with no

ends. Stabilizing localized Majorana zero-modes requires in-

troducing a domain wall between gapped topological and triv-

ial phases on the edge50. The setups of Figs. 5(e) and (f) trap

Majorana modes γ1,2 by gapping three sides with supercon-

ductivity and the fourth with a Zeeman field h of the form

in Eq. (56). Topological and trivial regions are respectively

indicated by green and dashed lines in these figures. In (e)

electrons on the lower edge ‘inherit’ the Zeeman field via a
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proximity effect with a ferromagnetic insulator, just as a pair-

ing field ∆ is inherited from a superconductor.90 Note that the

chemical potential for the bottom edge must reside within the

field-induced spectral gap [recall Fig. 5(b)]; otherwise that re-

gion remains gapless despite the broken time-reversal. In (f)

both superconductivity and the Zeeman field h are uniformly

generated on all four edges, the latter by applying a magnetic

field. Provided h > ∆, the topological and trivial regions

form simply by adjusting the chemical potential µ via gating

so that h <
√

∆2 + µ2 on three sides while h >
√

∆2 + µ2

on the fourth.101 We emphasize here that one can simultane-

ously have h > ∆ and still be well below the superconduc-

tor’s critical field since the Zeeman energy for the edge can

greatly exceed that in the superconductor due to spin-orbit en-

hancement of the g-factor102.

Majorana zero-modes can also be trapped by selectively

driving supercurrents near the edge of the sample103. To un-

derstand the underlying principle, let us revisit the Hamilto-

nian in Eq. (55) when a supercurrent I flows as in Fig. 5(g).

The current generates a phase twist in the superconducting or-

der parameter so that H∆ becomes

H∆ →
∫

dx∆[eiφ(x)ψ↑ψ↓ +H.c.], (62)

with I ∝ ∂xφ(x). It is convenient to gauge away the phase

factor above by sending ψσ → e−iφ(x)/2ψσ; defining hz ≡
v∂xφ/2, the full Hamiltonian then reads

H ′ →
∫

dx
{

ψ† [−(iv∂x + hz)σ
z − µ− hσx]ψ

+ ∆(ψ↑ψ↓ +H.c.)
}

. (63)

Equation (63) shows that the supercurrent mimics the effect

of a Zeeman field hz directed along the z direction. Con-

trary to h, this does not open a gap but rather breaks the res-

onance between electrons with momentum k and −k, thereby

suppressing their ability to Cooper pair. Suppose now that

|µ| < h <
√

∆2 + µ2. When I = 0 the edge then forms

a topological phase where ∆ dominates the gap. At large I
(such that hz ≫ ∆), however, the pair-breaking effect of hz
essentially kills ∆ and the edge forms a trivial state with a

gap arising from h. Supercurrents therefore allow one to turn

a topological portion of the edge into a trivial state, similar to

the gate in Fig. 5(f), providing yet another means for stabiliz-

ing Majorana-carrying domain walls.

In our view 2D topological insulators hold great promise

as a potential venue for Majorana fermions, particularly in

the long term. For one, their reduced dimensionality should

allow for bulk carriers—which usually bedevil 3D topolog-

ical insulators—to be removed relatively easily by electro-

static gating. The topological superconducting phase hosted

by the edge also exhibits several remarkable features. First,

this phase is ‘easy’ to access in the sense that its appearance

requires the chemical potential µ to satisfy the inequality in

Eq. (61) while not intersecting the bulk bands; this chemi-

cal potential window is therefore limited by the bulk gap for

the topological insulator which can reach the ∼ 0.1eV scale

(see, e.g., Ref. 104). By contrast the trivial gapped state re-

quires positioning µ inside of the Zeeman-induced gap of Fig.

5(b), which likely requires greater care. While ultimately the

ability to access both kinds of states is essential, the compar-

ative ease for forming the topological phase greatly facilitates

the Josephson-based Majorana detection schemes discussed

in Sec. V B. More strikingly, as a consequence of Ander-

son’s theorem the gap protecting the time-reversal-invariant

topological superconductor that forms when h = 0 is unaf-

fected by non-magnetic disorder94,105. We emphasize that one

needn’t work at h = 0 to enjoy this protection: with h 6= 0 but

µ far from the Zeeman-induced gap, electrons near the Fermi

energy are weakly perturbed by the field and hence ‘almost’

obey Anderson’s theorem94.

A final noteworthy feature pertains to how large the topo-

logical superconductor’s gap can be in principle. Addressing

this question requires the more rigorous treatment of the prox-

imity effect discussed in Sec. III A. Recall that increasing the

tunneling Γ between the superconductor and topological insu-

lator enhances ∆ but reduces the energy scales intrinsic to the

edge. When h = 0 [such as in the setup of Fig. 5(e)] it fol-

lows from Eq. (54) that the gap is simply Egap = ∆, which is

independent of the quantities v, µ that Γ suppresses. Thus in

this case the gap increases monotonically with Γ, reaching a

maximum of ∆sc for the parent superconductor.89,94 In other

words, it is in principle possible for the edge to inherit the full

pairing gap exhibited by the parent superconductor. This is-

sue becomes subtler in setups such as Fig. 5(f) where h 6= 0,

for in this case increasing Γ supresses the Zeeman-induced

gap in the spectrum, making it more difficult to stabilize the

trivial phase to trap Majoranas. How large a hybridization is

desirable then depends on details such as the tolerable fields

one can apply, sample purity, etc.

Despite these virtues this platform for Majorana fermions

faces the hurdle that experimental progress on 2D topolog-

ical insulators has to date remained rather limited. Though

numerous candidate materials have been proposed84,104,106–110

only predictions for HgTe have so far been confirmed

experimentally111,112. Some evidence for a topological in-

sulator phase in InAs/GaSb quantum wells also appeared

recently113,114, though the signatures are less clear cut due

to persistence of bulk carriers in the samples. The situa-

tion, however, already shows signs of improvement—very re-

cently topological insulator behavior in HgTe has been inde-

pendently confirmed by the Yacoby group, and experimental

efforts to introduce a proximity effect at the edge are under-

way. It will be very interesting to see how this avenue pro-

gresses in the near future.

C. Conventional 1D wires

Two seminal works (Lutchyn et al.115 and Oreg et al.116) re-

cently established that one can engineer the topological phase

in Kitaev’s toy model by judiciously combining three exceed-

ingly simple and widely available ingredients: a 1D wire with

appreciable spin-orbit coupling, a conventional s-wave super-

conductor, and a modest magnetic field. Figure 6(a) illustrates

the basic architecture required, which can be modeled by the
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FIG. 6. (a) Basic architecture required to stabilize a topological superconducting state in a 1D spin-orbit-coupled wire. (b) Band structure

for the wire when time-reversal symmetry is present (red and blue curves) and broken by a magnetic field (black curves). When the chemical

potential lies within the field-induced gap at k = 0, the wire appears ‘spinless’. Incorporating the pairing induced by the proximate super-

conductor leads to the phase diagram in (c). The endpoints of topological (green) segments of the wire host localized, zero-energy Majorana

modes as shown in (d).

following Hamiltonian,

H = Hwire +H∆ (64)

Hwire =

∫

dxψ†

(

− ∂2x
2m

− µ− iασy∂x + hσz

)

ψ (65)

H∆ =

∫

dx∆(ψ↑ψ↓ +H.c.). (66)

Here ψ†
σ adds an electron with effective massm, chemical po-

tential µ, and spin σ to the wire; α > 0 denotes the strength for

spin-orbit coupling that favors aligning spins along or against

the y direction depending on the momentum; and h ≥ 0 is the

Zeeman energy arising from a magnetic field applied along

z. (The precise spin-orbit and magnetic field axes are unim-

portant so long as they are perpendicular.) For concreteness

one can envision Hwire describing an electron-doped semi-

conducting wire such as InAs with Rashba coupling117, in

the limit where only the lowest transverse subband is rele-

vant. The pairing term H∆ crudely models the proximity ef-

fect on the wire arising from the adjacent s-wave supercon-

ductor. Note that H above takes on the same form as the

topological insulator edge Hamiltonian H ′ in Eq. (55), with

the sole addition of an ordinary k2/(2m) kinetic energy con-

tribution. This important modification underlies many of the

qualitative distinctions between the two setups.

Let us first consider ∆ = 0 and elucidate how the Hamilto-

nianHwire overcomes our fermion doubling problem. The red

and blue curves in Fig. 6(b) illustrate the wire’s band struc-

ture in the limit where h = 0. Due to spin-orbit coupling,

the blue and red parabolas respectively correspond to elec-

tronic states whose spin aligns along +y and −y. Clearly no

‘spinless’ regime is possible here—the spectrum always sup-

ports an even number of pairs of Fermi points for any µ. The

magnetic field remedies this problem by lifting the crossing

between these parabolas at k = 0, producing band energies

ǫ±(k) =
k2

2m
− µ±

√

(αk)2 + h2 (67)

sketched by the solid black curves of Fig. 6(b). When the

Fermi level resides within this field-induced gap (e.g., for µ
shown in the figure) the wire appears ‘spinless’ as desired.

The influence of the superconducting proximity effect on

this band structure can be intuitively understood by focusing

on this ‘spinless’ regime and projecting away the upper unoc-

cupied band, which is legitimate provided ∆ ≪ h. Crucially,

because of competition from spin-orbit coupling the mag-

netic field only partially polarizes electrons in the remaining

lower band as Fig. 6(b) indicates schematically. Turning on ∆
weakly compared to h then effectively p-wave pairs these car-

riers, driving the wire into a topological superconducting state

that connects smoothly to the weak-pairing phase of Kitaev’s

toy model (see Ref. 35 for an explicit mapping).

More formally, one can proceed as we did for the topolog-

ical insulator edge and express the full, unprojected Hamil-

tonian in terms of operators ψ†
±(k) that add electrons with

energy ǫ±(k) to the wire. The resulting Hamiltonian is again

given by Eqs. (57) and (58) [but with v → α and band energies

ǫ±(k) from Eq. (67)], explicitly demonstrating the intraband

p-wave pairing mediated by ∆. Furthermore, Eq. (60) pro-

vides the quasiparticle energies for the wire with proximity-

induced pairing and again yields a gap that vanishes only

when h =
√

∆2 + µ2. For fields below this critical value the

wire no longer appears ‘spinless’, resulting in a trivial state,

while the topological phase emerges at higher fields,

h >
√

∆2 + µ2 (topological criterion). (68)

Figure 6(c) summarizes the phase diagram for the wire. No-

tice that this is inverted compared to the topological insulator

edge phase diagram in Fig. 5(d). This important distinction

arises because the k2/(2m) kinetic energy for the wire causes

an upturn in the lower band of Fig. 6(b) at large |k|, thereby

either adding or removing one pair of Fermi points relative to

the edge band structure.

Since a wire in its topological phase naturally forms a

boundary with a trivial state (the vacuum), Majorana modes

γ1 and γ2 localize at the wire’s ends when the inequality in Eq.

(68) holds. Majorana-trapping domain walls between topo-

logical and trivial regions can also form at the wire’s interior

by applying gate voltages to spatially modulate the chemical

potential35,118 or by driving supercurrents through the adja-

cent superconductor103 (using the same mechanism discussed

in Sec. III B). Figure 6(d) illustrates an example where four

Majoranas form due to a trivial region in the center of a wire.

It is useful address how one optimizes the 1D wire setup

to streamline the route to experimental realization of this pro-
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posal. This issue is subtle, counterintuitive, and difficult even

to define precisely given several competing factors. First, how

well should the wire hybridize with the parent superconduc-

tor? The naive guess that the hybridization should ideally be

as large as theoretically possible to maximize the pairing am-

plitude ∆ imparted to the wire is incorrect. One practical issue

is that exceedingly good contact between the two subsystems

may lead to an enormous influx of electrons from the super-

conductor into the wire, pushing the Fermi level far above the

Zeeman-induced gap of Fig. 6(b) where the topological phase

arises. Restoring the Fermi level to the desired position by

gating will then be complicated by strong screening from the

superconductor.

Reference 94 emphasized a more fundamental issue related

to the optimal hybridization. The topological phase’s sta-

bility is determined not only by the pairing gap induced at

the Fermi momentum, EkF
∝ ∆, but also the field-induced

gap at zero momentum, E0 = |h −
√

∆2 + µ2|, required to

open a ‘spinless’ regime. The minimum excitation gap for

the topological phase is set by the smaller of these two en-

ergies. As reviewed in Sec. III A, increasing the tunneling Γ
between the wire and superconductor indeed enhances ∆ but

simultaneously reduces the Zeeman energy h. From the ef-

fective action in Eq. (49) we explicitly have h = Zhbare and

∆ = (1 − Z)∆sc, where hbare is the Zeeman energy for the

wire when the superconductor is absent, ∆sc is the parent su-

perconductor’s gap, and Z is the quasiparticle weight defined

in Eq. (50) (for simplicity we neglect the frequency depen-

dence). Suppose now that Γ increases from zero, thereby re-

ducing Z from unity. As Z decreases the topological phase’s

gap initially increases due to an enhancement of EkF
. Even-

tually, however, the gap decreases due to a suppression of E0,

and the topological phase disappears entirely beyond a critical

value of Γ at which E0 vanishes. The maximum achievable

gap depends sensitively on details such as the spin-orbit cou-

pling strength, applied field amplitude, mobility for the wire,

etc.94,97

But should one ideally design the setup to achieve this max-

imum gap? This, too, is not necessarily the case. As an il-

lustrative example, consider a 200, 000cm2/Vs mobility wire

with parameters relevant for InAs, adjacent to a superconduc-

tor with ∆sc = 2K. Reference 97 predicted (including short-

range disorder) that such a wire realizes an optimized gap

of Emax ≈ 0.3K when the Zeeman energy is hbare ≈ 1K.

