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Abstract

The resource-constrained elementary shortest path problem arises as
a pricing subproblem in branch-and-price algorithms for vehicle rout-
ing problems with additional constraints. We address the optimization
of the resource-constrained elementary shortest path problem and we
present and compare three methods. The first method is a well-known
exact dynamic programming algorithm improved by new ideas, such as
bi-directional search with resource-based bounding. The second method
consists of a branch-and-bound algorithm, where lower bounds are com-
puted by dynamic programming with state space relaxation; we show how
bounded bi-directional search can be combined with state space relaxation
and we present different branching strategies and their hybridization. The
third method, called decremental state space relaxation, is a new one; ex-
act dynamic programming and state space relaxation are two special cases
of this new method. The experimental comparison of the three methods
is definitely favourable to decremental state space relaxation. Computa-
tional results are given for different kinds of resources, arising from the
capacitated vehicle routing problem, the vehicle routing problem with dis-
tribution and collection and the vehicle routing problem with capacities
and time windows.

Keywords: shortest path, vehicle routing, column generation, dynamic pro-
gramming, branch-and-bound.

∗Corresponding author: (salani@dti.unimi.it)

1



1 Introduction

Branch-and-price is one of the most effective techniques for the exact optimiza-
tion of vehicle routing problems (VRP) with additional constraints. At each
node of a branch-and-bound tree a relaxation of the set covering reformulation
of the problem is solved via column generation. Algorithms based on this tech-
nique can solve constrained VRP instances with more than 100 vertices (see
for instance Kohl et al. [20]). When vehicle routing problems with additional
constraints are solved via column generation and branch-and-price, the pricing
problem requires to find a resource-constrained elementary path of minimum
cost between two given vertices of a weighted graph, with positive costs on the
arcs and non-negative prizes on the vertices. The cost of the path is given by
the sum of the costs of the arcs traversed minus the sum of the prizes collected
at the vertices visited. Exact optimization is needed to find new columns with
negative reduced cost or to prove that none of them exists. For a detailed ex-
position of branch-and-price methods for vehicle routing problems we refer the
reader to Desrosiers et al. [11], Bramel and Simchi-Levi [4] and Cordeau et al.
[6].

If the underlying graph may have negative cost cycles (which is the case when
there are prizes on the vertices), the resource-constrained elementary shortest
path problem (RCESPP) is strongly NP-hard: the proof is due to Dror [13].
The most commonly used technique to solve the RCESPP to optimality is dy-
namic programming, relying upon the seminal work by Desrochers [7] for the
resource-constrained shortest path problem (RCSPP) in which the solution is
not required to be elementary. Other methods, based on Lagrangean relaxation,
were proposed by Handler and Zang [17] and Beasley and Christofides [3] and
were recently examined by Dumitrescu and Boland [14], who devised improved
preprocessing and bounding techniques. However these methods require a graph
free from negative cost cycles, so that the Lagrangean subproblem is a polyno-
mially solvable shortest path problem. The case with negative cost cycles was
considered by Feillet et al. [15], who suggested some improvements to the basic
Desrochers’ algorithm [7]. For a recent survey on models and algorithms for the
RCSPP and the RCESPP we refer the reader to Irnich and Desaulniers [18].

In this paper we consider the problem of computing optimal solutions to the
RCESPP, as in Feillet et al. [15], and we present three different approaches: ex-
act dynamic programming, branch-and-bound based on state space relaxation
and decremental state space relaxation. All of them use dynamic programming
but in different ways: in the first case an exact dynamic programming algo-
rithm computes the optimal solution of the RCESPP; this approach was taken
for instance by Feillet et al. [15] and Righini and Salani [22]. In the second
case a dynamic programming algorithm with state space relaxation is used to
optimize the RCSPP, where cycles are allowed. This gives lower bounds cor-
responding to non-elementary paths and these lower bounds are exploited in
a branch-and-bound framework. The third method, decremental state space
relaxation, is original and includes both exact dynamic programming and state
space relaxation as special cases.
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The performance of exact dynamic programming algorithms for the RCESPP
can be significantly improved through bi-directional search and resource-based
bounding, as shown by Righini and Salani [22]. In this paper we review them and
we show that they can be applied also to dynamic programming with state space
relaxation and decremental state space relaxation. We report on the outcome of
experimental comparisons between these methods when solving RCESPPs with
different kinds of resource constraints. In particular we consider three variations
of the RCESPP arising from three well-known vehicle routing problems with
additional constraints, namely the capacitated vehicle routing problem (CVRP),
the vehicle routing problem with distribution and collection (VRPDC) and the
vehicle routing problem with capacities and time windows (CVRPTW).

The outline of this paper is the following: in Section 2 we formally define
the RCESPP; in Section 3 we review the dynamic programming algorithms for
its exact optimization; in Section 4 we review bounded bi-directional dynamic
programming; in Section 5 we analyze state space relaxation to compute lower
bounds; in Section 6 we present the branch-and-bound algorithm; in Section
7 we introduce decremental state space relaxation; in Section 8 we report on
computational results; in Section 9 we point out some conclusions. The content
of Sections 3 and 4 is a review of concepts already described in [22], which have
been recalled here in order to make this paper self-contained.

2 Problem definition

The RCESPP is defined as follows: a graph G(V,A) is given, where the vertex
set V is made by a set of vertices N representing N customers and two vertices s
and t representing the depot. A non-negative cost cij is associated with each arc
(i, j) ∈ A; arc costs correspond to shortest paths and therefore they satisfy the
triangle inequality. A non-negative prize λi is associated with each vertex i ∈ N ,
a non-negative cost λ0 is associated with the depot. A vehicle must go from s to
t, visiting a subset of the other vertices; no cycles are allowed. The objective is
to minimize the cost, given by the sum of the costs of the arcs traversed minus
the sum of the prizes collected at the vertices visited. In a column generation
framework this corresponds to generate columns of minimum reduced cost for
the linear relaxation of the set covering reformulation of a VRP: λi is the dual
multiplier associated with the covering constraint of vertex i and λ0 is the dual
multiplier asociated with the constraint on the maximum number of available
vehicles.

These definitions of the problem are common to all RCESPP versions arising
from the different routing problems we consider. Additional constraints, that
depend on the kind of vehicle routing problem at hand, are modeled as resource
constraints and they are specified hereafter.

Capacity. In the CVRP a non-negative integer demand di is associated
with each vertex i ∈ N and a positive integer vehicle capacity Q is given. The
sum of the demands of the nodes visited by the same vehicle cannot exceed Q.
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Distribution and collection. In the VRPDC each vertex i has two non-
negative integer quantities pi and di associated with it, representing respectively
the amount of load to be collected and to be delivered at that vertex. Each ve-
hicle has a positive integer capacity Q, it leaves the depot carrying the total
amount of load it must deliver and returns to the depot carrying the total
amount of load it has collected. The capacity cannot be exceeded anywhere
along the path.

Capacity and time windows. In the CVRPTW a non-negative integer
service time θi and a time window [ai, bi], defined by two non-negative integers,
are associated with each vertex i ∈ N and the service at each visited vertex
must start inside its time window. If the vehicle arrives at vertex i before time
ai, it waits until ai. The traveling time from any vertex i to any vertex j is a
non-negative integer datum vij .

We chose these three problems, because they offer a significant mix of differ-
ent characteristics. In the CVRP there is only one resource, whose consumption
depends on the vertices visited. In the VRPDC there are two resources associ-
ated with the vertices visited and they are interacting: the consumption of one of
them also depends on the consumption of the other. In the CVRPTW there are
two resources, one associated with the vertices visited and the other associated
with the arcs traversed. In all cases resources are subject to a global constraint
on their overall consumption along the s-t path, with the exception of the case
with time windows, where a resource (time) is subject to local constraints, one
for each vertex visited.

