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Abstract

In this paper we introduce a new score generating function for the rank regression
in the linear regression model. The score function compares the #'th and s’th
power of the tail probabilities of the underlying probability distribution. We show
that the rank estimate asymptotically converges to a multivariate normal. Further we
derive the asymptotic Pitman relative efficiencies and the most efficient values of #

and s under the symmetric distribution such as uniform, normal, cauchy and double
exponential distributions and the asymmetric distribution such as exponential and
lognormal distributions respectively.
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1. Introduction

In the last three decades considerable work on the rank based estimates as a robust
alternatives to least squares has been pursued for the linear regression model [see, for
example, Jureckova(1969, 1971); Jaeckel(1972); McKean and Hettmansperger(1978);
Hettmansperger and McKean(1983)]. Recently Naranjo and Hettmansperger(1994) discussed
bounded influence, high breakdown rank regression estimate. Witt, Naranjo and McKean(1995)
expanded the concept of the influence function for the rank based procedures in the linear
model.

Ozturk and Hettmansperger(1996) derived the robust estimates of location and scale
parameters from minimizing a minimum distance criterion function. Ozturk(1999) also
generated two-sample inference for the ranked set samples.

Further Ahmad(1996) developed a new class of Mann-Whitney-Wilcoxon type test statistics,
which only considered the distribution functions of the #’th and s'th power in emphasizing
the right tail probabilities. On the other hand, Ozturk and Hettmansperger(1997) state that if
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there is no knowledge about the outlier pattern, or if the sample has both small and large
outliers, the distribution functions reflecting both right and left tail probabilities would be
appropriate.  Therefore Ozturk(2001) and Choi and Ozturk(2002) considered another class of
Mann-Whitney-Wilcoxon test statistics with having both right and left tail behavior of the
underlying distributions, which improved the efficiency for many distributions.

Thus the main purpose of this paper is to extend the Ozturk and Hettmansperger(1997),
Ozturk(2001) and Choi and Ozturk(2002)'s concept, where the distribution function reflects
both right and left tail probabilities and produces robust estimators with high efficiency, into
the rank estimate of regression parameters in the linear regression model.

In Section 2, we propose our score function based on the #'th and s’'th power in
considering both right and left tail probabilities. We derive that the dispersion function
D(B) based on our score function is a nonnegative and convex function of £ and that the
distribution of a rank estimator ? asymptotically converges to a multivariate normal. In
Section 3, we compare the efficiency of Wilcoxon rank estimate with the efficiency of our
rank estimate. In Section 4, reasonable » and § of our proposed score function are selected,

which show one of the most desirable efficiencies for the underlying distributions.

2. Rank-Based Estimate

Consider the linear regression model y; = a + xl' f+e;, i=1,-,n, where x; and @ are
p X1 vectors of explanatory variables and unknown regression parameters respectively and
e; is a random variable with density f and distribution function F. In this model we

consider rank regression estimate of the regression parameter f.
In its general form, Jaeckel’s(1972) rank dispersion function can be stated as

D(B) = 2 (=% B) alR(yi— x/B)],

where R(e;) denotes the rank of e; = y;—x; B and a(1) < a(2) < - < a(n) is a set
of scores generated by a(i) = ¢(i/(n+1)), the score generating function @(u) is defined
on (0,1) and is nondecreasing, bounded and square-integrable. Under fairly general
conditions, minimizer of D(B) produces robust estimator in y-space and it has relatively
high efficiency at the true model. The property of such estimator is studied in detail for a
general score function ¢( *) in Hettmansperger and McKean(1998). We introduce a general
score generating function further to improve the efficiency of the rank regression estimator.
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We require the following assumptions:

(Al) ©  f is absolutely continuous and f > 0.

(A2) : Scores are generated as a(7) = ¢(i/(n+1)) where ¢ is defined on (0,1),
nondecreasing, bounded and satisfies the conditions [ (1) ¢(u)du =0 and
S e (u)du = 1.