Realizing the topological phase in a meaningful way then re-

quires positioning the chemical potential within a rather nar-

row ∼ 1K window over distances long compared to the wire’s

coherence length, which could prove challenging experimen-

tally due to disorder-induced chemical potential fluctuations.

Thus it may be desirable to apply larger magnetic fields to

soften these constraints at the expense of reducing the gap

somewhat.

The question of how large this Zeeman field should be is

also rather delicate. On one hand, enhancing h indeed alle-

viates the need to fine tune µ. But on the other, increasing

h suppresses superconductivity in the parent superconductor,

reduces the effective p-wave pairing amplitude for electrons

in the wire due to a further alignment of their spins [see Eq.

(58)], and makes the wire more susceptible to disorder94,97.

As discussed in the topological insulator context, the first ef-

fect can be rather minor if the g factor in the wire greatly

exceeds that in the superconductor. The effect of disorder

warrants more serious consideration. Since the topological

phase appears only at finite magnetic fields Anderson’s the-

orem does not protect the gap against disorder in the wire—

which is always pair-breaking in this context as many studies

have shown94,97,119–125. (Fortunately though, Refs. 126 and

127 conclude that disorder native to the proximate s-wave su-

perconductor is benign.)

The sensitivity of the topological phase to disorder is de-

termined by how severely time-reversal symmetry is bro-

ken. One can quantify this by the ratio of the Zeeman en-

ergy h to the spin-orbit energy94,97, which we define here by

Eso = 1
2mα

2. Physically, Eso is the Fermi energy measured

relative to the bottom of the bands when µ = h = 0; see

Fig. 6(b). At large h/Eso spins near the Fermi level are fairly

well polarized, so time reversal is strongly violated and hence

disorder can efficiently suppress the gap. In contrast, at small

h/Eso spins at kF and −kF are nearly antiparallel due to the

dominance of spin-orbit coupling. Time-reversal is then ‘al-

most’ present insofar as carriers near the Fermi level are con-

cerned, thereby sharply suppressing the impact of disorder on

the topological phase.94,97

The strength of spin-orbit coupling is thus a crucial materi-

als parameter. ‘Large’ spin-orbit values allow one to operate

at relatively high Zeeman fields—where the topological phase

occurs over a broad chemical potential range—while main-

taining some degree of robustness against disorder. (Though

one should bear in mind that increasing spin-orbit coupling

can reduce the mobility, thus at least partially offsetting this

advantage.97) Furthermore, the maximum gap that the topo-

logical phase can in principle exhibit increases with the spin-

orbit strength,94,97 approaching a value of ∆sc in the limit

where94 Eso ≫ h≫ ∆sc.

In light of this discussion it is interesting to ask how

electron-doped InAs and InSb wires fare as platforms for Ma-

jorana fermions. At present these are the most commonly dis-

cussed wires for this proposal, and for good reason. Both ex-

hibit exceptionally large g factors (gInAs ≈ 15 and gInSb ≈ 50
for bulk crystals), and can be synthesized with high mobility

and long mean free paths. Good superconducting proximity

effects have also been measured in both systems.128–130 One

challenge with these materials, however, is that while they are

often lauded as having strong spin-orbit coupling, the energy

scale Eso is typically of order 1K for both InAs and InSb131.

Rashba coupling is gate-tunable to some extent,132 but it may

nonetheless prove difficult to access the topological phase in

a spin-orbit dominated regime where h/Eso ≪ 1. Disorder

is thus likely to play a nontrivial role in these settings. Still,

it is hard not to be optimistic about the prospects of success

given the high level and rapid pace of ongoing experimental

activity.

Several subsequent works have pursued variations on this

proposal in an effort to mitigate the challenges involved with

realizing the topological phase experimentally. One issue that

has been explored is whether one can reduce the applied mag-
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netic field required to access the topological phase. Refer-

ence 99 proposed the use of nuclear spins to generate the Zee-

man energy133, thus removing the external magnetic field alto-

gether. Repulsive interactions—which are inevitably present

in the wire—also allow the topological phase to be accessed

at weaker magnetic fields and over a broader chemical poten-

tial window due partly to exchange enhancement of the Zee-

man field134 (but if the repulsion is too strong this state can

disappear99,134). In principle, interactions can even stabilize

topological superconductivity at zero magnetic field due to

spontaneous time-reversal symmetry breaking.134 Generating

the topological phase by applying supercurrents as described

in Ref. 103 also lowers the critical Zeeman field needed.

Multichannel wires have been shown by numerous studies

to support a 1D topological superconducting state away from

the lowest-subband limit.121,124,135–143 In this more general

setting one simply needs an odd number of partially occupied

bands and a wire whose width does not exceed the coherence

length. The former criterion is rather natural: starting from the

topological phase in a single-channel wire, pairs of partially

occupied bands can always be adiabatically introduced with-

out closing the gap. The latter criterion ensures that the in-

duced superconducting phase remains quasi-1D, which is re-

quired for the wire to exhibit a substantial gap.136,139,142 These

works are significant in part because multiple subbands are

usually occupied in semiconducting wires such as InAs and

InSb. Gating these wires into the lowest subband regime may

be nontrivial particularly when a superconductor is nearby, but

fortunately is unnecessary. Furthermore, multichannel wires

open the door to realizing a topological phase in a variety of

other settings, such as gate-defined channels in quantum wells

or surface states featuring large spin-orbit coupling136,144,145.

Even in a multichannel wire accessing the topological

phase will require some degree of gating. An interesting pos-

sible route to enhancing gate-tunability is to employ periodi-

cally modulated structures in which a regular array of super-

conducting islands contacts the wire.146–148 The basic idea is

that gating the wire in the regions between adjacent super-

conductors may be relatively easy. Although the Hamilto-

nian is rather different from that of the uniform structure con-

sidered previously, a topological phase can still arise, which

can be understood simply in two limits. First, suppose that

the chemical potential varies only modestly along a single-

channel wire. In the limit where the Fermi wavelength ex-

ceeds the spacing between superconducting islands the elec-

trons effectively ‘see’ only the average induced pairing poten-

tial. Periodic modulations are then essentially smeared out,

and a topological phase arises under similar conditions to the

uniform case.

Second, suppose that a large potential barrier formed at the

boundary between the gated and superconducting regions of

the wire, effectively creating a chain of quantum dots bridged

by superconducting islands.148 By introducing a magnetic

field and fine-tuning the gates, one can in principle bring a sin-

gle level into resonance on each dot. Effectively each dot then

behaves as a single site in a ‘spinless’ chain. Electrons from

neighboring sites communicate indirectly via the supercon-

ductor, which can mediate both the nearest-neighbor hopping

and p-wave pairing in Kitaev’s toy model. This setup can be

particularly promising if the hopping and pairing amplitudes

can be tuned equal to one another; this limit corresponds to the

t = ∆ case discussed in Sec. II A where Majorana end-states

localize at a single site. Majorana zero-modes might then be

observable in an array consisting of relatively few quantum

dots. One obvious challenge here is the high level of fine-

tuning required to reach this regime. Furthermore, strong ran-

domness may pose an issue given that the hopping and pairing

parameters presumably depend exponentially on factors such

as the width of the superconducting islands, barrier heights,

etc.

Numerous other interesting variants have been introduced.

Hole-doped semiconducting wires—which benefit from a

greatly enhanced spin-orbit energy Eso relative to their

electron-doped counterparts—comprise one very promising

alternative for realizing Majorana modes.97,149,150 Carbon nan-

otubes can also in principle host Majoranas despite the fact

that obtaining a ‘spinless’ regime with proximity-induced

pairing is rather nontrivial.151–153 Another interesting proposal

involves a half-metallic ferromagnetic wire in which only one

spin species conducts. While a ‘spinless’ regime emerges triv-

ially here, our standard trick for inducing p-wave supercon-

ductivity via a conventional s-wave superconductor no longer

works. (A spin-singlet order parameter can not pair spins that

are fully aligned). This problem can be solved by coupling

the half-metal to a non-centrosymmetric superconductor with

spin-orbit coupling. Such a superconductor generically con-

tains both spin-singlet and spin-triplet Cooper pairing154 and

can therefore induce a proximity effect in the wire to generate

topological superconductivity.155 Remarkably, clever routes to

engineering a topological phase in systems without spin-orbit

coupling were even devised recently.156,157 The key idea can

be understood by rewriting our original wire Hamiltonian in

Eq. (64) in terms of rotated operators ψ̃ = eimαxσy

ψ:

H =

∫

dx

{

ψ̃†

[

− ∂2x
2m

− (µ+ Eso) + heff(x) · σ
]

ψ̃

+ ∆(ψ̃↑ψ̃↓ +H.c.)

}

, (69)

heff(x) = − sin(2mαx)x̂+ cos(2mαx)ẑ. (70)

It follows that the Hamiltonian for a spin-orbit-coupled wire

subjected to a uniform magnetic field is unitarily equivalent

to that of a spin-orbit-free wire in a spatially rotating Zeeman

field—so either system can support a topological phase. The

required non-uniform Zeeman field in the latter setup can be

generated using an array of magnetic nanoparticles deposited

on a superconductor156 or by coupling a set of magnetic gates

to a wire157. Finally, we note that one can engineer a 1D

topological superconducting state with cold fermionic atoms

using optical Raman transitions (to generate effective spin-

orbit coupling and Zeeman fields) and a proximity effect with

a bulk molecular BEC.158 This route is especially tantaliz-

ing given the recent pioneering experiments by Lin et al.159,

where Raman lasers created a band structure for bosons simi-

lar to Fig. 6(b).
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FIG. 7. (a) A 3D topological insulator nanowire with a magnetic field

applied along its axis can realize a topological superconducting state

when in contact with an s-wave superconductor. (b)-(d) Nanowire

band structure when the flux Φ passing through its center is (b) 0, (c)
hc
4e

, and (d) hc
2e

. Solid and dashed curves respectively denote doubly

degenerate and non-degenerate bands. Green shaded regions indicate

chemical potential windows in which an odd number of channels is

occupied, as required for generating topological superconductivity.

D. 3D topological insulator nanowires

Three-dimensional topological insulators, like their 2D

counterparts, are strongly spin-orbit-coupled materials in

which electrons are insulating in the bulk but due to topol-

ogy form novel metallic states at their boundary.51,52,98 (Re-

markably, these boundary states were captured very early on

in Refs. 160 and 161.) In the simplest cases each surface hosts

a single Dirac cone described by

H3DTI =

∫

d2rψ†[−ivn̂ · (∇× σ)− µ]ψ, (71)

where n̂ is the surface normal, ψ†
σr adds an electron with spin

σ at position r on the surface, µ is the chemical potential, and

v is the surface state velocity. This Hamiltonian favors orient-

ing the electron spins along the surface, but perpendicular to

the momentum, similar to Rashba coupling in a 2D electron

gas.

Cook and Franz recently showed that nanowires fabricated

from 3D topological insulators can host a topological super-

conducting state with several advantageous features.162 Con-

sider a cylindrical nanowire of radius R, whose axis ori-

ents along the z direction as sketched in Fig. 7(a). Rewrit-

ing Eq. (71) in cylindrical coordinates and using n̂ = r̂

for the surface normal, one obtains the following nanowire

Hamiltonian,162,163

HTI wire =

∫

dzdθψ†

[

−iv
(

σz

R
∂θ − θ̂ · σ∂z

)

− µ

]

ψ.

(72)

It is convenient to remove the angular dependence in the ∂z
term by defining a new field ψ̃ ≡ eiθσ

z/2ψ that exhibits anti-

periodic boundary conditions, i.e., ψ̃(θ + 2π, z) = −ψ̃(θ, z).

After absorbing a constant into the definition of µ the Hamil-

tonian then reads

HTI wire =

∫

dzdθψ̃†

[

−iv
(

σz

R
∂θ − σy∂z

)

− µ

]

ψ̃ (73)

and can be trivially diagonalized. Equation (73) admits band

energies ǫn±(k) = ±v
√

(n/R)2 + k2−µ, where k is the mo-

mentum along the cylinder axis and n is a half-integer angular

momentum quantum number due to the boundary conditions

on ψ̃. Figure 7(b) illustrates the spectrum; each band is doubly

degenerate so our fermion doubling problem remains here.

Applying a magnetic field along the cylinder axis as in Fig.

7(a) heals this problem in an interesting way.162 Upon incor-

porating the field by sending −i∂θ → −i∂θ − Φ/Φ0, where

Φ0 = hc/e and Φ is the flux piercing the cylinder, the band

energies become

ǫn±(k) → ±v
√

[(n− Φ/Φ0)/R]2 + k2 − µ. (74)

Note that we have neglected the Zeeman term 1
2gµBBσ

z

since this contribution merely renormalizes Φ. Generally,

the flux lifts the band degeneracies present at zero field as

Figs. 7(c) and (d) respectively illustrate for Φ = hc
4e and

hc
2e ; here dashed curves represent non-degenerate bands while

solid curves are doubly degenerate. This produces chemical

potential windows (shaded green regions in Fig. 7) in which

the electrons partially occupy an odd number of bands as de-

sired. In these odd-channel regimes Cooper pairing states at

the Fermi level can drive the nanowire into a 1D topological

superconducting phase.162 Because of spin-orbit coupling this

can be achieved in the standard way using the proximity effect

with an s-wave superconductor as in Fig. 7(a).