3 Exact dynamic programming

The starting point for our exposition is the reaching algorithm of Desrochers [7]
for the RCSPP, that is an extension of the well-known shortest path algorithm
of Ford and Bellman (see [2]). The algorithm assigns states to each vertex: each
state associated with vertex i represents a path from s to i. Each state includes
a resource consumption vector R whose component Rr represents the quantity
of resource r used along the corresponding path. Each state has an associated
cost C and the optimal solution corresponds to a minimum cost state associated
with vertex t. The algorithm repeatedly extends each state to generate new
states. The extension of a state corresponds to appending an additional arc
(i, j) to a path from s to i, obtaining a path from s to j. This operation is
repeated until all states have been extended in all feasible ways. This dynamic
programming algorithm, devised for the RCSPP, can be adapted to solve the
RCESPP on graphs with negative cost cycles. To this purpose Beasley and
Christofides [3] proposed to add to the state an additional binary resource for
each vertex i ∈ N ; there is only one unit available for each dummy resource and
it is consumed when the correponding vertex is visited. The consumption of
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the N dummy resources is indicated by a vector S initialized at 0. Note that S
does not keep any information about the order in which the vertices are visited.
Hence in the basic exact dynamic programming algorithm for the RCESPP each
state is represented by a label of the form (S, R,C, i).

When a label (S,R, C, i) associated with vertex i is extended to generate
another feasible label (S′, R′, C ′, j) associated with vertex j, the resource con-
sumption vectors and the cost are updated and the new state is checked for
feasibility, as follows.

Cost. The cost is inizialized at 0 at vertex s and it is updated according to
the formula

C ′ = C − λi/2 + cij − λj/2 (1)

where λi = −λ0 if i = s and λj = −λ0 if j = t.

Dummy resources. The dummy resources vector S is initialized at 0 at
vertex s and the update rule is:

S′k =
{

Sk + 1 k = j
Sk k 6= j

A state (S, R,C, i) corresponds to an elementary path only if Sk ≤ 1 ∀k ∈ N .

According to the different kind of resources considered the extension rules
and the feasibility test on R take different forms.

Capacity. The capacity constraint is modeled by a single resource, rep-
resenting the amount of capacity still available along the path. Let q be the
amount of resource consumed. When a vehicle leaves vertex s all the resource
is available, that is q = 0. Every time a vertex is visited, q is increased by the
demand of that vertex. Hence the extension rule is:

q′ = q + dj (2)

A state (S, q, C, i) is feasible only if q ≤ Q.

Distribution and collection. In this case the capacity constraint is taken
into account by two additional resources, whose consumption is indicated by
π and δ. The first resource at vertex i is the amount of load that the vehicle
can pick-up after visiting i. Its consumption π increases after every pick-up
operation, because when the vehicle visits vertex i, it consumes pi units of this
resource. The second resource at vertex i indicates the amount of load that
the vehicle can deliver after visiting i. This quantity is equal to the difference
between the capacity Q and the maximum amount of load that has been on
board of the vehicle since its departure from s up to i. Initially Q units are
available for the second resource and the available resource decreases each time a
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delivery operation is performed but it may decrease also after pick-up operations:
the maximum amount the vehicle can deliver after visiting i cannot be greater
than the maximum amount it can pick-up after visiting i. Hence both π and δ
are initialized at 0 and the extension rule is:

π′ = π + pj

δ′ = max{δ + dj , π + pj}

A state (S, π, δ, C, i) is feasible only if π ≤ Q and δ ≤ Q. Note that for the
definition of π and δ the latter condition implies the former.

Capacity and time windows. In this case the time elapsed is a consumed
resource, monotonically increasing along the path. To represent the capacity
constraint and the time window constraints, we need two resources, whose con-
sumption is respectively indicated by q and τ : they are the capacity and the
time consumed up to the beginning of service at each vertex. Both of them are
initialized at 0 and the extension rules are:

q′ = q + dj

τ ′ = max{τ + θi + vij , aj}

A state (S, q, τ, C, i) is feasible only if q ≤ Q and τ ≤ bi.

The effectiveness of the dynamic programming algorithm heavily depends on
the number of states generated. Hence it is essential to fathom feasible states
which cannot lead to the optimal solution. To this purpose suitable dominance
tests are always performed when states are extended, so that the algorithm
records only non-dominated states. The dominance test is the following. Let
(S′, R′, C ′, i) and (S′′, R′′, C ′′, i) be the labels of two states associated with ver-
tex i; then (S′, R′, C ′, i) dominates (S′′, R′′, C ′′, i) only if

S′ ≤ S′′

R′ ≤ R′′

C ′ ≤ C ′′

and at least one of the inequalities is strict.
When the consumption of some resource is non-negative and obeys the tri-

angle inequality, the domination rule can be made stronger, as pointed out by
Feillet et al. [15]. The idea is to identify vertices which cannot be visited in any
feasible extension of a given state owing to the limits on the resources. These
vertices are called unreachable. When a vertex is found to be unreacheable from
a given state, the consumption of the corresponding dummy resource in that
state can be set to 1, as if the vertex had already been visited. This allows
the dynamic programming algorithm to identify a larger number of dominated
states and to fathom them, thus reducing the computation time. We incorpo-
rated this method in all the algorithms we considered: the triangle inequality
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is certainly satisfied by the resources whose consumption occurs at the vertices,
such as the RCESPP with capacity and the RCESPP with distribution and
collection. The applicability to the case with time windows, where resource τ
is consumed on the arcs, depends on whether the traveling times satisfy the
triangle inequality or not; to apply the techniques of Feillet et al. to the time
resource, we assumed vij = cij ∀(i, j) ∈ A in our tests.

The order in which the states are extended may be very important for the
effectiveness of the overall algorithm. Here we consider label-correcting algo-
rithms like those of Desrosiers et al. [12] and Feillet et al. [15]. States are
explored according to the vertices they are associated with. All vertices are
cyclically visited and for each vertex the algorithm extends all states that have
not yet been extended. States associated with the same vertex can be sorted
according to a secondary criterion, for instance according to the cost or the
consumption of a certain resource. In the three cases we have considered states
associated with the same vertex are sorted according to the values of q, π and
τ respectively.

Label-setting algorithms have also been proposed (see for instance Desrochers
and Soumis [9]) but they require an hypothesis stronger than resource consump-
tion monotonicity: in particular there must exists a resource whose consumption
is not less than a certain known amount β at each extension. In this case it is
possible to define buckets of size β and to mark as permanent all those labels
for which the resource consumption falls in the range of the first bucket not yet
extended. For a more detailed exposition of label-setting algorithms we refer
the reader to Desrosiers et al. [11].

4 Bounded bi-directional dynamic programming

Bounded bi-directional dynamic programming has been recently introduced by
Righini and Salani [22] to improve the exact dynamic programming algorithm
described above. In bi-directional dynamic programming states are extended
both forward from vertex s to its successors and backward from vertex t to its
predecessors (see for instance Mingozzi et al. [21] for an application of this idea
to a constrained TSP). With each vertex i ∈ V we associate forward states indi-
cated by (Sfw, Rfw, Cfw, i) and backward states indicated by (Sbw, Rbw, Cbw, i).
A path from s to t is detected each time a forward state (Sfw, Rfw, Cfw, i) and a
backward state (Sbw, Rbw, Cbw, j) can be feasibly joined. Hereafter we describe
backward extension rules and feasibility tests for backward states. Dominance
tests on backward states are identical to those for forward states. We also illus-
trate the operation of joining forward and backward states to produce s-t paths
and we review the idea of resource-based bounding.

4.1 Backward extension and feasibility tests

The backward cost Cbw is initialized at 0 at vertex t and whenever a backward
state (Sbw, Rbw, Cbw, j) is extended to a backward state (S

′bw, R
′bw, C

′bw, i) the
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cost is updated according to the formula:

C
′bw = Cbw − λi/2 + cij − λj/2

where λi = −λ0 if i = s and λj = −λ0 if j = t.
The dummy resources vector Sbw is initialized at 0 at vertex t and the

extension rule is:

S′bw
k =

{
Sbw

k + 1 k = j
Sbw

k k 6= j

A backward path is feasible only if Sbw
k ≤ 1 ∀k ∈ N .

Capacity. Resource consumption qbw in a backward state associated with
vertex j represents the overall demand of customers visited from j (included)
to t. The consumption qbw is initialized at 0 at vertex t. When a feasible
backward path is extended along arc (i, j) from a state (Sbw, qbw, Cbw, j) to a
state (S′bw, q′bw, C ′bw, i), the extension rule is:

q′bw = qbw + di (3)

A backward path is feasible only if qbw ≤ Q.