(A3) : lim » ' X' X =3 >0, where X is a # X p matrix with 7 th row x: )

7n-> 00

Now let
_ 1 r 1 i\ 1
#0 = [T amer ]
N 1 .\ 1 . i 1

o) = o [(n-l—l) r+1 (1 n+l) TS ] (1)
where W, = i + s + 2 -9 I'(r+1)I(s+1) )

e Qr+D(r+D?* '~ s+1)s+1?* T (r+D(s+D) I'(r+s+2)
Define the dispersion function D, ((8)= 2i=| e; a[R(e;)], where e; = y;— x; B. Then

B can be estimated by the rank estimator ﬁ/r\s which minimizes D, (8). Meanwhile from
the following Theorem 1, we can show that D, (f) is a nonnegative and convex function
of B immediately. Further Theorem 2 indicates that the distribution of a rank estimator

B/,\,S asymptotically converges to a multivariate normal.

The next Lemma 1 is used in Theorem 1.

Lemma 1. The function D;,(8)= (1N w,,)(n+1) "l e;[R(e;)—(#)], where

()= X% i"/n, ee=y,—x B and w,, in (2), is nonnegative and satisfies the

property of triangle inequality.

Proof Let aj(R;) = (1/V w,)(n+1)""[R"(e;)— ()] and further let ¢ be such that

ai(l) < <aj(t—1) <0< aj(t) < <ai(n) and e < - < e <+ < e, are

the ordered residual values. Then
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D} (8) = 1‘; e; aj(R;)

= Zl le;—ewn] al(R;) (3)

since X7-; e a;(R;)=0. However, each term of (3) is greater than or equal to zero.
Namely [e;— ey] aj(R;) = 0. Therefore we can say that D,l,s(B) is nonnegative.

We now verify the triangle inequality. Let l|lell= (1/V w,)(n+1)"" Z7., e; R'(e;),

which is a modified type for the function provided in Hardy, Littlewood and Polya(1952).
Then

le+hll = o=t [ 33 Ceit ) R7 (et )
- \/wm%nﬂ), Z}l e R7(e+ ) + 2 h,»R’(eiJrhi)] @
< \/wm%nﬂ), Z}l ei R7(e)) + 2 hl-R’(hi)] 5)
= llell + IAl ©

Now in order to identify the relationship between (4) and (5), consider the first term on the
right hand side of (4). Primarily we know that

gl e; R7(e; + h;) = gl e i (7)

where py, -, P, Is a permutation on the integers 1, -, %#. Suppose p; is not in order,

then there exists s and ¢ such that e() < e, but p; < p;. Therefore

[ewpli+endl] —[ewpritendi] = ewnBi—0pi) — ew BI—b!)

= [ep—ewl(psi—0¢)
> () (8)

Such an interchange never decreases the sum. Therefore when combining the above results

(7) and (8) with X7, ey i” = 27—, e; R'(e;), we can yield the following result.
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e R (ei+h) < 2 e R7(e) ©

Finally substituting the result (9) into (4) and from the fact that a similar result can be
obtained for the second term on the right hand side of (4), we can generate the result (5) as
mentioned above. This completes the proof of the triangle inequality of (6). That is

lle+ 2l < Ilell + |21l

Theorem 1. Under the score generating function in (1), the dispersion function

_ 1 1 7, . — 1 . —_ M) —
D,.(8) = =[Gy B (R7(e)= () = s Ben (1= R(e)Y = 29 )]

is a nonnegative and convex function of A, where () =X7-, i/n, t(s) = Xi7=1 i'/n,

e; = y;— x,»l B and w, in (2).