The case of hc
2e flux is particularly appealing. Here an odd

number of surface-state bands is occupied for any µ that re-

sides in the bulk band gap. Accessing the topological su-

perconducting phase is then ‘easy’ and automatically results

in localization of Majorana zero-modes at the ends of the

nanowire. Recall that topological superconductivity is simi-

larly ‘easy’ to obtain in a 2D topological insulator edge, but

there the formation of Majoranas is less trivial; see Figs. 5(e)

and (f). Moreover, in the (fictitious) limit where the hc
2e flux

is confined to a thin solenoid passing through the nanowire’s

center, the bulk retains time-reversal symmetry and thus main-

tains immunity against non-magnetic disorder.105,162 (Time-

reversal is always lifted at the nanowire ends where the

solenoid enters and exits the wire, which is essential for the

formation of Majorana end-states.) In an actual experiment

additional ingredients—such as the Zeeman effect, fluctua-

tions in the nanowire radius that cause the flux to deviate lo-

cally from hc
2e , etc.—will inevitably remove this exact protec-

tion, though some robustness against disorder likely survives.

Other flux values are also interesting despite the absence of

these features. For example, near Φ = hc
4e the topological and

trivial superconducting phases appear over chemical poten-

tial windows of roughly equal size, so tuning between these

phases by gating may be ideal here.

To realize this proposal the nanowire’s radiusR should sur-

pass the surface state penetration depth (to have well-defined
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surface states) but not exceed the induced superconducting co-

herence length in the wire (so that the superconducting state

remains quasi-1D). Since penetration depths of a few unit cells

can arise164 while the coherence length is typically on the mi-

cron scale, these criteria rather loosely constrain the wire size.

Another relevant scale is the spacing v/R between adjacent

bands in Fig. 7(b)-(d). Enhancing v/R allows one to sup-

press unwanted interband coupling generated, e.g., by disor-

der, so reducing R significantly below the coherence length

will likely prove worthwhile. Wires with R of a few tens

of nanometers should allow one to achieve a sizable inter-

band spacing (∼ 100K) and reach hc
2e flux with sub-Tesla

fields. As experiments on topological insulator nanowires and

nanoribbons are now steadily progressing, this approach cer-

tainly warrants further attention. The prospect of using a weak

magnetic field to stabilize a topological phase and Majorana

modes without requiring careful control over the chemical po-

tential is well worth pursuing.

IV. PRACTICAL REALIZATIONS OF MAJORANA

MODES IN 2D p+ ip SUPERCONDUCTORS

A. Preliminary remarks

The proposals we review below for experimentally realiz-

ing the physics of topological 2D p + ip superconductivity

discussed in Sec. II B loosely fall into two categories. The

first corresponds to ‘intrinsic’ realizations, where p+ ip pair-

ing emerges by virtue of a material’s internal dynamics. We

briefly discuss two classic systems of this type: the fractional

quantum Hall state at filling factor ν = 5/2 and the layered

spinful triplet superconductor Sr2RuO4.

Most of our discussion will center around the second

category—‘engineered’ topological phases—wherein ‘spin-

less’ p+ip superconductivity is driven by forming appropriate

heterostructures with various kinds of 2D electron systems. In

this approach one faces the same basic hurdles that arose in

realizing Kitaev’s 1D model: removing the spin degeneracy

so that the system appears effectively ‘spinless’ and inducing

long-range-ordered p+ ip pairing in the remaining Fermi sur-

face. As we will see, time-reversal-symmetry breaking, spin-

orbit coupling, and superconducting proximity effects (usu-

ally with conventional s-wave superconductors) again provide

the key to overcoming these challenges. Note that our dis-

cussion from Sec. III A on the proximity effect induced in a

1D system applies to the 2D case with only trivial modifica-

tions. We again stress that while the influence of a nearby

superconductor can be crudely modeled by simply adding a

pairing term to the Hamiltonian for the 2D electron system,

at this level one misses important physics. Hybridization with

the parent superconductor also effectively reduces the energy

scales intrinsic to the 2D system88–90,94; see Sec. III A and Ap-

pendix A. Both effects are important to keep in mind for all of

the engineered heterostructures discussed below.

B. ν = 5/2 fractional quantum Hall effect

Although our focus is on reviewing new routes to Majorana

fermions, we would be remiss to not at least briefly discuss

the fractional quantum Hall state observed30 in GaAs quan-

tum wells at filling factor ν = 5/2—which remains a leading

candidate in this search. The basic question we would like to

explore is how a 2D electron gas (2DEG) subjected to a strong

perpendicular magnetic field can realize the physics of a topo-

logical 2D spinless p + ip superconductor. The connection

between these very different systems was first elucidated in

highly influential work by Read and Green.10

Because the field quenches the kinetic energy and induces a

Zeeman splitting, obtaining a spinless regime in such a 2DEG

is rather natural (though not guaranteed). The onset of p+ ip
‘superconductivity’, by contrast, is far subtler. To see how this

arises we will first examine a 2DEG with a half-filled lowest

Landau level (ν = 1/2). Assuming perfect spin polarization,

the system may be described by the Euclidean action

S =

∫

d2rdτψ†

[

∂τ +
(−i∇− e

cA)2

2m

]

ψ + Sint, (75)

where ψ is a ‘spinless’ fermion operator for electrons with

mass m, ∇ ×A = Bẑ is the applied field, and Sint encodes

Coulomb interactions. The physics of ν = 1/2 can be el-

egantly captured by decomposing the electron ψ in terms of

a ‘composite fermion’ f bound to two Φ0 = hc
e flux quanta

using Chern-Simons theory.165 In this framework the action

becomes

S =

∫

d2rdτ

{

f†
[

(∂τ − ia0) +
(−i∇− e

cA− e
ca)

2

2m∗

]

f

− i

4Φ0
aµǫµνλ∂νa

λ

}

+ Sint. (76)

Here m∗ is an effective mass and aµ is the Chern-Simons

field. The temporal component a0 serves as a Lagrange multi-

plier that pins the statistical Chern-Simons flux to the compos-

ite fermion density via ∇× a = −2Φ0f
†f ẑ. Since the mean

density of a half-filled Landau level is 〈f†f〉 = B/(2Φ0), on

average the attached flux exactly cancels the applied magnetic

field. Composite fermions then behave similarly to electrons

at B = 0: they form a ‘composite Fermi sea’ and can prop-

agate in straight lines over long distances despite the strong

magnetic field.165

This composite Fermi sea can in principle undergo a BCS

instability, just as for a conventional metal. Moore and Read18

explored the possibility of p + ip composite fermion pairing

and proposed the following lowest Landau level wavefunction

for such a state,

ΨMR = Pf

(

1

zi − zj

)

∏

i<j

(zi − zj)
2e

−
∑

k

|zk|2

4ℓ2
B , (77)

with ℓB the magnetic length and zj the complex coordinate

for particle j. The (zi − zj)
2 factors (roughly) correspond to

the attached Chern-Simons flux, whereas the Pfaffian is the
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real-space wavefunction for p+ ip-paired composite fermions

in the weak-pairing phase10. Universal topological properties,

such as the existence of chiral Majorana edge states and Majo-

rana zero-modes bound to vortices, are shared by the Moore-

Read state and the 2D spinless p+ip superconductor explored

earlier.10

At ν = 1/2, such a pairing instability does not arise

experimentally—the composite Fermi sea is stable and un-

derlies the formation of an interesting compressible ‘com-

posite Fermi liquid’ phase.165 A compelling body of theoret-

ical evidence12, however, indicates that the Moore-Read state

(or its particle-hole conjugate166,167) provides an energetically

very competitive candidate for the measured plateau in the

half-filled second Landau level. Very likely, either the Moore-

Read state or its particle-hole conjugate emerge as the ground

state over some range of density, quantum well width, mobil-

ity, etc., and a growing set of experiments23–29 indeed support

this possibility. For more details on this interesting subject

we refer readers to Read and Green10 and the comprehensive

review by Nayak et al.12

C. ‘Intrinsic’ p+ ip superconductivity: Sr2RuO4

In rare cases, p + ip superconductivity can emerge ‘in-

trinsically’ through interactions in a material. At present

Sr2RuO4—a layered compound with a somewhat com-

plex, spin-degenerate Fermi surface deriving from Ru d-

orbitals168,169—constitutes the best experimental candidate for

such a superconductor. While the precise nature of the su-

perconducting state that appears below Tc = 1.5K remains

unsettled (see, e.g., Ref. 170), a variety of experiments sup-

port the onset of spin-triplet Cooper pairing and spontaneous

time-reversal symmetry breaking in this system.79,169,171–174

Recall from Sec. II B that spinful 2D p+ip superconductors

allow for hc
4e half quantum vortices that bind stable Majorana

zero-modes. In this context, the recent experiments of Jang

et al.79 are particularly fascinating. These authors employed

torque magnetometry to measure the magnetization of annu-

lar, mesoscopic Sr2RuO4 samples as a function of an applied

magnetic field B. With the field oriented perpendicular to the

layers, increasing B produced discrete jumps in the magneti-

zation at certain field values associated with nucleation of an

ordinary hc
2e vortex in the sample. Remarkably, repeating the

same experiment in the presence of a fixed in-plane field com-

ponent ‘fractionalized’ these magnetization jumps into steps

half as large—consistent with the entry of half quantum vor-

tices. Precisely why the in-plane field should stabilize these

defects is presently unclear, though Ref. 79 discusses one pos-

sible scenario. (Note that Ref. 75 proposed applying perpen-

dicular fields to stabilize half quantum vortices.)

A few cautionary remarks are in order regarding

Sr2RuO4—and likely any ‘intrinsic’ p+ ip superconductor—

as a setting for Majorana physics. First, since time-reversal

symmetry is broken spontaneously p+ ip and p− ip pairings

are degenerate, and domains featuring both chiralities will

generally exist in a given crystal (see, e.g., Refs. 175–177).

These domains will complicate the edge-state structure rela-

tive to the toy model discussed in Sec. II B. Second, half quan-

tum vortices need not trap Majorana zero-modes in Sr2RuO4

crystals consisting of N > 1 layers. Consider, for instance,

a half quantum vortex threading a Sr2RuO4 bilayer at T = 0
where phase fluctuations can be neglected. In the artificial

limit where the layers decouple, the vortex binds one Majo-

rana zero-mode in each layer; restoring the interlayer cou-

pling hybridizes these modes and produces an ordinary, finite-

energy state. For largerN a chain of Majorana modes will hy-

bridize and broaden into a gapless ‘band’ in theN → ∞ limit.

Strictly speaking, for any oddN a single Majorana zero-mode

must survive the interlayer coupling but in practice may prove

difficult to disentangle from other low-energy modes. Even

in a single-layer sample Majorana zero-modes are protected

only by a ‘mini-gap’ in the spectrum of vortex bound states

[Eq. (39)], which for Sr2RuO4 falls in the milliKelvin range

since the Fermi energy exceeds the pairing gap by orders of

magnitude.

As an aside, we briefly mention a clever idea proposed in

Ref. 178 for realizing Kitaev’s 1D toy model along an ordi-

nary hc
2e vortex line threading a layered spinful p+ip supercon-

ductor such as Sr2RuO4. Neglecting spin-orbit interactions

and interlayer coupling, the vortex binds a pair of Majorana

zero-modes in each layer. One can view each pair as com-

prising a single site in Kitaev’s 1D toy model (recall Fig. 2).

When coupling between nearby Majorana zero-modes is re-

stored, Ref. 178 predicts that the topological phase of Kitaev’s

model emerges upon driving a supercurrent perpendicular to

the layers. The small mini-gap associated with the vortex,

however, still poses a challenge for such a setup.

D. 3D topological insulators

In Sec. III D we described how one can engineer a 1D

topological superconductor using 3D topological insulator

nanowires. Here we turn to Fu and Kane’s groundbreaking

proposal for stabilizing 2D ‘spinless’ p+ip superconductivity

using the surface of a macroscopic 3D topological insulator.49

We will continue to focus on materials such as Bi2Se3
51,52,98

whose boundary hosts a single Dirac cone described by Eq.

(71). For a surface located in the (x, y) plane, the Hamilto-

nian reads

H3DTI =

∫

d2rψ†[−iv(∂xσy − ∂yσ
x)− µ]ψ. (78)

Equation (78) yields band energies ǫ±(k) = ±v|k|−µ which

correspond to the upper and lower branches of the massless

Dirac cone sketched in Fig. 8(a). This band structure is ideal

for forming a 2D topological superconducting phase. First,

accessing a ‘spinless’ regime is trivial here: for any µ that re-

sides within the material’s bulk band gap there exists only a

single Fermi surface as desired (rather than two as ordinarily

arises due to spin degeneracy). Furthermore, since the elec-

trons along this Fermi surface are not spin-polarized, p + ip
pairing can be effectively induced using the proximity effect

with a conventional s-wave superconductor.
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FIG. 8. (a) Single Dirac cone describing the surface states of a 3D

topological insulator. Because the electron spins wind by 2π upon

encircling the Dirac cone, the proximity effect with a conventional

s-wave superconductor drives the surface into a time-reversal in-

variant relative of a topological 2D spinless p + ip superconduc-

tor. Chiral Majorana edge states form at the boundary between

superconductivity- and magnetically-gapped regions of the surface

as shown, for example, in (b). Introducing an hc
2e

vortex through

a topologically superconducting portion of the surface binds a sta-

ble Majorana zero-mode. This can be achieved either by applying a

magnetic field, or by adjusting the phases on superconducting islands

(hexagons) as shown in (c).