Distribution and collection. Two resources, whose consumption is indi-
cated by πbw and δbw, are associated with each backward state. Their meaning,
initialization and extension rules are symmetrical to those of forward labels: δbw

indicates the amount of load delivered between j and t and πbw indicates the
maximum overall amount of load on board of the vehicle between j and t. When
a backward path is extended along arc (i, j) from a state (Sbw, πbw, δbw, Cbw, j)
to a state (S′bw, π′bw, δ′bw, C ′bw, i), the extension rule is:

π′bw = max{δbw + di, π
bw + pi}

δ′bw = δbw + di

A backward path is feasible only if πbw ≤ Q and δbw ≤ Q (the former condition
implies the latter).

Capacity and time windows. In the case of time windows for the sake of
symmetry it is useful to define forward and backward time windows [afw

i , bfw
i ]

and [abw
i , bbw

i ] as follows:

afw
i = ai

bfw
i = bi

abw
i = ai + θi

bbw
i = bi + θi
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The forward time window represents the range of feasible arrival times at vertex
i, while the backward time window represents the range of feasible departure
times from vertex i. The overall resource availability T is equal to the maximum
feasible arrival time at vertex t that is T = maxi∈N∪{s}{bfw

i + θi + vit}. The
resource consumption τ bw in a backward state associated with vertex j repre-
sents the minimum time which must be consumed since the departure from j
up to the arrival at t. When a feasible backward path is extended along arc
(i, j) from a state (Sbw, qbw, τ bw, Cbw, j) to a state (S′bw, q′bw, τ ′bw, C ′bw, i), the
extension rules are:

q′bw = qbw + di

τ ′bw = max{τ bw + θj + vij , T − bbw
i }

A backward label associated with vertex j is feasible only if qbw ≤ Q and
τ bw ≤ T − abw

j .

4.2 Joining forward and backward states

Forward and backward paths must be joined together to produce complete s-t
paths. When a forward path (Sfw, qfw, Cfw, i) is joined with a backward path
(Sbw, qbw, Cbw, j) the cost of the resulting s-t path is equal to

Cfw − λi/2 + cij − λj/2 + Cbw

The join is subject to certain feasibility conditions on the resources. In particular
the feasibility test on dummy resources S imposes that a same vertex can not
be visited by both paths.

Sfw
k + Sbw

k ≤ 1 ∀k ∈ N

The feasibility test on problem-dependent resources R imposes that for each
resource the consumption in the overall s-t path can not exceed the overall
amount of available resource. Hereafter we define the feasibility tests for each
specific kind of resource constraints considered.

Capacity. The feasibility test on the capacity for joining a forward path
(Sfw, qfw, Cfw, i) with a backward path (Sbw, qbw, Cbw, j) is

qfw + qbw ≤ Q

Distribution and collection. The feasibility conditions to join a forward
path (Sfw, πfw, δfw, Cfw, i) with a backward path (Sbw, πbw, δbw, Cbw, j) are:

πfw + πbw ≤ Q

δfw + δbw ≤ Q

9



Capacity and time windows. The feasibility conditions to join a forward
path (Sfw, qfw, τfw, Cfw, i) with a backward path (Sbw, qbw, τ bw, Cbw, j) are:

qfw + qbw ≤ Q

τfw + θi + vij + θj + τ bw ≤ T

4.3 Resource-based bounding

Since all forward and backward states generated by the bi-directional search
algorithm are tentatively joined, it is crucial to reduce their number as much
as possible. To this purpose we select a critical resource, whose consumption
is monotone along the paths, and we do not extend states in which at least
half of the available amount of that resource has been consumed. This allows
to greatly reduce the number of states generated still guaranteeing that the
optimal solution will be found. Hereafter we describe how we have chosen the
critical resource for each different kind of problem.

Capacity. The critical resource in this case is capacity. Forward and back-
ward states are extended only if their associated resource consumption value,
qfw or qbw respectively, is less than Q/2.

Distribution and collection. In this case there are two resources; we con-
sider as a critical resource the sum of the resource consumptions ρfw = πfw+δfw

for forward states and ρbw = πbw + δbw for backward states and in both direc-
tions we extend only those states for which ρ < Q.

Capacity and time windows. In this last case we consider time as the
critical resource and we extend only forward states for which τfw < T/2 and
backward states for which τ bw < T/2.

The combination of bi-directional search with resource-based bounding al-
lows to solve larger instances (or the same instances in less time) than mono-
directional dynamic programming; detailed experimental results are reported in
[22]. In the next section we show how bi-directional search and resource-based
bounding can be incorporated into dynamic programming algorithms based on
state space relaxation.

We report hereafter the pseudo-code of the bounded bi-directional algorithm.
We use the following symbols: Γfw

i and Γbw
i are the lists of forward and back-

ward states associated with vertex i; ∆+
i and ∆−

i are the sets of successors and
predecessors of vertex i; E is the set of vertices to be examined; Extendfw(l, k)
and Extendbw(l, k) are respectively the forward and backward extension proce-
dures, that extend state l to vertex k; they check the resource constraints and
produce only feasible states; EFF (Γ, l) is the procedure which inserts state l
into set Γ applying the domination rules; Feasible(li, lj) checks the resource
compatibility of forward state li and backward state lj according to problem-
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dependent rules; Save(li, lj) saves the solution obtained joining the two states
li and lj ;

Algorithm 1 RCESPP - Bi-directional dynamic programming
// Initialization //
Γfw

s ← {(0,0, 0, s)}
Γbw

t ← {(0,0, 0, t)}
for all i ∈ V \ {s} do Γfw

i ← ∅
for all i ∈ V \ {t} do Γbw

i ← ∅
E ← {s, t}
// Search //
repeat

// Vertex selection //
Select i ∈ E
// Forward extension //
for all li = (Si, Ri, Ci, i) ∈ Γfw

i do
for all j ∈ ∆+

i such that Si
j = 0 do

lj ← Extendfw(li, j)
Γfw

j ← EFF (Γfw
j , lj)

if Γfw
j has changed then E ← E ∪ {j}

// Backward extension //
for all li = (Si, Ri, Ci, i) ∈ Γbw

i do
for all k ∈ ∆−

i such that Si
k = 0 do

lk ← Extendbw(li, k)
Γbw

k ← EFF (Γbw
k , lk)

if Γbw
k has changed then E ← E ∪ {k}

E ← E \ {i}
until E = ∅
// Join between forward and backward paths //
for all i ∈ V

for all li = (Si, T i, Ci, i) ∈ Γfw
i

for all j ∈ V
for all lj = (Sj , T j , Cj , j) ∈ Γbw

j

if Feasible(li, lj) then Save(li, lj)

5 State space relaxation

State space relaxation was introduced by Christofides et al. [5] in 1981. The
state space S explored by the dynamic programming algorithm is projected onto
a lower dimensional space T so that each state in T retains the minimum cost
among those of its corresponding states in S (assuming the objective function
must be minimized). In this way the number of states to be explored is dras-
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tically reduced; the drawback is that some original state corresponding to an
infeasible solution in S may be projected onto a state corresponding to a fea-
sible solution in T and therefore the search in the relaxed state space does not
guarantee to find an optimal solution but rather a lower bound.

State space relaxation has been used as a method alternative to exact op-
timization of the pricing problem in branch-and-price algorithms for the VRP
with additional constraints (see for instance Desrochers et al. [8]): instead of
the optimal value of the pricing problem, a lower bound is obtained. This al-
lows faster convergence of the column generation algorithm at the expense of
a weaker lower bound. Columns containing cycles must be eliminated through
branching. Here on the contrary we focus on the use of state space relaxation for
the exact optimization of the pricing problem by a branch-and-bound algorithm.