Proof First of all redefine the function D, ((8) = D,l, (B8) + D,z, s(B), where

DLB) = gy Ay @i [R(e) = 2(n)]

and

DL(B) = =ty 2 & [~ (D= R(e)) +e(9)],

Then since D, (8) is symmetric about DZ.(B), we are sufficient to show that D, (8)
is a norm. Further D, (8) is equivalent to the function |lell= (1/V @,,)(n+1)""

21 e R(e;) since Xi-y e;t(7) =0. Consequently, it is adequate to prove that the

function |le]l is a norm. To show that ||lell has a norm, Hettmansperger and
McKean(1998)'s Definition 2.2.1 should be met. Obviously ||a- ell = lal|-llell for a>0.
Also |lell=0 if and only if ¢;=++=-¢,=0. So when combining the results of Lemma

1 we can say that D,I,S(B), in tum D, (B), is immediately a nonnegative and convex

function of 5.

Theorem 2. Let [B,, be a rank estimator which minimizes the dispersion function
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D, (B) defined in Theorem 1 and let B, be the true regression parameter value. Then

under the assumptions in (1),

Vi (Br—By) —% Z ~ MVN(O s fl),
B 2 % 2 _ o L(r+ 1D I(s+1)
where @, = G+ D(r+1)° + (2s+ D(s+1)2 T (r+D(s+1) 2 I'(r+s+2)

r,_s='(f[rF"l(t)+s(1—F(t))5‘1]f2(t)aft)2 and 2 = lim »7'X'X.

n—> 0

Proof.  The result of Theorem 1 indicates that D, () is a nonnegative and convex

function of B. Therefore we can apply Hettmansperger's(1991) Theorem 5.2.3 into our rank
estimate of regression parameters.
In essence, we obtain the following linearity result by using S, (8)= —d D, (B)/3dB.

S.8) = o [ Gy B R (e) = e = oy Rt 1= RGe)Y = 9]

Then we have a linear approximation to the partial derivatives of D, ((8).

T Ses(8) = 5,08 — | 22 BV H (B By) . (10

From (10), we can construct a quadratic approximation to D, :(B) as follows.

Trs
Wy,

Qre(8) = Dyu(By) — (B—B0) S, (B) + & n(8—6) T(6—8). (D
(11) shows the property that @, (8y) = D, (fB;) and the gradient of @, (B) is the linear
approximation on the right hand side of (10). Jaeckel(1972) shows that @, (B) provides a
useful approximation to D, ;(8) .

Therefore the value g, which minimizes the quadratic approximation @, (8) in (11)

solves the right hand side of (10) as follows.

g = b+ 2l a) 12)
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If assumptions in (1) hold, we have a limiting multivariate normal distribution that

(1/Vn) S, () ~%> Z ~ MVN (0, &), where ¥ = lim n"'X’'X. Hence from (12)

n-»00

it can be shown that Vz (Brs— By) d, Z~ MVN(0, (w,/t,) Z_l). Finally we can

say that ,[)’/,,\s behaves asymptotically like A, from Jaeckel(1972) and thus \/71(,[7,:— By)

has the same limiting distribution as V# ( B7s— By). This completes the proof.

3. Asymptotic Relative Efficiencies

In this section we compare the efficiency of the rank estimator based on Wilcoxon scores
with the efficiency of our rank estimator ,8/,\5 The asymptotic relative efficiencies of the
Wilcoxon rank estimator with respect to our rank estimator, which is denoted as ARE(11, rs),
are given below in terms of @, in (2) and r,, defined in Theorem 2 for the regression

parameters of underlying distributions such as uniform, normal, cauchy, double exponential,
exponential and lognormal distributions.

3.1 Uniform Distribution
Let f(t) =1, for 0<t<{1. Then F(¢)=t. So we have

T, = 4 and ARE(ll, rs) = 3 w,,.

We evaluated ARE(1l, rs) for several values of #,s=(0.1)(3)(0.1). Our estimator
performs better than Wilcoxon estimator for 7,s<{1 or #,s>1. Some of the selected values
of ARE(11, rs) are given in Table 1. Thus we should choose 7, s as low as possible for

7,81 or 7, s as high as possible for 7»,s>1.
3.2 Exponential Distribution

let f(t) =exp(—t¢t), for t>0. Then F(t) =1—exp(—¢). So we have

o= (e T)

and
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ARE(1, rs) = 3 L

Tos
Table 1 shows that our procedure has better efficiency than Wilcoxon score if 7 is
decreased or s is increased. The efficiency of our procedure appears to be better high for
small 7 and large s. Thus we should choose 7» as low as possible or s as high as

possible.