One can see this explicitly by examining an effective

Hamiltonian for the surface with proximity-induced spin-

singlet pairing:

H = H3DTI +H∆ (79)

H∆ =

∫

d2r∆(ψ↑ψ↓ +H.c.), (80)

which describes a superconductor with a fully gapped quasi-

particle spectrum given by

E±(k) =
√

ǫ±(k)2 +∆2. (81)

To understand the nature of this state it is instructive to per-

form a unitary transformation that diagonalizes the kinetic en-

ergy in H . In terms of operators ψ†
±(k) that add electrons to

the upper and lower half of the Dirac cone, the Hamiltonian

can be written as

H =
∑

s=±

∫

d2k

(2π)2

{

ǫs(k)ψ
†
s(k)ψs(k)

+

[

∆

2

(

kx + iky
|k|

)

ψs(k)ψs(−k) +H.c.

]}

. (82)

It is clear in this basis that the proximate s-wave superconduc-

tor mediates p + ip pairing for electrons at the Fermi level.49

Figure 8(a) illustrates the physical origin of this effect: ∆ can

pair resonant electrons with momenta k and −k since they

carry opposite spins, while the nontrivial Cooper pair angular

momentum arises because the spins rotate by 2π upon encir-

cling the Dirac cone.

The relation between Eq. (82) and the toy model dis-

cussed in Sec. II B becomes manifest when µ resides far

from the Dirac point. For a heavily electron-doped surface,

for instance, one can safely project out the Dirac cone’s

lower half by sending ψ− → 0. Equation (82) then maps

precisely onto the Hamiltonian for a 2D ‘spinless’ p + ip
superconductor—albeit with a non-standard kinetic energy

and pairing potential—in the topological weak pairing phase.

By continuity, the surface forms a topological superconduc-

tor for any chemical potential that does not intersect the bulk

bands since the quasiparticle spectrum of Eq. (81) is always

fully gapped. In addition to being ‘easy’ to access in this

sense, we emphasize this phase can also in principle per-

sist up to relatively high temperatures. For one, the surface

can potentially inherit the parent superconductor’s full pairing

gap89,94 for the same reasons discussed in the 2D topologi-

cal insulator context; see Sec. III B. Moreover, the topolog-

ical phase captured here preserves time-reversal symmetry49

[which is obvious in the original ψ↑,↓ basis but somewhat hid-

den in Eq. (82)]. This feature guarantees that the topological

superconductor’s gap enjoys immunity against non-magnetic

disorder.94,105 Time-reversal symmetry breaking of some kind,

however, is required to uncover the seeds of Majorana physics

encoded in this state.

Similar to the toy model of Sec. II B, chiral Majorana

edge states form at the boundary between topologically

superconducting and magnetically gapped regions of the

surface.49,179–182 Figure 8(b) illustrates one possible architec-

ture supporting such an interface. There, an s-wave supercon-

ductor generates topological superconductivity, while a sur-

rounding ferromagnetic insulator imparts the surface beneath

it with a Zeeman field that we assume cants the spins out

of the (x, y) plane. The surface state Hamiltonian govern-

ing the latter region then becomes H = H3DTI + HZ , with

HZ = −h
∫

d2rψ†σzψ. The Zeeman energy modifies the

spectrum to ǫ±(k) = ±
√

(v|k|)2 + h2−µ, so that the surface

forms a magnetically gapped state when the Fermi level lies

within the resulting field-induced gap in the Dirac cone. Inter-

estingly, since the topological superconductor induced at the

center retains time-reversal symmetry, the edge-state chirality

depends on whether the ferromagnet cants the spins along +ẑ

or −ẑ.179,180,182 This will be important to keep in mind when

we discuss interferometry in Sec. V C.

Another useful way to lift time-reversal symmetry is to in-

troduce an hc
2e vortex in a topologically superconducting re-

gion of the surface; exactly as for an ordinary spinless p+ ip
superconductor, a single zero-energy Majorana mode local-

izes at the vortex core.49 While vortices can always be in-

duced by applying a magnetic field, Fu and Kane invented an

alternative, more versatile method for creating and manipulat-

ing Majorana zero-modes.49 Figure 8(c) illustrates their pro-

posed setup, consisting of an array of superconducting islands

(hexagons) deposited on a 3D topological insulator surface.

Here vortices appear when the superconducting phases on the

islands wind by ±2π around a trijunction where three islands

meet. For example, the pattern of phases in Fig. 8(c) traps

two Majorana modes γ1,2. Manipulating the superconduct-

ing phases (by, say, driving currents across the islands) allows

one to controllably create, transport, and remove vortices—all

crucial ingredients for the topological quantum information

processing schemes that we highlight in Sec. VI.

One commonly noted obstacle to realizing Fu and Kane’s

proposal experimentally is that most 3D topological insu-
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lators studied to date do not actually insulate in the bulk.

Rather, they contain a substantial concentration of gapless

bulk carriers—which must be removed entirely for the physics

described above to survive. (Section V A discusses the

fate of Majorana modes coupled to gapless degrees of free-

dom.) While important progress towards rectifying this issue

has recently been reported—see, e.g., Refs. 183 and 184—

these carriers may ultimately prove to be a feature rather

than a bug. A number of recent experiments observe su-

perconductivity in metallic 3D topological insulator materi-

als upon doping or under pressure.185–192 The nature of the

resulting superconducting state is itself a fascinating prob-

lem, and it has been suggested that these systems may con-

stitute the first realization of a class of exotic 3D topological

superconductors62,63,81,82,193–198. Here we will concentrate on

the simplest possibility wherein conventional s-wave super-

conductivity emerges in the bulk. Naively, it is tempting to

conclude that employing such materials kills two birds with

one stone: the problematic bulk carriers are gapped by Cooper

pairing and simultaneously play the role of the proximate s-
wave superconductor in Fu and Kane’s proposal. Upon closer

inspection, however, the validity of this physical picture is sus-

pect. In the metallic phase well-defined surface states need

not exist at the Fermi energy once the chemical potential in-

tersects the bulk bands.199(Generally, the surface state pene-

tration depth diverges due to hybridization with resonant bulk

extended states. Even when the bulk and surface-state Fermi

surfaces are well-separated in momentum space disorder can

still induce hybridization.) So when the bulk becomes super-

conducting, do Majorana modes still localize at the surface

when a vortex is present?

An important work by Hosur et al.7,200 showed that they can

and provided the following appealing picture for the physics.

Consider first the limit where the bulk superconducts but the

Fermi level resides within the bulk band gap. Well-defined

surface states then appear and realize a topological supercon-

ducting phase via proximity with the bulk. A vortex line

penetrating the material binds a pair of localized Majorana

zero-modes, one at each end, effectively realizing Kitaev’s

toy model for a 1D topological superconductor. Upon rais-

ing the Fermi level the vortex line eventually transitions into

the trivial strong pairing phase of Kitaev’s model, at a criti-

cal chemical potential that depends on the bulk band structure

and the vortex orientation. The crucial point is that this tran-

sition can occur well after the Fermi level first intersects the

bulk bands. In doped Bi2Se3, for instance, Hosur et al. pre-

dict that a vortex line binds Majorana zero-modes up until the

chemical potential lies roughly 0.2−0.3eV above the conduc-

tion band minimum. As with any ‘intrinsic’ superconductor

where the Fermi energy greatly exceeds the pairing gap, the

small mini-gap associated with the vortex will complicate the

identification of the zero-modes. Nevertheless, as the mate-

rial science of 3D topological insulators is perfected the su-

perconducting variety of these compounds provides one very

promising venue for the exploration of Majorana physics.

FM insulator

s-wave SC

2DEG with Rashba

(a)

s-wave SC

(110) 2DEG with Rashba

and DresselhausB

2DEG with Rashba

(c)

s-wave SC

FM insulator

(d)

E

ky

kx

(b)

spinful p+ip SC

2D FM metal

(e)

FIG. 9. (a) A 2DEG with Rashba spin-orbit coupling can effectively

realize a topological 2D ‘spinless’ p + ip superconductor when in

contact with a ferromagnetic insulator and conventional s-wave su-

perconductor. (b) Band structure for the 2DEG when time-reversal

symmetry is present (gray) and with a non-zero Zeeman field (blue)

that opens up a ‘spinless’ regime. (The break in the spectrum ap-

pears for clarity.) Alternative devices that support topological phases

appear in (c)-(e).

E. Conventional 2D electron systems

Following Fu and Kane’s work a number of authors pur-

sued alternative routes to engineering 2D spinless p + ip su-

perconductivity using more conventional materials. We will

initially explore the semiconductor-based proposal of Sau et

al.201, though we note that similar results in related contexts

appear in some earlier works202–204. Consider the architecture

of Fig. 9(a) consisting of a Rashba-coupled, electron-doped

semiconductor 2DEG (such as InAs or InSb) sandwiched by

an s-wave superconductor and ferromagnetic insulator. We

take the 2DEG to lie in the (x, y) plane and assume that the

ferromagnetic insulator’s magnetization aligns along the z di-

rection. The following effective Hamiltonian crudely captures

the dynamics of electrons in the semiconductor,

H = H2DEG +HZ +H∆ (83)

H2DEG =

∫

d2rψ†

[

−∇2

2m
− µ− iα(∂xσ

y − ∂yσ
x)

]

ψ(84)

HZ = −h
∫

d2rψ†σzψ (85)

H∆ =

∫

d2r∆(ψ↑ψ↓ +H.c.), (86)

where ψ†
σr adds an electron with effective mass m and spin σ

to the 2DEG. Let us first understand the Hamiltonian H2DEG

describing the 2DEG’s intrinsic couplings. Here α denotes

the strength of Rashba spin-orbit interactions117 which favor

orienting the electron spins within the 2DEG plane, perpen-

dicular to their momentum. The gray curves in Fig. 9(b) il-

lustrate the band structure obtained from H2DEG. Note that
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the energies resemble a Dirac cone at small k, similar to a 3D

topological insulator surface, but whose lower half eventually

bends upward at large momenta. Because of this property two

Fermi surfaces appear for any µ above the bottom of the con-

duction band—one of which we would like to eliminate.

As we have seen several times before time-reversal sym-

metry breaking, now through the Zeeman term HZ inherited

from the ferromagnetic insulator, again overcomes this prob-

lem. (The Zeeman field h arises primarily from electron tun-

neling between the two subsystems and not the magnetic field

emanating from the ferromagnet;90 this justifies the neglect

of orbital effects in the Hamiltonian above. Incidentally, for

the 1D wire proposals discussed in Sec. III C orbital effects

from an applied magnetic field are generically subdominant to

the Zeeman energy. Ultimately this key advantage allows for

simpler setups employing wires compared to 2DEGs.) With

h > 0 the ‘Dirac-like’ portion of the 2DEG’s band structure

near k = 0 acquires a gap as shown in the blue curves of

Fig. 9(b). When the Fermi level resides within this gap and

one turns on a weak proximity-induced ∆ from Eq. (86), the

resulting ‘spinless’ metal enters a topological superconduct-

ing phase supporting chiral Majorana edge states and Majo-

rana zero-modes localized at vortex cores. The physics here

is nearly identical to the 3D topological insulator proposal

reviewed previously: the s-wave pair field mediates p + ip
Cooper pairing because Rashba coupling causes the in-plane

spin components to wind by 2π upon encircling the Fermi

surface.202,203 (Reference 205 provides an explicit mapping to

a spinless 2D p+ ip superconductor.) A quantitative analysis

analogous to that carried out for 1D wires in Sec. III C reveals

that the topological phase appears provided201,204

h >
√

∆2 + µ2 (topological criterion), (87)

which is the same criterion given in Eq. (68). The phase dia-

gram is thus again given by Fig. 6(c).

Our discussion regarding optimization of the 1D wire pro-

posal from Sec. III C applies to the present case with almost no

modification, so here we will simply highlight a few important

points. For concreteness suppose that the parent superconduc-

tor in the device of Fig. 9(a) exhibits a pairing gap ∆sc of a

few Kelvin while the ferromagnetic insulator’s Curie tempera-

ture is of order 100K. With these rough energy scales in mind

it is interesting to ask how large the gap for the topological

superconductor formed in the 2DEG can be in principle. The

answer depends on the spin-orbit energy Eso = 1
2mα

2 and

varies from a small fraction of ∆sc when Eso/∆sc ≪ 1 up

to the full value of ∆sc in the opposite limit Eso/∆sc ≫ 1,

highlighting the importance of sizable spin-orbit coupling.94

(Capturing this physics requires a more rigorous treatment of

the proximity effect as discussed in Sec. III A and Appendix

A.) Large values ofEso also endow the topological phase with

some robustness against disorder despite Anderson’s theorem

not applying here. In the limit h/Eso ≪ 1 electrons at the

Fermi surface in the ‘spinless’ regime are weakly perturbed by

the induced Zeeman field, thus suppressing the pair-breaking

effect of disorder.94 Operating in this limit, however, may be

neither possible nor desirable due to competing physics. Sat-

isfying the topological criterion in Eq. (87) requires that h

exceed the inherited pairing field ∆, and in practice it will

likely prove advantageous to engineer the interface with the

ferromagnetic insulator such that h ≫ ∆. Though this might

reduce the topological phase’s gap below its theoretical max-

imum, large Zeeman fields facilitate tuning of the chemical

potential into the ‘spinless’ regime while simultaneously in-

creasing the tolerance to long-range potential fluctuations.