Our state space relaxation consists of mapping each state (S,R, C, i) onto
a new state (σ,R, C, i), where σ =

∑N
k=1 Sk represents the length of the path,

that is the number of vertices visited (excluding s). Since each component of the
resource consumption vector R may take on a finite number of values and σ can
vary between 0 and N , a dynamic programming algorithm based on state space
relaxation must explore only a pseudo-polynomial number of states. From the
viewpoint of complexity and computing time this makes a big difference with
respect to the exact dynamic programming algorithm in which vector S yields
an exponential number of possible states. The surrogate resource consumption
σ is initialized as 0 and it is increased by one unit each time a state is extended.
Since the state does no longer keep information about the set of already visited
vertices, cycles are no longer forbidden; therefore the path is guaranteed to be
feasible with respect to the resource constraints but it is not guaranteed to be
elementary.

In the state space relaxation algorithm the domination rule is modified as
follows: a state (σ′, R′, C ′, i) dominates a state (σ′′, R′′, C ′′, i) only if

σ′ ≤ σ′′

R′ ≤ R′′

C ′ ≤ C ′′

and at least one of the inequalities is strict.
This state space relaxation of the RCESPP into the RCSPP can be tight-

ened by eliminating all cycles of length two. This is easily accomplished by a
duplication of the labels (see for instance Desrochers et al. [8]). Irnich and
Villeneuve [19] proposed a method to eliminate cycles of length k ≥ 3, but the
computational complexity of their method dramatically increases with k. Hence
we incorporated in our algorithms the technique to avoid cycles of length two.

The definitions above apply to both forward and backward states when bi-
directional search is employed. In such case σfw and σbw represent respectively
the number of forward extensions from s and the number of backward extensions
from t. We bound bi-directional search in the same way described above, that
is on the basis of the value of a critical resource.

When bounded bi-directional search is coupled with state space relaxation
the join of forward and backward paths becomes critical: both the forward path
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and the backward path to be joined may contain cycles; moreover a cycle can
be produced by the join, even if the two paths are elementary. These two cases
are illustrated in figure 1. In addition there may be many different ways to join
forward and backward paths providing the same solution. The former issue is
addressed in the next section, where branching strategies are illustrated; the
latter is addressed hereafter.

gs g gi gj g gt

g g g g

- - - - -

¾ ¾

¢
¢¢̧A

AAU ¢
¢¢̧A

AAU gs g g- -

gj gi¾

¢
¢¢̧A

AAUg g gt- -

Figure 1: On the left: an s-t path made of non-elementary paths s-i and j-t.
On the right: a non-elementary s-t path made of elementary paths s-i and j-t.

5.1 Paths join and solutions uniqueness

The bounded bi-directional dynamic programming algorithm can provide du-
plicate solutions: consider for instance an s-t path including vertices i, j and k
in this order. If the constraint on the critical resource is not tight, it is possi-
ble that forward states for vertices i and j and backward states for vertices j
and k are generated. Therefore the same s-t path can be obtained by joining a
forward state of i with a backward state of j as well as joining a forward state
of j with a backward state of k. This unpleasant phenomenon can be avoided
with an additional test: we accept an s-t path only when it is produced by
the join of a forward state and a backward state, for which the forward and
backward consumptions of the critical resource are as close as possible to half
the overall consumption for that s-t path, that is the two states are as close as
possible to the “half way point” along the s-t path. Let rfw and rbw be the crit-
ical resource consumptions in forward and backward paths. Among all possible
pairs of forward and backward states producing the same s-t path we choose
the one for which φ = |rfw − rbw| is minimum. The test is done in constant
time for each candidate pair of states, since the position closest to the “half-way
point” is detected by direct comparison with the next position along the path
if rfw < rbw and with the previous position if rfw > rbw. In case of tie between
two positions for which φ is minimum, we choose the one with rfw > rbw. This
test guarantees that each s-t path is generated only once.

We report hereafter the pseudo-code of the state space relaxation algorithm
where the terminology used is the same as before. In the joining step the
procedure HalfWay(li, lj) checks if the s-t path obtainable joining the two
states li and lj satisfies the “half-way-point” conditions.
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Algorithm 2 RCSPP - Bi-directional state space relaxation
// Initialization //
Γfw

s ← {(0,0, 0, s)}
Γbw

t ← {(0,0, 0, t)}
for all i ∈ V \ {s} do Γfw

i ← ∅
for all i ∈ V \ {t} do Γbw

i ← ∅
E ← {s, t}
// Search //
repeat

// Vertex selection //
Select i ∈ E
// Forward extension //
for all li = (σi, Ri, Ci, i) ∈ Γfw

i do
for all j ∈ ∆+

i do
lj ← Extendfw(li, j)
Γfw

j ← EFF (Γfw
j , lj)

if Γfw
j has changed then E ← E ∪ {j}

// Backward extension //
for all li = (σi, Ri, Ci, i) ∈ Γbw

i do
for all k ∈ ∆−

i do
lk ← Extendbw(li, k)
Γbw

k ← EFF (Γbw
k , lk)

if Γbw
k has changed then E ← E ∪ {k}

E ← E \ {i}
until E = ∅
// Join between forward and backward paths //
for all i ∈ V

for all li = (σi, T i, Ci, i) ∈ Γfw
i

for all j ∈ V
for all lj = (σj , T j , Cj , j) ∈ Γbw

j

if Feasible(li, lj) and HalfWay(li, lj)
then Save(li, lj)

6 Branch-and-bound

In this section we describe a branch-and-bound algorithm which solves the RCE-
SPP to optimality, exploiting the RCSPP lower bound given by the bounded
bi-directional dynamic programming algorithm with state space relaxation. In
Subsection 6.1 we describe the branching policies needed to eliminate cycles:
every time the optimal solution of the RCSPP is not elementary, the current
node of the search tree is replaced by children nodes in which some additional
constraints are added to the RCSPP.
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Search policy. The search policy we use to explore the branch-and-bound
tree is best-first, that is the open nodes of the tree are ranked according to the
value of their associated lower bound and the most promising node is explored
first.

Upper bounding. At each node of the branch-and-bound tree and at each
iteration of the column generation algorithm a feasible solution is computed
with a nearest neighbor heuristic. Starting from the depot s the most convenient
vertex among the feasible ones is chosen until the path reaches t. For a vertex to
be feasible we check that no resource constraint is exceeded and the vertex have
not been visited yet. At each vertex i the algorithm chooses the next feasible
vertex j such that j = argmink{cik − λk}.

6.1 Branching strategies

We present three different ways to perform branching, namely branching on cy-
cles, branching on arcs and branching on resources. Our algorithm uses hybrid
branching strategies in which all these techniques are exploited.

Branching on cycles. First we determine the minimum length cycle in the
optimal RCSPP solution. Then k children nodes are generated, where k is the
length of the cycle, that is the number of arcs traversed between two visits to
the same vertex: at child node h = 0, . . . , k−1 we fix the first h arcs of the cycle
and we forbid the h + 1-th arc. We experimentally observed that, forbidding
cycles of length 2, k was very often equal to 3.

Branching on arcs. This binary branching scheme consists of selecting a
vertex entered or left by more than one arc in the RCSPP solution. Let (i1, j)
and (i2, j) be two arcs entering vertex j in the RCSPP solution. Then we parti-
tion the arcs entering j into two subsets I1 and I2 such that i1 ∈ I1 and i2 ∈ I2

and we forbid all arcs in I1 in one child node and all arcs in I2 in the other.

Branching on resources. When the optimal solution of the RCSPP has
a cycle, there exists at least one vertex ı̂ that is visited more than once. The
branching strategy consists of adding a constraint on the quantity of critical re-
source consumed up to the visit of vertex ı̂. This idea was proposed by Gélinas
et al. [16] for routing problems with time windows and it can be adapted to any
problem with a critical resource whose consumption r is strictly monotone along
the path. Given a branching vertex ı̂, let r′ and r′′ the two values of resource
consumption in two states associated with ı̂ with r′ < r′′. Then an integer value
r̄ is chosen such that r′ < r̄ ≤ r′′. Two children nodes are generated imposing
that the value of r at vertex ı̂ satisfies r ≥ r in one child node and r ≤ r − 1 in
the other.