3.3 Double Exponential Distribution

Let f(t) =exp(—|t])/2, for —oo (t (oo, Then F(t) = exp(t)/2, for t <0,
=1—exp(—1£)/2, for t>0. So we have

_ 27—1 2°—1
Ers +D2 T G+D T
and
3w,
ARE(], 1s) = =
4 T,

Again Table 1 shows that our procedure has better efficiency than Wilcoxon score if 7

and s are both close to 1.5. Thus we should choose 7, s =1.5.

3.4 Normal Distribution

Let F(¢)= (1/V2r )exp (—12/2), for —oo { ¢t { . Then

o= ([LrF 0+ sF 0 0 ar)’
and
3 Do

ARE(11, rs) = —
T Ty

For normal distribution, it appears to be there is not much difference between our estimator
and Wilcoxon estimator. On the other hand, for some values of » and s our estimator is

slightly better than Wilcoxon estimator, see Table 1.

3.5 Cauchy Distribution

Let f(t)=1/[xn(1+#%)], for —oo0 (¢ { oo . Then
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tw = ([LrF7H + st-lm]fZ(z)dt)z

and

ARE(l, rs) = -3y 2=
/4 Tys

Again as in the double exponential distribution, Table 1 shows that our estimator
outperforms Wilcoxon score estimator when 7 and s are both close to 1.5. Thus we

should choose 7, s =1.5.
3.6 Lognormal Distribution

Let f(t) = exp[—{log(#)}?/21/(V2x ¢), for t>0. Then F(¢) = @{log(t)},

where @ (#) is cdf of the standard normal distribution. So we have

£ = (JUrF @O +sa =Py 150 i)

and
AREL 1) = 12 ([£30)ar )" 22

As in the exponential distribution, our estimator outperforms Wilcoxon score estimator for

small 7 and large s, see, for example, Table 1.

4. Pitman Efficiency Comparision

We now conduct to explore the properties of the newly proposed rank estimate of
regression parameters. The main purpose of this section is to investigate the asymptotic
relative efficiencies of rank estimator based on Wilcoxon score denoted as Rank(1,1) relative
to our rank estimator denoted as Rank(r,s) for the underlying distributions, uniform, normal,
cauchy, double exponential, exponential and lognormal distributions. In addition, we will
explore the selection of » and s which improves the efficiency of rank estimator based on
Wilcoxon score.

When looking over the results of Table 1, we can say that uniform distribution and for the
light tailed distribution such as normal distribution, generally low #,s<1 yield higher
asymptotic relative efficiencies for Rank(r,s). Meanwhile for the heavy tailed distribution such
as cauchy and double exponential distributions, 1< 7,s<2 vyield higher asymptotic relative
efficiencies for Rank(r,s). In addition as #» and s is changed toward 1.5, Rank(r,s) tends

to give much improved efficiencies.
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Table 1. Asymptotic relative efficiencies, ARE = Var(Rank(r,s)) /
Var(Rank(1,1)), of Rank(1,1) with respect to Rank(r,s) for the regression
parameters of underlying distributions. [ 7, s = (0.1) (3) (0.1)]

Symmetric Distribution

Uniform Normal Cauchy Double Exponential
4 I s l ARE 4 I S | ARE 7 | S | ARE 4 I S l ARE
0.1 01 01113 0.1 0.1 09553 1.1 1.1 09898 1.1 11 0.9954

03 03 0375 03 03 09606 13 13 09784 13 13 0.9902
05 05 06442 05 05 09738 15 15 09763 15 15 09891
07 07 08383 07 07 09866 17 17 09814 1.7 17 0.9914
09 09 09605 09 09 09%4 19 19 09925 19 19 0.9965