Despite the exceptional purity with which they can be

fabricated GaAs quantum wells are (unfortunately) unsuit-

able 2DEG candidates. Their Rashba spin-orbit energy Eso

falls in the milliKelvin range206,207 due to the lightness of

the constituent elements; consequently disorder is almost

certain to dominate at the extraordinarily low densities re-

quired to access a topological phase in this material.205 More

promising are InAs quantum wells, which feature Eso val-

ues of a few tenths of a Kelvin208 and also contact well with

superconductors209. The spin-orbit energy can be increased

further still by employing heavier materials such as InSb, or

hole-doped semiconductors which generally exhibit larger ef-

fective masses and spin-orbit coupling strengths compared to

their electron-doped analogs. Interestingly, in the latter sys-

tems the ‘heavy holes’ can be driven into a topological f+if -

paired state that also supports Majorana modes.66 (The ex-

tra Cooper pair angular momentum arises because as one tra-

verses the Fermi surface in a heavy hole band the spins wind

by 6π rather than 2π.)

Apart from materials considerations, experimentally

demonstrating a topological phase in the proposed structure

in Fig. 9(a) poses several other challenges. Forming two high

quality interfaces—one on each side of the 2DEG—presents

a nontrivial fabrication problem. Furthermore, the device ex-

hibits limited tunability: whereas the Zeeman field in the 1D

wire proposal from Sec. III C can be easily varied, h is now

largely fixed once the structure is fabricated. And finally, the

electrons in the semiconductor are effectively buried in the

sandwich structure, making it difficult to manipulate or probe

these carriers. It may, fortunately, be possible to alleviate

some of these challenges by employing modified setups.

The interdigitated ferromagnet-superconductor device

shown in Fig. 9(c), for example, can realize a topological

phase while requiring lithography on only one side of the

2DEG.210 In such a structure the electrons inherit periodically

modulated Zeeman and pairing fields due to the interdigi-

tation. Provided their Fermi wavelength exceeds the finger

spacing, however, the electrons effectively feel the spatial

average of these quantities, resulting in a robust topological

phase under similar conditions to the sandwich structure in

Fig. 9(a). (A topological phase can appear even in the oppo-

site limit, though with a diminished gap.) Somewhat more

elaborate interdigitated setups also allow one to electrically

generate vortices binding Majorana zero-modes by applying

currents to modulate the superconducting phases along the

fingers.210

It is even possible to eliminate the ferromagnetic insulator

altogether and drive a transition into the topological phase us-

ing an external magnetic field, similar to 1D wire setups. As

alluded to earlier the principal reason for the ferromagnetic

insulator in Figs. 9(a) and (c) is that one wishes to generate a



23

Zeeman field that cants the spins out of the 2DEG plane while

avoiding orbital effects that would accompany an applied per-

pendicular magnetic field. In-plane fields largely circumvent

unwanted orbital effects but unfortunately do not open a ‘spin-

less’ regime—at least in a semiconductor with only Rashba

coupling. Reference 205 showed that in-plane fields can gen-

erate topological superconductivity provided one employs a

2DEG grown along the (110) direction with strong Rashba

and Dresselhaus211 spin-orbit coupling (such as InSb); see

Fig. 9(d). The special feature of this growth direction is that

these two kinds of spin-orbit interactions conspire to rotate the

plane in which the spins orient away from the 2DEG plane, so

that an in-plane field plays a similar role to the ferromagnetic

insulator in a Rashba-only setup.205 Another system that may

eliminate the need for a ferromagnetic insulator is NaCoO2.

Recent first-principles calculations predict that this material is

a (conventional) bulk insulator with surface states exhibiting

very strong Rashba coupling and spontaneous time-reversal

symmetry breaking that opens a broad ‘spinless’ regime.145

These predictions would be interesting to explore experimen-

tally using ARPES.

Early on Lee suggested another route to engineering topo-

logical superconductivity, using a 2D fully spin-polarized fer-

romagnetic metal adjacent to a spinful bulk p + ip supercon-

ductor such as Sr2RuO4 [Fig. 9(e)].212 Essentially, the ferro-

magnetic metal ‘filters out’ one spin component from the par-

ent superconductor and realizes a 2D spinless p+ip supercon-

ductor due to the proximity effect. Later it was realized that

even a conventional s-wave superconductor can drive a fer-

romagnetic metal into a topological phase provided apprecia-

ble spin-orbit coupling appears at the interface.213 One virtue

of these setups is that the topological phase can in principle

exist without requiring fine-tuning of the chemical potential,

though finding suitable 2D ferromagnets poses an experimen-

tal challenge. A more exotic alternative proposal predicts

that topological superconductivity can appear in proximity-

coupled systems realizing a novel ‘quantum anomalous Hall’

state.214,215 This possibility provides strong motivation for ex-

perimentally pursuing this as yet undiscovered phase of mat-

ter.

V. EXPERIMENTAL DETECTION SCHEMES

One very simple (but also highly indirect) way of inferring

the existence of a Majorana mode is through the detection of

a topological quantum phase transition in the bulk of a 1D or

2D superconductor. Consider for example the 1D spin-orbit-

coupled wire proposal reviewed in Sec. III C, where one can

tune between trivial and topological superconducting states

simply by turning on a magnetic field. Observing the bulk

gap collapse and then reopen as the field strength increases

would provide strong evidence for the onset of topological

superconductivity and, by extension, the appearance of Ma-

jorana end states in the wire. A topological phase transition

in this setting also manifests itself in thermal and electrical

transport216,217 as well as Coulomb blockade experiments218.

Clearly, however, more direct probes of Majorana modes are
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FIG. 10. A 1D spin-orbit-coupled wire draped across an insulator–s-

wave superconductor junction allows one to detect Majorana modes

via transport. In (a) the wire’s left half is gated into a ‘spinless’ metal-

lic regime while the right half forms a trivial gapped superconduc-

tor; in this setup the zero-bias conductance of the junction vanishes.

When the right half of the wire instead forms a topological phase as

in (b), hybridization between the ‘spinless’ metal and the Majorana

γ1 produces a quantized 2e2/h zero-bias conductance. The same

results apply when the wire’s left half forms a spinful metal, pro-

vided repulsive interactions are present. This geometry can be read-

ily adapted to detect isolated Majorana modes in many other settings.

desirable. Below we review three classes of such measure-

ment schemes, based on tunneling, Josephson effects, and in-

terferometry.

A. Tunneling signatures of Majorana modes

Tunneling spectroscopy provides a powerful and concep-

tually appealing method for detecting Majorana zero-modes.

To illustrate the physics we will focus on the experimentally

accessible geometry shown in Figs. 10(a) and (b), where a

long spin-orbit-coupled wire subjected to a magnetic field ex-

tends across an insulator–s-wave superconductor junction.219

In both cases we assume that the wire’s left half is gated into

a ‘spinless’ regime and remains metallic. The proximity ef-

fect with the s-wave superconductor, however, drives the right

half into a trivial gapped state in (a) but a topological phase

supporting Majorana modes γ1,2 in (b). (One can tune be-

tween these configurations by adjusting the chemical poten-

tial in the right half.) We would like to contrast the conduc-

tance of these two setups—particularly at zero bias—when

current flows from the ‘spinless’ metal into the superconduc-

tor. Our approach will follow closely Refs. 220 and especially

221 which emphasizes universal features of the problem.

We initially attack the trivial case of Fig. 10(a). The only

available low-energy degrees of freedom reside in the metal-

lic region, which is taken to lie along x < 0. We there-

fore model the system by an effective Hamiltonian H =
Hmetal + Hjunction in which the first term describes the lin-

earized kinetic energy near the Fermi level at x < 0 while

the second captures terms at x = 0 imposed by the supercon-

ductor. Defining spinless fermion operators ψR/L describing
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right/left-moving excitations in the wire, we have

Hmetal =

∫ 0

−∞

dx
(

−ivFψ†
R∂xψR + ivFψ

†
L∂xψL

)

(88)

with vF the Fermi velocity. One can rewrite Hmetal in terms

of a single chiral field ψ(x) defined over all x such that ψ(x >
0) = ψL(−x) and ψ(x < 0) = ψR(x), yielding

Hmetal =

∫ ∞

−∞

dx
(

−ivFψ†∂xψ
)

. (89)

The leading local potential and pairing terms induced at the

junction read

Hjunction =

∫ ∞

−∞

dx
[

uψ†ψ +∆(ψ∂xψ +H.c.)
]

δ(x).

(90)

In particular, the ∆ term (which requires a derivative by Fermi

statistics) allows Cooper pairs to hop from the metallic region

of the wire into the superconductor.

The full Hamiltonian H takes the form of a Bogoliubov-de

Gennes equation and is therefore diagonalized with quasipar-

ticle operators carrying energy E of the form

ΓE =

∫ ∞

−∞

dxe
−iEx

vF [PE(x)ψ(x) +HE(x)ψ
†(x)], (91)

where PE and HE determine the particle- and hole-like am-

plitudes for the quasiparticle wavefunctions. The conductance

we are after follows from the scattering matrix S(E) that re-

lates states incident on the superconductor to the reflected

states. Recalling the definition of ψ(x) in terms of left and

right movers, the S-matrix components are defined by
[

PE(∞)
HE(∞)

]

=

[

SPP (E) SPH(E)
SHP (E) SHH(E)

] [

PE(−∞)
HE(−∞)

]

.(92)

Since |SPH(E)|2 is the probability that an incident electron

at energy E Andreev reflects as a hole at the junction, passing

charge 2e into the superconductor, a bias voltage V applied

across the junction generates a current

I =
2e

h

∫ eV

0

dE|SPH(E)|2. (93)

The differential conductance G(V ) = dI
dV follows as

G(V ) =
2e2

h
|SPH(eV )|2. (94)

Very general arguments adapted from Refs. 179 and 180

strongly constrain the S-matrix at zero energy, and hence the

zero-bias conductance. First, particle-hole symmetry of the

Bogoliubov-de Gennes equation dictates that ΓE = −Γ†
E ,

which in turn implies S(E) = σxS∗(−E)σx. This relation,

together with unitarity of the S-matrix as required by current

conservation, restricts S(0) to one of two possible forms:

S(0) =

(

eiα 0
0 e−iα

)

or

(

0 eiβ

e−iβ 0

)

(95)

for some phases α, β. The purely diagonal case corresponds

to the onset of perfect normal reflection—with unit probabil-

ity an electron reflects as an electron and similarly for holes—

and hence a vanishing zero-bias conductance. In contrast, the

off-diagonal possibility yields perfect Andreev reflection; here

electrons scatter perfectly into holes and vice versa, yielding

a quantized zero-bias conductance G = 2e2/h. These very

different limits represent renormalization group fixed points

at which the superconductor imposes either perfect normal re-

flecting or perfect Andreev reflecting boundary conditions on

the metal at low energies.221 We stress that Eq. (95) relies only

on the metal being ‘spinless’, and holds even when Majorana

zero-modes are present as in Fig. 10(b).

By explicitly calculating the S-matrix for Eqs. (89) and

(90) it is straightforward to show that S(0) is purely diago-

nal so that the zero-bias conductance vanishes in Fig. 10(a).

The ∆ term in Hjunction does permit Cooper pairs to tunnel

into the superconductor, but because the metal is ‘spinless’

the probability vanishes at zero energy due to Pauli block-

ing. In other words the non-interacting ‘spinless’ metal we

have treated so far generically flows at low energies to the per-

fect normal reflection fixed point. It is, however, essential to

understand the impact of interactions—which transform the

metal into a Luttinger liquid—on this result. Reference 221

demonstrates via bosonization that this fixed point remains

stable even in the interacting case except when the wire ex-

hibits very strong attractive interactions. Remarkably, for such

an attractive wire a pair of asymptotically decoupled Majo-

rana modes emerges dynamically at the junction and drives

the system to the perfect Andreev reflection fixed point with

quantized conductance.221

Dramatically different physics arises for the topological

setup in Fig. 10(b) due to the Majorana modes. We will as-

sume zero overlap between γ2 and γ1 and now focus on a

junction Hamiltonian

Hjunction = t

∫ ∞

−∞

dxγ1(ψ
† − ψ)δ(x) (96)

that hybridizes γ1 and the ‘spinless’ metal. [The u and ∆
terms from Eq. (90) are qualitatively unimportant so we ne-

glect them for simplicity.] For any t 6= 0 the Majorana γ1 no

longer represents a zero-energy mode since [Hjunction, γ1] 6=
0. A single Majorana zero-mode can never exist on its own,

however, so where is γ2’s partner? The answer is that the

zero-mode described by γ1 when t = 0 gets absorbed into

the metal where it becomes a delocalized plane wave; ex-

plicitly, one can readily verify that for t 6= 0 γ2’s partner is

γ̃1 ∝
∫∞

−∞
dx(ψ + ψ†).222 The hybridization with γ1 lead-

ing to this delocalized Majorana plane-wave mode mediates

perfect Andreev reflection at the junction at low energies. In-

deed, extracting the S-matrix from the Hamiltonian given by

Eqs. (89) and (96) yields a Lorentzian conductance

G(V ) =
2e2

h

[

1

1 +
(

eV vF
2t2

)2

]

(97)

that collapses to 2e2/h in the zero-bias limit. From a renor-

malization group perspective, coupling to γ1 drives the non-

interacting ‘spinless’ metal to the perfect Andreev reflection
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fixed point characterized by a quantized zero-bias conduc-

tance, in stark contrast to the trivial setup of Fig. 10(a). This

result survives even for a Luttinger liquid unless strongly re-

pulsive interactions with a Luttinger parameter g < 1/2 are

present; there the repulsion obliterates the zero-bias conduc-

tance peak entirely.221

What happens when the metallic region of the wires in

Fig. 10 carry spin? In this case the arguments leading to Eq.