It is remarkable that the dynamic programming algorithm that computes
the lower bound can easily take into account the constraints imposed by all
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branching techniques. In particular when arc (i, j) is forbidden, it is simply
deleted from the graph. The consequence of branching on the critical resource
is that each vertex has an associated window [ar, br] of feasible values for the
critical resource; when a path reaches that vertex with a critical resource con-
sumption less than ar, the consumption is set to ar; when it reaches the vertex
with a critical resource consumption greater than br, it is declared infeasible
and it is discarded. This rule can be applied to both forward and backward
states, with different resource windows for constraining forward and backward
consumptions.

Hybrid branching. We obtained the best results when we employed hybrid
branching strategies in our branch-and-bound algorithm. If either the forward
path or the backward path forming the optimal RCSPP solution contain a cycle,
we branch on the critical resource: we choose for branching the first vertex
visited more than once which is encountered moving along the forward (resp.
backward) path from s to t (resp. from t to s); we consider r′ and r′′ as the
resource consumptions at the first (resp. last) two visits of the branching vertex
and we choose r̄ = d r′+r′′

2 e. If the forward and the backward paths are both
elementary but a cycle is generated by their join, we branch on arcs or cycles.
When we branch on arcs, the branching vertex is the first vertex visited more
than once which is encountered when moving along the path from the half way
point forward.

We could not observe a clear domination between the hybrid branching
strategies on resource/arcs and resource/cycles. In Section 8 we report on com-
putational results obtained with each of them.

7 Decremental state space relaxation

The exact dynamic programming algorithm forbids multiple visits for each ver-
tex, while the algorithm with state space relaxation does not. We pursued a
compromise between these two extreme cases by the following idea: some ver-
tices are identified as critical, according to the structure of the optimal RCSPP
solution obtained with state space relaxation. Let Θ indicate the set of criti-
cal vertices at the current iteration. In the subsequent iteration the dynamic
programming algorithm prevents multiple visits the vertices in Θ, still allowing
multiple visits to the others. This is easily accomplished by extending the state
space relaxation labels with a binary vector SΘ playing the same role as S in
exact dynamic programming. The size of SΘ is however restricted only to the
critical vertices. When SΘ contains all the vertices the algorithm is equivalent
to exact dynamic programming; when SΘ is empty it is equivalent to the al-
gorithm with state space relaxation. Therefore we indicate this algorithm by
decremental state space relaxation (DSSR). The algorithm is run iteratively:
every time it produces an optimal solution with cycles, the vertices visited more
than once are marked as critical and the algorithm restarts. Let Ψ the set of
vertices visited more than once in the optimal solution computed by the DSSR
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algorithm. If Ψ is not empty, then another iteration is performed with a set
of critical vertices equal to Θ′ = Θ ∪ Ψ. Hence the set of critical vertices is
enlarged at each iteration and eventually the algorithm provides the optimal
solution to the RCESPP without having recourse to branching. We report
hereafter the pseudo-code of the decremental state space relaxation algorithm.
where SΘ is the vector of dummy resources associated to the critical vertices;
procedure MultipleV isits returns the set Ψ of vertices visited more than once
in the current optimal path.

8 Experimental results

For our experiments we used the same instances as in Feillet et al. [15] and Righ-
ini and Salani [22]; they are derived from the well-known Solomon’s VRPTW
benchmark. For each kind of RCESPP problem we tested our algorithms on
two classes of instances obtained from Solomon’s instances by considering the
first 50 and 100 nodes. These datasets are divided into random, clustered and
random-clustered categories, according to the displacement of the customers.
Instances belonging to the same dataset have the customers located in the same
way and with the same delivery requests; these instances differ only for the time
windows.

When solving the RCESPP with capacities we considered one instance taken
from each one of the three Solomon’s testsets (namely c101, r101 and rc101);
we kept the original customer locations and delivery requests and we neglected
the time windows. Then we derived from each original instance ten RCESPP
instances with 50 nodes and ten RCESPP instances with 100 nodes, by choosing
ten different values for the vehicle capacity from 10 to 100.

For the RCESPP with distribution and collection we kept the original de-
livery requests and we derived the pickup requests as follows: pi = b0.8dic if i
is odd and pi = b1.2dic if i is even. We generated ten instances with 50 nodes
and ten instances with 100 nodes as before.

Finally, for the RCESPP with capacities and time windows we considered
the original instances of Solomon’s dataset. In addition we also defined another
dataset built on the difficult Solomon’s instance c 104; for each vertex i we kept
the original starting time of the time window, ai, and we set the end time as
follows: bi = ai + (1 + γ)θi for γ = 0.25 ∗ k and k = 0, . . . , 24, where θi is the
given service time at vertex i.

For each set of instances we generated the prizes λi as random integer vari-
ables uniformly distributed in [0, . . . , 20]; we set λ0 = 0. This data generation
technique was devised by Feillet et al. [15] to have a reasonable number of neg-
ative cycles. We rounded up all the Euclidean distances between customers to
integer values.

All tests were performed on a PC equipped with a PentiumIV 1.6GHz proces-
sor with 512Mb RAM. The algorithms were coded in ANSI-C and compiled with
gcc 3.0.4.
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Algorithm 3 RCESPP - Decremental state space relaxation
// Initialization //
Ψ ← ∅
Θ ← ∅
repeat

Θ ← Θ ∪Ψ
Γfw

s ← {(0,0, 0, s)}
Γbw

t ← {(0,0, 0, t)}
for all i ∈ V \ {s} do Γfw

i ← ∅
for all i ∈ V \ {t} do Γbw

i ← ∅
E ← {s, t}
// Search //
repeat

// Vertex selection //
Select i ∈ E
// Forward extension //
for all li = (Si

Θ, Ri, Ci, i) ∈ Γfw
i do

for all j ∈ ∆+
i such that j /∈ Θ or Si

j = 0 do
lj ← Extendfw(li, j)
Γfw

j ← EFF (Γfw
j , lj)

if Γfw
j has changed then E ← E ∪ {j}

// Backward extension //
for all li = (Si

Θ, Ri, Ci, i) ∈ Γbw
i do

for all k ∈ ∆−
i such that k /∈ Θ or Si

k = 0 do
lk ← Extendbw(li, k)
Γbw

k ← EFF (Γbw
k , lk)

if Γbw
k has changed then E ← E ∪ {k}

E ← E \ {i}
until E = ∅
// Join between forward and backward paths //
for all i ∈ V

for all li = (Si, T i, Ci, i) ∈ Γfw
i

for all j ∈ V
for all lj = (Sj , T j , Cj , j) ∈ Γbw

j

if Feasible(li, lj) and HalfWay(li, lj)
then Save(li, lj)

// Search for vertices visited more than once //
Ψ ← MultipleV isits()

until Ψ = ∅

Tables 1 to 8 report on the experimental comparison between the bi-directional
dynamic programming algorithm with bounds [22] (which improves on the re-
sults reported in [15]), the state space relaxation algorithm coupled with branch-
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and-bound and the decremental state space relaxation algorithm. For the bi-
directional dynamic programming algorithm with bounds, named Exact D.P. in
the tables, we report the total number of non-dominated labels and the comput-
ing time. For the branch-and-bound algorithm based on state space relaxation
we report the total number of nodes of the search tree, the computing time
and the percentage gap between the upper and the lower bounds; the reported
results have been obtained with hybrid arcs/resources branching and hybrid
cycles/resources branching. For the DSSR algorithm, we report the number
of iterations (It), that is the number of times the bi-directional dynamic pro-
gramming algorithm has been invoked, the number of critical nodes in the last
iteration (CN) and the computing time. Empty cells mean that the optimal
solution has not been found within the time limit of one hour.

Capacities. Results reported in Tables 1 and 2 show that for 50 ver-
tices instances the DSSR algorithm clearly outperforms all other algorithms
on all classes of instances except for the rc-class, where exact bi-directional and
bounded dynamic programming is quite fast. However these are very easy in-
stances for all algorithms considered: the computing times are all below one
second. The branch-and-bound algorithms sometimes dominate exact dynamic
programming but they also fail to terminate within a reasonable computing
time or even within the time-out in some cases. For 100 vertices instances the
exponential growth of the computing time required by exact dynamic program-
ming becomes evident. DSSR dramatically reduces the computing time up to
two orders of magnitude. The branch-and-bound algorithms have performances
similar to those of exact dynamic programming and there is no clear domination
between the two hybrid branching strategies.