05 1.0 0.8169 05 1.0 0.9937
05 3.0 0.7984 1.1 08 0.9997 15 1.0 09930 1.5 1.0 0.9996
20 25 0.9546 18 25 0.9995 15 20 09907 15 20 0.9973
20 30 0.9077 20 25 0.9959 10 15 09930 10 15 0.9996
25 30 0.8608 20 30 0.9929 20 15 09907 20 15 0.9973
30 30 038142 30 30 09784

Asymmetric Distribution

Exponential Lognormal
s | S l ARE 7 l s I ARE
0.1 01 01113 01 0.1 0.5545
03 03 0.3755 03 03 0.7029

05 05 0.6442 05 05 0.8252
0.7 07 0.8383 07 07 0.9166

09 09 0.9605 09 09 0.9786

On the other hand, the results for the asymmetric distribution can be summarized as
follows. Especially, right-skewed distribution such as exponential and lognormal which we
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encounter in practice commonly have the following patterns.

distributions
Rank(1,1).

as long as s becomes greater than 7, Rank(r,s) shows much improved efficiencies.

indicate that

if

r,s<1,

Rank(r,s)

Secondly in general if 1 ( # {s, Rank(r,s) is relatively more efficient.

Exponential and lognormal

is relatively much more efficient than

words, we can say that Rank(r,s) is usually more efficient than Rank(1,1) if s is increased

for a lower 7.

Table 2.

Reasonable selection of #» and s which improves the efficiency of our rank

estimator f,; with respect to Wilcoxon estimator B1;. [#,s=(0.1)(3)(0.1)]

istribution Symmetric Asymmetric
Uniform Normal Cauchy [Double Exp.| Exponential | Lognormal
7, s<1 r,s=0.1|r,s=10.1 r,s=0.11 »,s=0.1
None None
ARE 0.1113 0.9553 0.1113 0.5545
1<7r,s<3 |r,s=30|7,s=3.0{r,s=15|r,s=15|r=1.0s5=3.0|r=10s5=3.0
ARE 0.8142 09784 0.9763 0.9891 0.6022 0.6316
0S orimary r,5=01|7r,s=01|r,s=15|r,s=15) »r,s=0.1| »,s=0.1
VU 0.1113 0.9553 0.9763 0.9891 0.1113 0.5545
E
Rg r,s=0.3lr,s=03|r,s=13|r,s=1.3r=05s=3.0 |r=0.5s=3.0
A E [alterna- 0.3755 0.9606 0.9784 0.9902 0.3979 0.4915
Ls |tive r,s=3.0|r,s=3.017r,s=17|7r,s=1.7|r=10s=3.0 |r=1.05=3.0
LT 0.8142 0.9784 0.9814 0.9914 0.6022 0.6316

Futhermore

In other

Table 2 indicates that the reasonable values of # and s for the symmetric distribution are
simultaneously the same and as follows. Uniform distribution and for the light tailed
distribution such as normal distribution, suggested values are (1) #,s=0.1(the lowest value
if possible) if 7 s<1 or (ii} 7 s=3.0(the highest value under the given range) if
1< 7, s<3.
exponential distributions, suggested values are 7»,s=1.5.

Moreover for asymmetric distributions, especially for the right-skewed distributions such as

Meanwhile for the heavy tailed distribution such as cauchy and double

exponential and lognormal, suggested values which show much improved efficiencies of

Rank(r,s) are (i) 7, s=0.1(the lowest) if #, s<{1 or (ii) »=1.0 (the lowest) with s=3.0
(the highest) if 1< 7, s<3.

Beyond the primary suggested values of # and s, Table 2 presents the secondary
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alternative values of #» and s respectively. For instance, for the positively skewed
distribution such as exponential and lognormal distributions, the alternative values of #» and
s are r=0.5(as low as possible) with s= 3.0 (as high as possible). These results are
generated from Table 1.