(95), which underlies the conductance dichotomy for the se-

tups in (a) and (b), provide much weaker constraints on the

S-matrix. Furthermore, a local pairing term at the junction

∆0[ψ↑(x = 0)ψ↓(x = 0) +H.c.] now allows singlet Cooper

pairs to tunnel into the superconductor without Pauli blocking

at zero energy. When the spinful metal impinges on a topolog-

ical superconductor as in Fig. 10(b) a quantized 2e2/h zero-

bias conductance nevertheless emerges from coupling to the

Majorana γ1, both at the non-interacting level and over a range

of interactions.221 For a non-interacting spinful metal adjacent

to a trivial superconductor as in Fig. 10(a), however, ∆0 pro-

duces an S-matrix that yields a zero-bias conductance rang-

ing from 0 to 4e2/h depending on parameters—potentially

making it difficult to differentiate with the topological case.

Fortunately this result is non-generic. Arbitrarily weak repul-

sive interactions drive the system to the perfect normal reflec-

tion fixed point at low energies, leading to a vanishing zero-

bias conductance just as for a ‘spinless’ metal.221 Thus sharp

tunneling signatures of Majorana zero-modes appear also in

the spinful case. Adding more channels, however, obscures

these signatures since the conductance in both the trivial and

topological setups is then non-universal, at least in the free-

fermion limit.223

While our discussion so far centered on a specific geome-

try involving 1D wires, the conclusions apply far more gen-

erally. Nowhere in this analysis did we use the fact that the

Majorana γ1 derived from a topological region of a 1D wire.

In fact the quantized ‘zero-bias anomaly’ captured above has

been discussed in numerous contexts from several different

perspectives119,219–221,223–226 and is a general property of spin-

less or spinful 1D metals tunneling onto an isolated Majo-

rana mode. The setups of Fig. 10 can be readily adapted

to probe Majorana modes in 2D topological insulator edges,

half-quantum vortices in a 2D spinful p + ip superconductor,

chiral Majorana edge states220, etc. (Though one should keep

in mind that the small mini-gap typically associated with vor-

tices and edge states can place stringent limits on temperature

and resolution.)

One might view the tunneling signatures of Majorana

modes discussed above as somewhat less than a ‘smoking

gun’ detection method since zero-bias anomalies can arise

from unrelated sources in mesoscopic systems. We are some-

what sympathetic to this perspective but stress the following

points. First, whereas Majorana modes produce a zero-bias

conductance of 2e2/h this quantized value need not appear

when tunneling into a conventional ‘accidental’ low-energy

mode. A second, more important point is that in many of the

proposals we reviewed this conductance peak can be control-

lably brought in and out of resonance by inducing a transi-

tion between topological and trivial phases (by, say, adjusting

the magnetic field or gating). While measuring a zero-bias

peak may not by itself constitute a smoking-gun signature of

a Majorana mode, observing this peak collapse and revive in

accordance with theoretical expectations arguably would.

Majorana zero-modes provide several other note-

worthy transport signatures, including through current

noise.220,224–226 In particular, coupling a pair of 1D metallic

wires to a topological superconductor introduces Majorana-

mediated ‘crossed Andreev reflection’; such processes arise

when a Cooper pair enters the superconductor by combining

a single electron from each metal and generate maximally

correlated current noise in the two wires.220,225 The tun-

neling conductance through a quantum dot has also been

predicted to change qualitatively when the dot couples to

a Majorana mode,227,228 and a related setup allows one to

probe the lifetime of the ordinary fermionic state formed by

a pair of Majorana modes in the presence of ‘quasiparticle

poisoning’229. Additional transport signatures arise when a

Majorana mode couples to a nanomechanical resonator.230

Spin-polarized scanning tunneling microscopy may also be

used to identify fingerprints of Majoranas.125 Finally, in

a mesoscopic topological superconductor where charging

energy is important, spatially separated Majorana modes can

mediate non-local electron ‘teleportation’ that can be detected

with transport.231,232

B. Fractional Josephson effects

Recall from the introduction that a system with 2N well-

separated Majorana zero-modes γ1,...,2N exhibits 2N degener-

ate ground states. By defining conventional fermion and num-

ber operators

fj = (γ2j−1 + iγ2j)/2, nj = f†j fj (98)

the ground-state manifold can be conveniently labeled by

|n1, . . . , nN 〉, where nj = 0, 1 specify topologically pro-

tected qubit states. [The pairing of Majoranas in Eq. (98)

is completely arbitrary but always sufficient; ground states

labeled with different pairings are simply connected by uni-

tary transformations.] The experimental detection methods

discussed so far allow one to deduce the existence of Majo-

rana modes but provide no information about the qubits they

encode. One way to extract this information is to prepare the

system into a ground state and then adiabatically bring two

Majorana modes—say γ1 and γ2—in close proximity so that

their wavefunctions overlap appreciably. The resulting hy-

bridization of these modes can be modeled by a Hamiltonian

Hǫ = i ǫ2γ1γ2 = ǫ(n1 − 1/2). Taking ǫ > 0 for concreteness,

the system remains in a ground state if n1 = 0 whereas the

fusion of γ1 and γ2 yields an extra finite-energy quasiparticle

if n1 = 1. One can thus read out the state of n1 by detect-

ing the presence or absence of such a quasiparticle. (Note that

multiple measurements may be required since the system can

form a superposition of n1 = 0 and 1 states.) Fusing Majo-

ranas across a Josephson junction both enables qubit readout

along these lines49 and provides an unambiguous fingerprint

of these modes. This approach is particularly well-suited for
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(a)

(b)

γ2γ1Topo SC γ4γ3 Topo SC

γ2γ1Topo SC γ4γ3 Topo SC

(c)
γ1

φRφMφL

φRφL

φRφL

γ2

φM

FIG. 11. (a) Basic experimental setup required to observe the frac-

tional Josephson effect stemming from Majorana modes fused across

a superconductor-insulator-superconductor junction. Purple regions

indicate s-wave superconductors (with phases φL,R) that drive the

green regions into a 1D topological state; dashed regions are trivially

gapped. The Majoranas γ1,2 mediate a component of the Josephson

current that is 4π periodic in φR −φL. When the barrier in the junc-

tion is replaced by a superconductor with phase φM as in (b), γ1,2
mediate a second type of unconventional current that is 4π periodic

in φL,R and can be isolated with Shapiro step measurements. The

setup in (c), while superficially similar to (a) and (b), yields only

conventional Josephson physics with 2π periodicity in φL,R.

1D topological superconductors, so we will confine our dis-

cussion to this class of systems.

Figure 11 sketches the basic type of setup required. Here

two 1D topologically superconducting regions emerge due to

the proximity effect with s-wave superconductors that are sep-

arated by an insulating barrier, while dashed regions are as-

sumed to be trivially gapped. The topological segments can

arise from any number of systems—a 2D topological insula-

tor edge, 1D spin-orbit-coupled wires, 3D topological insula-

tor nanowires, etc.—but should be long enough that the outer

Majoranas γ3,4 overlap negligibly with the central Majoranas

γ1,2.233 The insulating barrier, however, should be sufficiently

narrow that γ1 and γ2 hybridize strongly. Given this setup,

our objective is to understand the zero-bias current I flowing

across the Josephson junction as one varies the phase differ-

ence ∆φ ≡ φR −φL between the right and left s-wave super-

conductors.

This current consists of two contributions, I = I2e + Ie.

The first, I2e, denotes the conventional Josephson current that

arises from Cooper-pair tunneling across the insulating barrier

and is 2π-periodic in ∆φ. As originally shown by Kitaev9 the

hybridized Majorana modes γ1,2 mediate a new contribution

Ie which is our primary focus. To extract the salient univer-

sal features of Ie in a very direct way we will model the two

topological regions of Fig. 11(a) as N -site chains described

by Kitaev’s toy lattice model given in Eq. (2). Furthermore,

we fine-tune µ = 0 and t = ∆ for each region so that the

Majorana zero-modes can be trivially identified. Defining op-

erators c†L/Rx that add fermions to the left/right topological

segments, the full Hamiltonian for the junction is then taken

to be

H =
∑

a=L/R

Ha +HΓ, (99)

Ha = − t

2

N−1
∑

x=1

(c†axcax+1 + eiφacaxcax+1 + h.c.),(100)

HΓ = −Γ(c†LNcR1 +H.c.), (101)

where HΓ describes single-electron tunneling across the bar-

rier with strength Γ > 0.

Let us recall the following two facts derived in Sec. II A:

(i)Ha supports Majorana zero-modes localized at sites 1 and

N of each chain [see Fig. 2(b)] and (ii) the zero-modes γ1,2
at the junction are related to the lattice fermion operators by

cLN = e−iφL/2(γ1+iγ
′
1)/2 and cR1 = e−iφR/2(γ′2+iγ2)/2.

Here γ′1 and γ′2 hybridize with Majorana fermions at neighbor-

ing sites and form conventional finite-energy fermions. One

can therefore project H onto the zero-energy subspace of Ha

by sending

cLN → 1

2
e−iφL/2γ1, cR1 → i

2
e−iφR/2γ2, (102)

which yields an effective low-energy Hamiltonian

Heff = −Γ

2
cos

(

∆φ

2

)

iγ1γ2

= −Γ cos

(

∆φ

2

)

(n1 − 1/2). (103)

Crucially, the occupation number n1 is a conserved quantity

since [Heff , n1] = 0. Thus if the system begins in a state with

n1 = ni1, then varying the phase difference ∆φ across the

junction yields a Majorana-mediated current

Ie =
2e

~

〈Heff〉
d∆φ

=
eΓ

2~
sin

(

∆φ

2

)

(2ni
1 − 1). (104)

(If the system does not form an n1 eigenstate, then the current

Ie above emerges with a probability determined by the relative

amplitude for ni
1 = 0, 1 states.)

Equation (104) reflects a fractional Josephson effect—Ie
originates from tunneling ‘half’ of a Cooper pair across the

junction and exhibits 4π periodicity in ∆φ. The first prop-

erty is easy to understand: Cooper-pair hopping dominates

the Josephson current in conventional s-wave superconduc-

tors because the bulk gap suppresses single-electron tunnel-

ing, but since HΓ couples zero-modes this suppression disap-

pears. The 4π periodicity is much subtler. Indeed, the original

Hamiltonian in Eq. (99) is clearly 2π periodic in both φL and

φR, so how can the current Ie exhibit 4π periodicity? This

is possible because while the Hamiltonian is 2π periodic, the

physical states are not. Suppose, for example, that ∆φ = 0
and ni

1 = 1 so that the system begins in a ground state of

Heff in Eq. (103) with energy Ei = −Γ/2. Because n1 is

conserved, after advancing ∆φ by 2π the system ends in a

physically distinct excited state with energy Ef = +Γ/2 and

hence an extra finite-energy quasiparticle at the junction.234

Global fermion parity conservation dictates that the system
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can decay back to a ground state only if fermions can transfer

between the inner and outer Majoranas in Fig. 11(a), which

we precluded due to their large spatial separation. Advancing

∆φ by 2π a second time restores the ground state with which

we started. This doubled ∆φ-periodicity in the physical states

underlies the fractional Josephson effect uncovered above.

Measuring a 4π-periodic contribution to the Josephson cur-

rent would undoubtedly qualify as a smoking-gun signature of

Majorana fermions. Moreover, because the sign of the current

Ie in Eq. (104) is tied to the occupation number ni
1 of the Ma-

joranas at the junction, this technique enables qubit readout as

claimed above.49 The following experimental realities should,

however, be kept in mind. First, Ie must be disentangled from

the (potentially much larger) 2π-periodic component I2e that

flows in parallel. To obtain a crude order-of-magnitude esti-

mate for Ie, with Γ ∼ 1K in Eq. (104) the associated crit-

ical current is Ice = eΓ/(2~) ∼ 10nA, which roughly sets

the required current resolution. Second, due to the finite ex-

tent of their wavefunctions the outer Majorana modes γ3,4 of

Fig. 11(a) will inevitably couple to γ1,2 with a characteristic

energy δE ∝ e−L/ξ (L denotes the size of the topological

regions and ξ is the topological phase’s coherence length).

Though exponentially suppressed in L/ξ, this hybridization

spoils conservation of n1 and restores 2π periodicity of the

current Ie.9,235 To circumvent this problem ∆φ should cycle

on a time scale that is short compared to ~Γ/δE2,236 but long

on the scale set by the inverse bulk gap. Third, inelastic pro-

cesses involving stray quasiparticles—which can appear, e.g.,

because the system was imperfectly initialized or due to ther-

mal excitation—provide another means of switching the value

of n1 to relax back to the ground state of Heff . This, too,

can restore 2π periodicity of Ie if ∆φ cycles on scales much

longer than the typical switching time; on shorter scales Ie
will exhibit ‘telegraph noise’ where the sign of the Majorana-

mediated current abruptly changes with time, which would

also be remarkable to observe.50 Even in the presence of re-

laxation processes signatures of the fused Majorana modes at

the junction appear through the current noise spectrum50,237

and in transients238.