Distribution and collection. When solving the RCESPP with distribu-
tion and collection we obtained results similar to those above: they are reported
in Tables 3 and 4. The DSSR algorithm solved all instances in less than 340
seconds ouperforming the other algorithms and reducing the computing time by
two orders of magnitude. The branch-and-bound is useful only for 100 vertices
instances and the results are better for the hybrid branching on cycles and re-
sources.

Capacities and time windows. All Solomon’s instances with 50 and 100
nodes were solved by the DSSR algorithm. It should be pointed out that the
most difficult instance, the c 104, has been solved within 350 seconds. For the
other original Solomon’s instances the branch-and-bound algorithms are not
competitive, owing to the tightness and the displacement of the time windows,
that often allow exact dynamic programming to go faster because the number
of feasible solutions is relatively small.

Tightness of the constraints. The last two tables, 7 and 8, show that
the difficulty of a RCESPP instance does not depend only on its size but it
is strongly affected by the tightness of the constraints. When time windows
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become larger and larger, the number of non-dominated states increases and
so does the computing time. The growth in the number of states and comput-
ing time is due to the local nature of the time windows constraints. In these
experiments the superiority of algorithms based on state space relaxation is ev-
ident. Both branch-and-bound algorithms and the DSSR algorithm solved all
instances in a few seconds, whereas exact dynamic programming showed a dra-
matic exponential growth in computing time. When constraints are very tight,
DSSR and branch-and-bound have comparable computational performances.

In spite of its simplicity the idea of decremental state space relaxation is quite
effective in practice: the number of critical nodes we could observe was never
greater than 15. We remark that our current implementation of the DSSR al-
gorithm does not exploit reoptimization: information computed in the previous
run could be used to speed-up successive runs. In this way the computational
performances of the algorithm could be further improved.

Last but not least, the implementation of DSSR is by far easier than that of
branch-and-bound.

9 Conclusions

We have presented and compared three different methods for the solution of
the RCESPP. The first method is exact dynamic programming: though be-
ing a well-known method that has been used for nearly two decades, since the
seminal work of Desrosiers et al. [12], it can be improved by new ideas, such
as bi-directional search with resource-based bounding. The second method is
branch-and-bound, where the lower bound is computed by dynamic program-
ming with state space relaxation. We have outlined how bounded bi-directional
search can be combined with state space relaxation and we have presented dif-
ferent branching strategies and their hybridization, pointing out that the lower
bounding algorithm can easily handle the additional restrictions introduced by
branching operations at each node of the branch-and-bound tree. The third
method is a new one: decremental state space relaxation. Both exact dynamic
programming and state space relaxation are special cases of this new method.

The experimental comparison of the three methods is definitely favourable to
decremental state space relaxation, while no clear dominance has been observed
between the other methods and not even between different hybrid branching
strategies within the branch-and-bound framework. Exact dynamic program-
ming is less robust to the constraints tightness: when the number of non-
dominated states grows, the computing time tends to explode very quickly.

Further improvements to the basic DSSR algorithm presented here are pos-
sible in at least two directions: first by incorporating re-optimization techniques
like those of Desrochers and Soumis [10], so that each iteration of the algorithm
does not restart from scratch but can re-use part of the information coming from
the previous iteration; second, by guessing a clever initial subset Θ of critical
nodes, instead of starting with Θ = ∅.
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The main motivation of this study is that the RCESPP arises as a pricing
subproblem in branch-and-price algorithms for the vehicle routing problem with
additional constraints. A natural extension of this research is the comparison
between solving the pricing problem to optimality and solving it with state
space relaxation or other methods for relaxed pricing. The strategy of solving a
relaxation of the pricing subproblem was adopted for instance by Agarwal et al.
[1] for solving the CVRP and by Desrochers et al. [8] for solving the VRPTW,
while recently Feillet et al. [15] suggested the use of exact pricing for solving
the CVRPTW, by proving that tighter lower bounds (and sometimes integer
optimal solutions) can be achieved at the root node by column generation with
no dramatic increase in computing time. Hence the trade-off between saving
computing time and improving the lower bound tightness definitely deserves
further investigation and it will be subject of future research. Preliminary ex-
periments on the CVRPTW show that a column generation algorithm in which
exact pricing is done via DSSR gives the same lower bounds of Feillet et al.
at the root node in only a fraction of the time, in particular for Solomon’s in-
stances of classes “c” and “rc”. Although we cannot claim that the comparison
analyzed in this paper can be directly transferred to the choice between exact
pricing and relaxed pricing, we conjecture that the experiments reported here
can give useful suggestions about the trade-off between the quality of the lower
bound and the computing time required to compute it, depending on the kind
of resource constraints and their tightness.
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Table 1: RCESPP with capacity - 50 vertices

Instance Exact D.P. B&B Res+Arcs B&B Res+Cycles DSSR
Name Labels Time Nodes Time (%) Nodes Time (%) It CN Time

c 50 01 56 0.00 1 0.00 - 1 0.00 - 1 0 0.00
c 50 02 268 0.00 1 0.00 - 1 0.00 - 1 0 0.00
c 50 03 692 0.00 7 0.01 - 1 0.02 - 1 0 0.00
c 50 04 2574 0.03 19 0.08 - 10 0.05 - 3 2 0.02
c 50 05 4692 0.07 11 0.05 - 22 0.09 - 2 2 0.01
c 50 06 15236 0.91 87 0.48 - 116 0.91 - 3 3 0.04
c 50 07 23394 1.75 35 0.24 - 52 0.33 - 2 3 0.02
c 50 08 75026 20.35 315 3.19 - 124 1.81 - 5 7 0.25
c 50 09 101128 33.24 673 5.80 - 224 1.78 - 4 8 0.18
c 50 10 331402 394.97 3919 44.56 - 3039 53.34 - 5 10 1.82
r 50 01 62 0.00 1 0.00 - 1 0.00 - 1 0 0.00
r 50 02 210 0.01 1 0.01 - 1 0.00 - 1 0 0.00
r 50 03 525 0.01 7 0.04 - 1 0.00 - 3 3 0.02
r 50 04 1250 0.02 7 0.06 - 1 0.00 - 2 3 0.02
r 50 05 2418 0.05 591 6.64 - 7 0.09 - 6 7 0.17
r 50 06 4570 0.11 271 4.49 - 83 1.18 - 4 6 0.12
r 50 07 7874 0.24 6009 90.34 - 122 1.12 - 2 4 0.06
r 50 08 13590 0.60 3149 38.75 - 95 0.98 - 5 11 0.48
r 50 09 22800 1.49 191 6.12 - 17 0.53 - 4 9 0.40
r 50 10 36838 3.87 59 1.16 - 7 0.26 - 3 8 0.34

rc 50 01 44 0.00 1 0.00 - 1 0.00 - 1 0 0.00
rc 50 02 124 0.00 1 0.00 - 1 0.00 - 1 0 0.00
rc 50 03 268 0.00 11 0.02 - 1 0.01 - 4 3 0.00
rc 50 04 560 0.01 725 1.58 - 73 0.17 - 5 4 0.02
rc 50 05 800 0.01 1573 4.21 - 173 0.42 - 4 4 0.02
rc 50 06 1551 0.03 73573 562.40 - 1774 8.29 - 7 8 0.09
rc 50 07 1774 0.04 3417 19.66 - 84 0.50 - 4 7 0.05
rc 50 08 3217 0.08 239467 - 6.25 10505 49.19 - 7 11 0.20
rc 50 09 3322 0.09 29021 348.97 - 960 7.68 - 6 11 0.20
rc 50 10 5864 0.19 254931 - 2.0 16679 156.19 - 6 11 0.27
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Table 2: RCESPP with capacity - 100 vertices