5. Conclusions

In this paper we introduce the score generating function in rank regression for the linear
regression model. We show that the distribution of our rank estimator fJ,; based on this
score function asymptotically converges to a multivariate normal.

Efficiency study shows that for the light and heavy tailed distributions, in general 7,s<1
and 1< 7,s<{2 vyield higher asymptotic relative efficiencies respectively.  Right-skewed
distribution has many efficient possibilities; exponential and lognormal distributions show that
in general if 7,s§<{1 or 1<7<s, our rank estimator is relatively more efficient than
Wilcoxon score rank estimator.

The suggested values of » and s are (i) the lowest #,s=0.1 if 7, s<{1 or the highest
r,s=3.0 if 1<7,s<3 for uniform distribution and the light tailed distribution(normal),
(ii) 7,s=1.5 for the heavy tailed distribution(cauchy, double exponential) and (iii) the
lowest 7»,s=0.1if #, s<1 or the lowest r=1.0 with the highest s=3.0 if 1<7, s<3
for the right-skewed distribution(exponential, lognormal).

References

[1] Ahmad, I. A. (1996). A Class of Mann-Whitney-Wilcoxon Type Statistics, The American
Statistician, 50, 324-327.

[2] Choi, Y. H. and Ozturk, O. (2002). A New Class of Score Generating Functions for
Regression Models, Statistics and Probability Letters, Accepted to Publish.

[3] Hardy, G. H. Littlewood, J. E. and Polya, G. (1952). Inequalities, Cambridge University
Press, Cambridge, Massachusetts.

{4] Hettmansperger, T. P. (1991). Statistical Inference Based on Ranks, Krieger Publishing
Company, Malabar, Florida.

(5] Hettmansperger, T. P. and McKean J. W. (1983). A Geometric Interpretation of Inferences
Based on Ranks in the Linear Model, The Jjournal of American Statistical
Association, 78, 885-893.

[6] Hettmansperger, T. P. and McKean J. W. (1998). Robust Nonparametric Statistical
Methods, Wiley & Jones Inc., New York, New York.

{71 Jaeckel, L. A. (1972). Estimating Regression Coefficients by Minimizing the Dispersion of
Residuals, The Annals of Mathematical Statistics, 43, 1449-1458



New Dispersion Function in the Rank Regression 113

[8] Jureckova, J. (1969). Asymptotic Linearity of a Rank Statistic in Regression Parameter,
The Annals of Mathematical Statistics, 40, 1839-1900.

[9] Jureckova, J. (1971). Nonparametric Estimate of Regression Coefficients, The Annals of
Mathematical Statistics, 42, 1328-1338.

[10] McKean J. W. and Hettmansperger, T. P. (1978). A Robust Analysis of the General
Linear Model Based on One Step R-Estimates, Biometrika, 65, 571-579.

{11] Naranjo, J. D. and Hettmansperger, T. P. (1994). Bounded Influence Rank Regression,
Journal of Royal Statistical Society, 56, 209-220.

[12] Ozturk, O (1999). Two-Sample Inference Based on One-Sample Ranked Set Sample Sign
Statistics, Journal of Nonparametric Statistics, 10, 197-212.

[13] Ozturk, O (2001). A Generalization of Ahmad’'s Class of Mann-Whitney-Wilcoxon
Statistics, Australian and New Zealand Journal of Statistics, 43, 67-74.

[14] Ozturk, O and Hettmansperger, T. P. (1996). Almost Fully Efficilent and Robust
Simultaneous Estimation of Location and Scale Parameters: A Minimum Distance
Approach, Statistics & Probability Letters, 29, 233-244.

[15] Ozturk, O and Hettmansperger, T. P. (1997). Generalised Weighted Cramer-Von Mises
Distance Estimators, Biometrika, 84, 283-294.

[16] Witt, L. D., Naranjo, J. D. and McKean, J. W. (1995). Influence Functions for Rank-Based
Procedures in The Linear Model, Journal of Nonparametric Statistics, 5, 339-358.

[ 2001 11€ A<, 2002 2¢ A9 ]