A second type of fractional Josephson effect arises when

the barrier material in the junction forms a superconductor

with phase φM as shown in Fig. 11(b).239 The influence of

the superconducting barrier can be crudely modeled by sup-

plementing the Hamiltonian in Eq. (99) with a new term

HM = ∆M (eiφM cLNcR1 +H.c.) (105)

that Cooper pairs fermions at the inner ends of the topologi-

cal regions. Using Eq. (102) to project the full Hamiltonian

onto the low-energy subspace formed by the Majoranas then

produces a modified effective Hamiltonian

H ′
eff = Heff +∆M cos

(

φM − φL + φR
2

)

(n1 − 1/2).(106)

The meaning of the ∆M term above can be simply understood

by promoting eiφL,M,R to Cooper-pair creation operators; ∆M

then clearly reflects processes whereby a Cooper pair in the

central region fractionalizes, with half entering the left topo-

logical segment and the other half entering the right. This

Cooper-pair splintering allows for a current

I ′e =
e∆M

~
sin

(

φL + φR
2

− φM

)

(2ni1 − 1) (107)

injected into the middle region to be carried away in equal

parts into the left and right topological superconductors. Like

the fractional Josephson current in Eq. (104), I ′e exhibits 4π
periodicity in both φL and φR because of conservation of n1,

and also allows one to read out the initial occupation number

ni
1. A promising feature of this setup is that Shapiro step mea-

surements can be used to isolate the I ′e contribution from the

parallel components I2e and Ie.239

Although the Majorana-mediated currents Ie and I ′e were

derived in a fine-tuned toy model, their anomalous 4π
periodicity has a topological origin and thus arises far

more generally (subject to the caveats noted above). In-

deed, fractional Josephson effects have been captured in

more realistic models for 1D p-wave superconductors240,241,

2D topological insulator edges50,239, 3D topological insula-

tor surfaces49,242, single-115,116,239,243 and multi-channel140,143

spin-orbit-coupled wires, among other systems240,241,244, and

have even been shown to survive when capacitive charging

energy is incorporated236. We also note that a long Josepshon

junction formed by 2D topological superconductors supports

an unconventional Fraunhofer pattern arising from chiral Ma-

jorana edge states.210

Some experimental setups more easily lend themselves to

observing fractional Josephson effects than others since this

phenomenon requires stabilizing extended topological regions

on both sides of the junction as shown in Figs. 11(a) and (b).

For instance, topological insulator edges may be ideally suited

for this type of experiment since there the topological phase

is ‘easy’ to access in the sense discussed in Sec. III B. We

should caution that Josephson physics in the setup of Fig.

11(c)—which in realizations such as 1D spin-orbit-coupled

wires should be much simpler to realize than those of Figs.

11(a) and (b)—is always 2π periodic in the superconducting

phases. Perhaps the simplest way to see this is by observing

that in the limit where γ1 and γ2 hybridize significantly across

the junction in Fig. 11(c), the central region is in no meaning-

ful way topological.

C. Interferometry

Several interferometric schemes have been pro-

posed for detecting Majorana modes in topological

superconductors.69,75,179,180,245–248 While the setups required

generally pose greater fabrication challenges compared to

the measurement techniques reviewed earlier, the signatures

that appear are unambiguous and conceptually illuminating.

For concreteness we will concentrate on interferometers

employing 3D topological insulators; we stress, however, that

similar ideas can be applied to many other realizations of 2D

topological superconductivity reviewed in Sec. IV.

Consider the geometry shown in Fig. 12(a) where an

s-wave superconductor and two ferromagnetic insulators—

importantly, with opposite magnetizations—reside on a 3D
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(a)

FM insulator

FM insulator

 SC

(b)

 SC

 SC
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γ1

FM insulators
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Φ

Φ,
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FIG. 12. Interferometers fabricated from ferromagnetic insulators

and s-wave superconductors deposited on a 3D topological insulator

surface. In (a) the ferromagnets have opposite magnetizations, yield-

ing a conventional chiral edge state (double arrows) that fractional-

izes into chiral Majorana modes (single arrows) around the super-

conductor. With a flux Φ = hc
2e
Nv threading the center, the zero-bias

conductance describing current flow from the left domain wall into

the superconductor vanishes for even Nv and is quantized at 2e2

h
for

odd Nv . In (b), when Φ = 0 Josephson vortices flowing through

the interferometer produce a vortex current that oscillates with the

charge Q on the central island (due to the Aharonov-Casher effect).

When Φ = hc
2e

, however, the oscillations disappear as a consequence

of non-Abelian statistics.

topological insulator surface.179,180 The ferromagnets drive

the upper and lower portions of the surface into gapped quan-

tum Hall states with Hall conductivities σxy = ± e2

2h .179,249,250

Since the Hall conductivities differ by e2

h , an ‘ordinary’ chiral

edge state (denoted by double arrows in the figure) appears

at each magnetic domain wall. As described in Sec. IV D

the s-wave superconductor drives the surface beneath it into

a time-reversal-invariant 2D topological superconductor sup-

porting chiral Majorana edge states whose chirality follows

from the neighboring ferromagnet’s magnetization. When the

ordinary chiral mode at the left magnetic domain wall meets

the superconductor, it therefore fractionalizes into a pair of

co-propagating Majorana modes and then recombines at the

right magnetic domain wall.179,180

Of interest here is the conductance characterizing current

flow from the left magnetic domain wall into the supercon-

ductor, when a magnetic flux Φ pierces the central region

of Fig. 12(a). Following the scattering analysis of Sec. V A

the conductance at a bias voltage V is given by G(V ) =
2e2

h |SPH(eV )|2, where SPH is now the amplitude for an elec-

tron incident from the left to transmit a Cooper pair to the su-

perconductor and exit as a hole at the right domain wall. As

in our treatment of a spinless metal impinging on a supercon-

ductor, particle-hole symmetry and current conservation again

constrain the zero-bias conductance to G(0) = 0 or 2e2

h . In

other words, at zero energy an incident electron c†in first splin-

ters into Majoranas γt/b localized at the top/bottom edges of

the superconductor and then emerges with unit probability as

either an outgoing electron c†out or hole cout (superpositions

are forbidden).

When the flux vanishes one can deduce the conductance by

adiabatically deforming the area of the superconducting re-

gion in Fig. 12(a) to zero.179 In this limit an electron incident

from the left is guaranteed to exit as an electron on the right,

and by continuity the same must be true when the supercon-

ducting region is finite. This can be summarized schemati-

cally by the process

c†in → γb + iγt → c†out, (108)

where γb + iγt represents the intermediate fermionic state of

the incident electron. The zero-bias conductance therefore

vanishes when Φ = 0.179,180 Next, suppose that one threads

flux Φ = hc
2e to induce a single vortex in the superconduct-

ing region. This introduces a branch cut indicating where the

phase jumps by 2π, which we take to emanate from the core

to the top edge in Fig. 12(a). Since γt acquires a minus sign

upon crossing the branch cut (recall Sec. II B), incident elec-

trons now exit perfectly as holes,

c†in → γb + iγt → γb − iγt → cout (109)

yielding a 2e2

h conductance.179,180 By generalizing this pic-

ture to flux Φ = hc
2eNv one can see that the conductance os-

cillates between quantized values G(0) = 0 for even vortex

number Nv and G(0) = 2e2

h for odd Nv .179,180 Observing

these discrete conductance oscillations (which have also been

captured in semiconductor-based systems248) would provide

clear evidence for the chiral Majorana edge states underlying

this remarkable result. Furthermore, concepts pioneered in

the quantum Hall context45,251–253 can be employed in related

experiments to implement interferometric readout of the qubit

states formed by vortex Majorana zero-modes180,248.

References 75 and 246 proposed interesting alternative

probes of Majorana modes that rely on interferometry of vor-

tices in the bulk of a 2D topological superconductor. Such

‘Abrikosov vortices’ tend to behave classically, so we will dis-

cuss an elegant follow-up proposal employing ‘Josephson vor-

tices’ that more readily exhibit quantum phenomena.69 Fig-

ure 12(b) illustrates the desired setup, consisting of s-wave

superconductors and ferromagnets patterned on a 3D topo-

logical insulator (though any spinless p + ip superconduc-

tor realization will do here). In the center of the structure

sits an island that hosts charge Q and a magnetic flux Φ. As

usual the innermost superconducting edge supports a Majo-

rana zero-mode when the flux Φ induces an hc
2e vortex. The

inner and outer superconductors in Fig. 12(b), however, re-

alize a Josephson junction bridged by a thin ferromagnetic

barrier. Consequently the chiral Majorana edge states at the

interface hybridize across the junction and generally acquire

a gap, but are not entirely inert. Remarkably, Grosfeld and

Stern showed that Josephson vortices—at which the supercon-

ducting phase difference across the junction locally winds by

2π—trap a single Majorana zero-mode as in the case of an

Abrikosov vortex.69

When a Josephson vortex binding a zero-mode γ flows

rightward [which can be arranged by driving a perpendicu-

lar supercurrent I as shown in Fig. 12(b)] interference of the

upper and lower trajectories depends on both the charge Q
and flux Φ on the center island.69,246 The Q dependence re-

flects the Aharonov-Casher effect254—an hc
2e flux encircling
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charge Q acquires a phase φAC = hc
2e

Q
~c = πQ

e , similar to the

Aharonov-Bohm phase accumulated by a charge encircling

a flux. With Φ = 0 a Josephson-vortex current Iv flowing

through the interferometer therefore oscillates with Q accord-

ing to

Iv = I0v [1 +A cos (πQ/e)] , (110)

where I0v and A denote the mean current and oscillation

amplitude.69,246 The oscillations in Eq. (110) can be detected

by measuring the transverse voltage difference induced by the

vortex flow as Q varies. A flux Φ = hc
2e produces a Majo-

rana zero-mode γin inside of the interferometer and changes

these results qualitatively. In this case taking the Josephson

vortex in Fig. 12(b) around the island then leads not only

to an Aharonov-Casher phase, but also changes the sign of

both γ and γin due to branch cut crossings. The latter effect

causes the amplitude A to vanish252,253 (which is rooted in

non-Abelian statistics explored in the next section), destroy-

ing the vortex-current oscillations.69,246 The striking depen-

dence on Q and Φ is a dramatic manifestation of Majorana

modes, in particular the exotic statistics they underpin, and

would be fascinating to observe.

VI. NON-ABELIAN STATISTICS AND QUANTUM

COMPUTATION

The experimental realization of Majorana modes would

pave the way to far-reaching technological innovations. On

the most basic level, a set of Majorana-carrying vortices or

domain walls non-locally encodes quantum information in

the degenerate ground-state space, enabling immediate ap-

plications for long-lived ‘topological quantum memory’. In

the longer term the prospect of manipulating that informa-

tion in a manner that avoids decoherence would constitute

an important breakthrough for quantum computation. This is

made possible by the most coveted manifestation of Majorana

fermions: non-Abelian statistics.

Before turning to specific implementations it will be use-

ful to discuss this phenomenon in some generality. Consider

a topological system supporting 2N Majorana zero-modes

γ1,...,2N . As in Eq. (98) we will (arbitrarily) combine the Ma-

joranas into operators fj = (γ2j−1 + iγ2j)/2 whose occu-

pation numbers nj = f†j fj can be used to label the ground-

state manifold. Suppose that one prepares this system into

a ground state |Φi〉 = |n1, . . . , nN 〉 and then adiabatically

swaps the positions of any two Majoranas. (We assume that

the ground-state degeneracy is preserved throughout and that

the initial and final Hamiltonians coincide.) The exchange

statistics of the defects binding these zero-modes follows from

the time evolution of |Φi〉; for a nice discussion, see Refs. 12

and 22. One source of this evolution is the dynamical phase

e−
i
~

∫
T

0
E(t)dt acquired by the wavefunction, where E(t) is

the instantaneous ground-state energy during the interval T
over which the interchange occurs. This factor is irrelevant

for our purposes and will henceforth be ignored. More impor-

tantly, the degeneracy together with the fractionalized nature
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FIG. 13. (a) A 2D topological superconductor with four well-

separated vortices binding Majorana zero-modes. Under a clockwise

braid of γ1 and γ2 these Majoranas not only interchange positions,

but γ1 also crosses a branch cut. Consequently the exchange sends

γ1 → −γ2 and γ2 → γ1. This simple picture due to Ivanov32 leads

to non-Abelian statistics as described in the text. (b) Performing

meaningful exchanges of Majorana modes arising in 1D topologi-

cal superconductors (green) requires arranging wires into networks.

(c) Corner junctions formed by 2D topological insulators similarly

allow Majorana modes to be interchanged along the edges. Despite

the absence of vortices the exchange statistics remains non-Abelian

in these networks.

of the zero-modes allows the system to end in a fundamen-

tally different ground state |Φf 〉 from which it began. Proving

this and the non-Abelian statistics that follows is nontrivial,

and requires tracking the adiabatic evolution of the full many-

body wavefunction—along with Berry matrices that can con-

nect different ground states. Fortunately, one can deduce the

final state |Φf 〉 (up to an overall phase) by addressing the dras-

tically simpler problem of how the Majorana operators trans-

form under the exchange. In all cases that we are aware of

this procedure agrees with more rigorous approaches devel-

oped, e.g., in Refs. 10, 19, 21, 22, 33–35.

With this simplification in mind, we now review Ivanov’s32

remarkably accessible picture for non-Abelian statistics in a

2D spinless p + ip superconductor (this discussion applies

equally well to any of the experimental realizations in Sec.

IV). It suffices to analyze the configuration of Fig. 13(a)

where four well-separated vortices trap Majorana zero-modes

γ1,2,3,4. Suppose that we apply local pinning potentials to

adiabatically braid the left two vortices clockwise as shown

in the figure. This has two important consequences for the

zero-modes—(i) γ1 and γ2 swap positions and (ii) γ1 crosses

a branch cut and acquires an additional minus sign. Thus the

Majorana operators transform according to γ1 → −γ2 and

γ2 → γ1. The unitary operator implementing this transforma-

tion is U12 = (1 + γ1γ2)/
√
2 (that is, U12γ1/2U

†
12 = ∓γ2/1).

Similarly, clockwise exchange of neighboring vortices bind-

ing γj and γj+1 sends γj → −γj+1 and γj+1 → γj , which is

generated by

Uj,j+1 = (1 + γjγj+1)/
√
2. (111)
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(For counterclockwise braids U−1
j,j+1 implements the transfor-

mation.) Up to a common overall phase factor the ground-

state wavefunctions |n1, n2〉 therefore evolve as32 |n1, n2〉 →
Uj,j+1|n1, n2〉.