Instance Exact D.P. B&B Res+Arcs B&B Res+Cycles DSSR
Name Labels Time Nodes Time (%) Nodes Time (%) It CN Time

c 100 01 106 0.00 1 0.00 - 1 0.00 - 1 0 0.00
c 100 02 559 0.01 1 0.01 - 1 0.01 - 1 0 0.00
c 100 03 1456 0.03 7 0.04 - 1 0.02 - 2 1 0.03
c 100 04 5900 0.19 19 0.26 - 10 0.15 - 3 2 0.06
c 100 05 11546 0.44 43 0.36 - 22 0.31 - 3 4 0.07
c 100 06 45138 6.60 193 5.19 - 699 16.31 - 4 5 0.21
c 100 07 75698 13.78 65 1.84 - 99 2.65 - 3 6 0.18
c 100 08 310651 276.88 1275 77.50 - 517 30.53 - 6 10 1.34
c 100 09 4799333 520.82 8125 326.11 - 862 32.71 - 6 14 2.02
c 100 10 - - 11465 627.08 - 12076 910.73 - 6 13 7.68
r 100 01 266 0.00 15 0.04 - 10 0.04 - 3 3 0.02
r 100 02 2120 0.06 459 3.61 - 225 1.45 - 2 4 0.06
r 100 03 11866 0.70 5337 126.87 - 776 15.03 - 4 5 0.59
r 100 04 53668 8.37 7639 306.49 - 1819 69.68 - 4 7 2.80
r 100 05 215976 104.41 81677 - 7.3 4464 198.93 - 3 5 2.87
r 100 06 764476 1300.33 51755 - 9.5 13209 1282.61 - 4 8 34.64
r 100 07 - - 31121 - 11.2 29182 - 1.1 5 10 143.63
r 100 08 - - 12548 - 25.4 18741 - 6.3 5 11 281.62
r 100 09 - - 6912 - 51.1 12549 - 18.9 3 10 303.34
r 100 10 - - 2551 - 67.4 6118 - 43.2 3 10 319.68

rc 100 01 90 0.00 1 0.00 - 1 0.00 - 1 0 0.00
rc 100 02 636 0.01 1 0.01 - 1 0.00 - 1 0 0.00
rc 100 03 1732 0.04 31 0.33 - 10 0.13 - 1 0 0.00
rc 100 04 5706 0.23 7 0.20 - 10 0.27 - 2 1 0.07
rc 100 05 12561 0.69 1669 71.45 - 64 2.35 - 4 4 0.29
rc 100 06 29786 2.80 71 2.52 - 60 3.01 - 3 4 0.35
rc 100 07 60499 9.74 4403 376.85 - 752 59.22 - 4 5 0.92
rc 100 08 124752 37.46 5735 353.00 - 254 25.00 - 4 7 1.77
rc 100 09 237652 130.20 739 109.08 - 391 28.76 - 3 5 1.40
rc 100 10 459269 470.24 25055 - 3.7 7385 1191.96 - 5 10 7.33
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Table 3: RCESPP with distribution and collection - 50 vertices

Instance Exact D.P. B&B Res+Arcs B&B Res+Cycles DSSR
Name Labels Time Nodes Time (%) Nodes Time (%) It CN Time

c 50 01 26 0.00 1 0.00 - 1 0.00 - 1 0 0.00
c 50 02 159 0.00 1 0.00 - 1 0.00 - 1 0 0.00
c 50 03 554 0.01 1 0.02 - 1 0.01 - 2 1 0.00
c 50 04 1751 0.02 7 0.02 - 10 0.04 - 2 1 0.01
c 50 05 4675 0.07 15 0.07 - 22 0.10 - 2 2 0.02
c 50 06 11311 0.41 27 0.17 - 122 0.94 - 3 3 0.05
c 50 07 24006 1.72 17 0.16 - 53 0.48 - 2 3 0.03
c 50 08 51401 7.95 83 0.90 - 91 1.44 - 5 7 0.47
c 50 09 110354 35.46 69 0.88 - 207 2.47 - 3 5 0.19
c 50 10 233478 165.21 119 3.56 - 129 3.66 - 5 10 2.20
r 50 01 59 0.00 1 0.00 - 1 0.00 - 1 0 0.00
r 50 02 188 0.00 5 0.02 - 7 0.02 - 2 1 0.01
r 50 03 486 0.01 1 0.01 - 1 0.01 - 3 3 0.01
r 50 04 1113 0.02 1 0.03 - 1 0.03 - 2 3 0.02
r 50 05 2085 0.04 11 0.14 - 7 0.08 - 5 6 0.13
r 50 06 3882 0.10 17 0.28 - 45 0.62 - 3 5 0.07
r 50 07 6986 0.23 3 0.07 - 3 0.08 - 2 4 0.06
r 50 08 12138 0.51 71 0.97 - 122 1.13 - 4 7 0.19
r 50 09 20384 1.23 13 0.42 - 19 0.59 - 3 7 0.21
r 50 10 33107 3.15 5 0.21 - 5 0.21 - 3 7 0.25

rc 50 01 24 0.00 1 0.00 - 1 0.00 - 1 0 0.00
rc 50 02 83 0.00 1 0.00 - 1 0.00 - 1 0 0.01
rc 50 03 199 0.01 1 0.01 - 1 0.01 - 3 2 0.01
rc 50 04 397 0.01 55 0.12 - 73 0.14 - 5 4 0.02
rc 50 05 764 0.02 171 0.51 - 114 0.28 - 4 5 0.03
rc 50 06 1108 0.02 3321 19.86 - 1156 5.01 - 6 7 0.09
rc 50 07 1817 0.03 397 3.00 - 233 1.40 - 6 7 0.09
rc 50 08 2546 0.05 595 6.41 - 405 4.07 - 4 7 0.05
rc 50 09 3435 0.10 4363 63.94 - 666 8.13 - 7 9 0.22
rc 50 10 4998 0.15 12045 210.69 - 6551 79.95 - 6 11 0.24

26



Table 4: RCESPP with distribution and collection - 100 vertices

Instance Exact D.P. B&B Res+Arcs B&B Res+Cycles DSSR
Name Labels Time Nodes Time (%) Nodes Time (%) It CN Time

c 100 01 48 0.00 1 0.00 - 1 0.00 - 1 0 0.00
c 100 02 328 0.00 1 0.00 - 1 0.00 - 1 0 0.02
c 100 03 1179 0.02 1 0.00 - 1 0.00 - 2 1 0.02
c 100 04 3829 0.08 7 0.10 - 10 0.13 - 3 2 0.06
c 100 05 11112 0.41 15 0.26 - 22 0.40 - 3 4 0.10
c 100 06 30823 2.62 15 0.54 - 597 17.26 - 4 5 0.25
c 100 07 76548 12.72 35 1.24 - 101 3.67 - 3 6 0.27
c 100 08 197386 87.88 175 6.56 - 192 12.57 - 6 10 2.17
c 100 09 509042 516.42 239 15.83 - 884 58.01 - 5 11 2.34
c 100 10 - - 737 89.37 - 952 11.27 - 7 15 20.64
r 100 01 253 0.00 1 0.00 - 1 0.00 - 1 0 0.00
r 100 02 1948 0.06 801 7.47 - 222 1.52 - 2 4 0.06
r 100 03 10874 0.68 7275 186.84 - 831 16.90 - 4 5 0.64
r 100 04 49258 7.34 15297 790.61 - 1814 69.59 - 3 5 1.34
r 100 05 189041 84.00 40991 3503.40 - 5242 357.35 - 3 5 3.71
r 100 06 676338 1040.25 42932 - 5.0 14627 1074.52 - 4 8 39.63
r 100 07 - - 36124 - 8.9 24782 - 1.4 5 10 180.41
r 100 08 - - 19733 - 22.3 30764 - 12.5 4 10 217.66
r 100 09 - - 8153 - 45.5 11489 - 22.0 3 10 337.47
r 100 10 - - 3559 - 62.8 4025 - 61.0 3 10 337.43

rc 100 01 67 0.00 1 0.00 - 1 0.00 - 1 0 0.00
rc 100 02 501 0.01 1 0.00 - 1 0.00 - 1 0 0.00
rc 100 03 1422 0.04 7 0.10 - 10 0.13 - 2 1 0.03
rc 100 04 4540 0.17 7 0.19 - 10 0.26 - 2 1 0.07
rc 100 05 10790 0.55 27 1.16 - 61 2.25 - 4 4 0.30
rc 100 06 25657 2.29 23 1.18 - 54 2.98 - 3 4 0.33
rc 100 07 52378 7.73 801 74.78 - 736 58.96 - 4 5 0.97
rc 100 08 107414 28.62 361 44.60 - 242 24.13 - 3 5 1.11
rc 100 09 207049 99.56 235 23.30 - 389 29.55 - 3 5 1.55
rc 100 10 - - 5671 971.28 - 7162 1207.45 - 4 8 6.11
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Table 5: RCESPP with capacity and time windows - 50 vertices