For the three types of clockwise exchanges between neigh-

boring vortices in Fig. 13(a), one explicitly finds

|n1, n2〉 → U12|n1, n2〉 = ei
π
4
(1−2n1)|n1, n2〉 (112)

|n1, n2〉 → U23|n1, n2〉 (113)

=
1√
2
[|n1, n2〉+ i(−1)n1 |1− n1, 1− n2〉]

|n1, n2〉 → U34|n1, n2〉 = ei
π
4
(1−2n2)|n1, n2〉. (114)

Braiding γ1,2 or γ3,4 in a sense ‘internally rotates’ the ordi-

nary fermion operators fj and produces nontrivial phase fac-

tors in the states |n1, n2〉. More interestingly, braiding γ2,3
swaps ‘half’ of f1 with ‘half’ of f2, resulting in a nontriv-

ial rotation of |n1, n2〉 within the ground-state manifold. To-

gether these properties give rise to non-Abelian statistics of

vortices: if one performs sequential exchanges, the final state

depends on the order in which they are carried out. Math-

ematically, this fascinating result follows from the nontrivial

commutation relations satisfied by the operators in Eq. (111).

These conclusions generalize trivially to systems supporting

arbitrarily many vortices.

If one tries to extend this analysis to Majorana zero-modes

arising in 1D topological superconductors, two immediate

problems arise. The first is that exchange statistics, non-

Abelian or otherwise, is never well-defined in 1D systems.

As an example, suppose we attempt to adiabatically exchange

γ3 and γ4 in the setup of Fig. 6(d) by moving γ3 rightward

and γ4 leftward. Clearly these zero-modes eventually overlap

and split the ground-state degeneracy; furthermore, whether

or not one actually performed an exchange when the system

returns to its original configuration is completely ambiguous.

Moving away from strict one-dimensionality by fabricating

networks of 1D wires35 or 2D topological insulator edges101

circumvents this problem in a conceptually straightforward

manner. Figures 13(b) and (c) illustrate examples that allow

Majorana modes to be meaningfully exchanged. (As usual

green denotes topological regions while dashed lines are triv-

ial. Note also that the structure of such networks is rather

arbitrary—they can even form three-dimensional lattices.38)

The zero-modes can be adiabatically transported in these se-

tups by applying gate voltages35,37 or supercurrents103 to shift

the domain wall locations as desired. In this way one can

exchange γ1 and γ2 in Fig. 13(b) by executing a ‘three-point-

turn’35,38: first moving γ1 to the center of the vertical line,

then moving γ2 all the way leftward, and finally moving γ1
up and to the right. Similar ideas allow one to exchange

the Majoranas γ3 and γ4 belonging to different topological

segments, and can also be adapted to the corner junction of

Fig. 13(c). Interestingly, novel methods of effectively imple-

menting exchanges without physically transporting Majoranas

(as in measurement-only topological quantum computation46)

have also been proposed recently.255,256

Although the exchange of Majorana zero-modes becomes

well-defined in these networks, a second, much subtler prob-

lem appears in this context. Namely, the vortices that are cru-

cial for establishing non-Abelian statistics in 2D p + ip su-

perconductors are entirely absent here—so does non-Abelian

statistics still emerge? Fortunately several studies have shown

that it does, and that the Majorana zero-modes in fact trans-

form under exchange exactly as in the p + ip case despite

the lack of vortices.35–38 To provide a rough flavor for how

this arises, consider the physical situation where the network

of Fig. 13(b) arises from spin-orbit-coupled wires adjacent to

an s-wave superconductor with uniform phase φ. Suppose

that we exchange γ1,2 as described above. Although the s-
wave superconductor exhibits a uniform phase, as the Majo-

ranas traverse the network the phase of the effective p-wave

pair field that they experience does in fact vary. This variation

causes one of the Majoranas to acquire a minus sign arising

from a branch cut, precisely as in Ivanov’s construction.35 For

more details and complementary perspectives on this interest-

ing problem see Refs. 35–38.

By virtue of non-Abelian statistics, braiding Majorana zero-

modes in 2D p + ip superconductors and 1D networks al-

lows one to perform topological quantum information pro-

cessing that is in principle immune from decoherence.12 Equa-

tions (112) through (114) illustrate a concrete example of

the protected qubit processing effected in this manner. Un-

fortunately, such qubit rotations are too restrictive to per-

mit universal quantum computation; two additional processes

are needed.12 The first is a π/8 phase gate that introduces

phase factors e±iπ/8 depending on the occupation number

corresponding to a given pair of Majoranas. The second is

the ability to read out the eigenvalue of the product of four

Majoranas, γiγjγkγl, without measuring that of individual

pairs. While these processes can introduce errors this does

not mean that the topologically protected braiding operations

are without merit. In fact the unprotected part of the compu-

tation enjoys a dramatically higher error threshold compared

to conventional quantum computing schemes.47,48 Many in-

genious proposals already exist for supplement braiding with

the operations required to perform universal quantum compu-

tation, both in architectures based on 1D and 2D topological

phases.12,118,255,257–264 The blueprints for a Majorana-based

quantum computer are therefore already in place; we simply

need to begin assembling the hardware.

VII. OUTLOOK

The possibility of observing Majorana fermions in con-

densed matter systems now appears tantalizingly close. In

Secs. III and IV we saw that the number of realistic pro-

posals that now exist is rather immense, and most involve

heterostructures with garden-variety s-wave superconductors.

One point worth emphasizing here is that the theory for

these proximity-induced topological superconductors centers

largely around non-interacting electron models—apart from,

of course, attractive interactions implicitly invoked in the par-

ent superconductors. We view this simplicity as an enormous

virtue that affords theorists a degree of predictive power for

experiments that is not often encountered in the quest for ex-
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otic phases of matter. (One can argue that the rapid progress

in the field of topological insulators arose for similar reasons.)

Given this fact, along with the accessibility of the building

blocks comprising the heterostructures, it is no surprise that

several of these new proposals have already inspired broad

experimental efforts in leading laboratories worldwide. If

these efforts continue unabated we believe the question is not

whether Majorana modes will be definitively identified, but

rather when, in what system, and with what measurement.

Amongst the numerous proposals reviewed the original

topological-insulator-based devices introduced by Fu and

Kane49,50 (see also Ref. 162) remain in some ways ideal. The

elegance of the theories is hard to match, and from a prac-

tical standpoint the prospect of obtaining topological phases

protected by gaps that are immune to disorder94,162 and lim-

ited only by that of the parent superconductor89,94 is exceed-

ingly attractive. We believe strongly that experiments in this

direction should be ardently pursued using both 2D and 3D

topological insulators even if another system ‘wins the race’

for Majorana; future applications may rest on such excep-

tional properties. Proposals employing conventional spin-

orbit-coupled 1D wires, first pioneered in Refs. 115 and 116,

also stand out given the comparative maturity of semicon-

ductor technology as well as the simplicity and tunability

of the required architectures. These systems are well-poised

to experimentally realize the predicted magnetic-field-driven

topological phase in the near future.128–131 More broadly, we

hope that experimentalists will push many more of the newly

proposed directions while theorists continue to conjure up

new and improved Majorana platforms. There may just be

a sleeper in the mix, or perhaps the ideal direction is even yet

to be introduced.

The first unambiguous sighting of Majorana fermions in

condensed matter would provide a landmark event in physics.

We hope to have made a compelling case in Sec. V that nu-

merous smoking-gun detection methods are now available to

make this identification definitive. It should be stressed that

this initial observation will only herald the beginning of what

is likely to be a long, fruitful subfield. The realization of

exotic physics such as fractional Josephson effects and non-

Abelian statistics, as well as applications from topological

quantum memory to universal quantum computation are truly

fascinating goals that will keep physicists occupied for many

years to come. And as always there are bound to be many

surprises along the way.

To conclude we will briefly highlight some interesting fu-

ture directions and open questions. One intriguing alterna-

tive route to engineering topological phases involves period-

ically driving a system that would otherwise be trivial. Us-

ing this mechanism proposals for artificially generating topo-

logical insulators265,266 and 1D superfluids supporting Ma-

jorana fermions158 have recently been put forth. The pos-

sibility of moving away from static systems as a means of

generating non-Abelian phases opens new avenues that war-

rant further exploration. There are also many other promis-

ing routes to Majorana fermions that we have not touched on

here. Among the most interesting is the potential realization

of Kitaev’s 2D honeycomb model267 in a certain class of mag-

netic insulators268–270. Looking forward, it is worth exploring

whether the connection identified by Read and Green10 be-

tween the Moore-Read state18 and a spinless p+ ip supercon-

ductor can be adapted to still more exotic fractional quantum

Hall states. As noted in the introduction it is this remark-

able correspondence that led to the realization that a weakly

correlated superconductor can harbor non-Abelian statistics.

Establishing a similar correspondence between quantum Hall

phases supporting even richer non-Abelian anyons and phases

exhibited by less strongly interacting 2D systems could open

entirely new directions in the pursuit of topological quantum

computation. If this can be achieved, might there exist related

1D systems supporting these richer non-Abelian anyons, in

the same way that Majorana modes can appear in either 1D or

2D topological superconductors?
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Appendix A: Derivation of the effective action for 1D and 2D

systems coupled to a bulk s-wave superconductor

Consider a d-dimensional system of electrons (with d =
1 or 2) proximate to a bulk s-wave superconductor. Let the

Hamiltonian for this structure be H = Hd + HSC + HΓ,

where

Hd =

∫

ddk

(2π)d
ψkHkψk (A1)

describes the d-dimensional system,

HSC =

∫

d3k

(2π)3
[ǫkη

†
k
ηk +∆sc(η↑kη↓−k +H.c.)],(A2)

models the s-wave superconductor, with ǫk = k2/(2msc) −
µsc the superconductor’s kinetic energy, and

HΓ = −Γ

∫

d3k

(2π)3
(ψkd

ηk +H.c.) (A3)

the term which incorporates electron tunneling between the

two subsystems. In Eq. (A3), kd = kx if d = 1 while kd =
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(kx, ky) if d = 2. Our goal is to obtain an effective action

for the d-dimensional system with the gapped superconductor

degrees of freedom integrated out. To achieve this it is useful

to first perform a unitary transformation which diagonalizes

HSC :

η↑k = −ukχ1k + vkχ
†
2−k

η↓k = vkχ
†
1−k

+ ukχ2k

uk =
∆sc

√

2Ek(Ek − ǫk)
, vk =

∆sc
√

2Ek(Ek + ǫk)
,(A4)

where Ek =
√

ǫ2k +∆2 are the quasiparticle energies for the

superconductor. In this new basis one obtains

HSC =

∫

d3k

(2π)3
Ek[χ

†
1kχ1k + χ†

2kχ2k] (A5)

HΓ = −Γ

∫

d3k

(2π)3
[χ1k(ukψ

†
↑kd

+ vkψ↓−kd
)

+ χ2k(vkψ↑−kd
− ukψ

†
↓kd

) +H.c.]. (A6)

It is now straightforward to write down the Euclidean path

integral corresponding to H and then integrate out the quasi-

particle operators χ1,2. This yields an effective action Seff =
Sd + δS, with

Sd =

∫

dω

2π

ddk

(2π)d
ψ(k,ω)Hkψ(k,ω) (A7)

δS =

∫

dω

2π

ddk

(2π)d
{∆scλ(k, ω)[ψ↑(k,ω)ψ↓(−k,−ω) +H.c.]

+ [−iωλ(k, ω)− δµ(k, ω)]ψ†
(k,ω)ψ(k,ω)}. (A8)

One sees here that the superconductor renormalizes the chem-

ical potential for the d-dimensional system (in a weakly

frequency- and momentum-dependent fashion) through

δµ(k, ω); this correction is unimportant, however, and will be

henceforth neglected. The essential physics associated with

the hybridization is encoded in the function λ(k, ω) appear-

ing in δS. Let us focus for the moment on d = 1 where this is

given by

λ(kx, ω) =

∫

ky,kz

Γ2

ω2 +∆2 +
[

k2
y+k2

z

2msc
+

(

k2
x

2msc
− µsc

)]2 ,

(A9)

Typically we will be concerned with one-dimensional systems

of rather low density so that k2x/(2msc) ≪ µsc for the impor-

tant values of kx; in this case the dependence of λ on kx can

be safely ignored. Making the further reasonable assumption

that µsc ≫
√

ω2 +∆2
sc over the relevant frequencies, λ eval-

uates to the following simple expression:

λ(ω) =
πρ2DΓ2

√

ω2 +∆2
sc

(A10)

where ρ2D = msc/(2π) is the density of states (per spin) for a

two-dimensional system with effective massmsc. For a d = 2
dimensional system λ(kx, ky, ω) follows from the right side of

Eq. (A9) integrated only over kz . Under similar assumptions

made for d = 1 λ is again approximately momentum inde-

pendent and given by Eq. (A10) with ρ2D replaced by the 1D

density of states ρ1D = π−1
√

msc/(2µsc). Upon defining a

quasiparticle weight Z(ω) = [1 + λ(ω)]−1, the effective ac-

tion can be expressed in the desired form quoted in the main

text:

Seff =

∫

dω

2π

ddk

(2π)d
Z−1(ω){ψ†

(k,ω)[−iω + Z(ω)Hk]ψ(k,ω)

+ ∆sc[1− Z(ω)][ψ↑(k,ω)ψ↓(−k,−ω) +H.c.]}. (A11)
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