Instance Exact D.P. B&B Res+Arcs B&B Res+Cycles DSSR
Name Labels Time Nodes Time (%) Nodes Time (%) It CN Time

c101 50 323 0.01 1 0.00 - 1 0.00 - 1 0 0.00
c102 50 3026 0.14 15 0.19 - 12 0.19 - 2 2 0.12
c103 50 30736 10.25 2533 127.32 - 966 27.74 - 4 6 14.06
c104 50 - - 35781 - 1.2 24785 1835.47 - 4 11 344.65
c105 50 435 0.02 1 0.02 - 1 0.02 - 1 0 0.01
c106 50 359 0.01 1 0.03 - 1 0.03 - 1 0 0.02
c107 50 504 0.02 1 0.04 - 1 0.04 - 1 0 0.02
c108 50 736 0.04 1 0.04 - 1 0.04 - 1 0 0.04
c109 50 2031 0.15 81 1.90 - 78 1.69 - 8 11 1.35
r101 50 121 0.00 1 0.00 - 1 0.00 - 1 0 0.00
r102 50 596 0.02 5 0.05 - 4 0.04 - 4 5 0.08
r103 50 2322 0.06 817 9.83 - 103 1.07 - 3 4 0.27
r104 50 15441 0.66 83 2.46 - 264 7.08 - 3 5 0.77
r105 50 238 0.01 1 0.01 - 1 0.01 - 1 0 0.0
r106 50 818 0.02 13 0.14 - 9 0.08 - 4 6 0.18
r107 50 2784 0.08 15435 248.92 - 268 3.10 - 4 5 0.47
r108 50 16457 0.75 5 0.15 - 5 0.15 - 2 4 0.48
r109 50 584 0.02 1 0.02 - 1 0.02 - 1 0 0.02
r110 50 1600 0.04 1 0.04 - 1 0.04 - 1 0 0.04
r111 50 2289 0.07 43 0.73 - 46 0.66 - 3 5 0.33
r112 50 3987 0.12 1 0.05 - 1 0.05 - 1 0 0.05

rc101 50 270 0.00 1 0.00 - 1 0.00 - 1 0 0.01
rc102 50 906 0.01 17 0.13 - 17 0.13 - 3 3 0.09
rc103 50 3509 0.07 112 3.45 - 6168 90.88 - 5 11 0.95
rc104 50 8801 0.28 258 7.65 - 312 8.31 - 7 15 4.77
rc105 50 937 0.01 63 0.48 - 60 0.32 - 3 4 0.11
rc106 50 889 0.01 71 0.52 - 676 4.64 - 4 7 0.16
rc107 50 3525 0.07 29567 653.53 - 13452 195.907 - 6 9 0.83
rc108 50 10166 0.21 34205 1143.65 - 58476 1474.19 - 6 13 2.12
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Table 6: RCESPP with capacity and time windows - 100 vertices

Instance Exact D.P. B&B Res+Arcs B&B Res+Cycles DSSR
Name Labels Time Nodes Time (%) Nodes Time (%) It CN Time

c101 100 679 0.06 1 0.02 - 1 0.02 - 1 0 0.02
c102 100 11839 2.99 15 0.89 - 12 0.67 - 2 2 0.63
c103 100 123804 133.56 2539 507.78 - 3075 485.68 - 5 9 40.15
c104 100 - - 17553 - 17.8 23402 - 16.5 4 11 311.44
c105 100 915 0.11 1 0.06 - 1 0.06 - 1 0 0.06
c106 100 1159 0.16 1 0.07 - 1 0.07 - 1 0 0.07
c107 100 1058 0.16 1 0.08 - 1 0.08 - 1 0 0.08
c108 100 1690 0.33 1 0.17 - 1 0.17 - 1 0 0.17
c109 100 4608 1.28 111 14.18 - 101 12.66 - 8 13 9.19
r101 100 452 0.01 1 0.00 - 1 0.00 - 1 0 0.00
r102 100 14792 2.21 4203 438.82 - 1003 96.25 - 3 6 21.69
r103 100 135575 95.73 377 128.71 - 252 61.10 - 4 7 159.74
r104 100 655858 1242.56 4531 - 0.9 1945 1013.04 - 3 5 78.32
r105 100 1161 0.06 1 0.03 - 1 0.03 - 1 0 0.03
r106 100 22970 5.52 26059 - 3.4 3344 467.29 - 4 7 71.60
r107 100 138027 100.83 1417 717.37 - 732 232.91 - 4 12 335.98
r108 100 570910 891.81 1593 1098.05 - 1451 611.61 - 3 5 146.58
r109 100 3504 0.37 49 3.39 - 49 3.45 - 3 5 2.93
r110 100 25063 4.89 307 69.25 - 406 77.55 - 3 6 19.31
r111 100 69890 25.86 2669 866.34 - 361 129.24 - 3 7 53.16
r112 100 394702 647.36 2167 2227.74 - 665 385.00 - 3 9 340.61

rc101 100 955 0.03 1 0.02 - 1 0.02 - 1 0 0.02
rc102 100 5384 0.30 17 1.12 - 21 1.34 - 4 4 3.17
rc103 100 38308 6.01 861 110.78 - 6494 587.39 - 4 8 35.37
rc104 100 232961 148.73 607 194.68 - 1054 203.36 - 4 8 102.56
rc105 100 2964 0.15 7 0.43 - 13 0.67 - 4 6 1.14
rc106 100 2574 0.12 31 1.85 - 12 0.56 - 3 3 1.01
rc107 100 10505 0.72 87 8.50 - 27 2.79 - 4 6 3.65
rc108 100 45430 6.75 239 32.34 - 143 12.43 - 3 5 4.84
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Table 7: RCESPP with capacity and time windows - Instance c 104, 50 vertices

Instance Exact D.P. B&B Res+Arcs B&B Res+Cycles DSSR
Name Labels Time Nodes Time (%) Nodes Time (%) It CN Time

c104 50 01 59 0.00 1 0.01 - 1 0.01 - 1 0 0.01
c104 50 02 126 0.00 1 0.01 - 1 0.01 - 1 0 0.01
c104 50 03 200 0.01 1 0.01 - 1 0.01 - 1 0 0.01
c104 50 04 206 0.01 1 0.01 - 1 0.01 - 1 0 0.01
c104 50 05 208 0.01 1 0.01 - 1 0.01 - 1 0 0.01
c104 50 06 269 0.01 1 0.02 - 1 0.02 - 1 0 0.02
c104 50 07 475 0.01 1 0.02 - 1 0.02 - 1 0 0.02
c104 50 08 586 0.04 1 0.02 - 1 0.02 - 1 0 0.02
c104 50 09 730 0.05 1 0.02 - 1 0.02 - 1 0 0.02
c104 50 10 804 0.06 1 0.02 - 1 0.02 - 1 0 0.02
c104 50 11 1440 0.09 1 0.03 - 1 0.03 - 1 0 0.03
c104 50 12 2292 0.21 1 0.03 - 1 0.03 - 1 0 0.03
c104 50 13 3771 0.43 1 0.04 - 1 0.04 - 1 0 0.04
c104 50 14 4031 0.53 19 0.24 - 13 0.18 - 2 3 0.14
c104 50 15 5508 0.74 13 0.22 - 9 0.12 - 3 4 0.49
c104 50 16 9411 2.10 39 0.88 - 12 0.25 - :3 4 0.53
c104 50 17 18579 5.02 45 1.09 - 15 0.35 - 3 4 0.60
c104 50 18 21738 6.54 145 3.53 - 76 1.66 - 3 4 0.61
c104 50 19 25638 9.25 77 2.43 - 64 1.41 - 3 5 1.20
c104 50 20 36762 23.16 85 2.02 - 91 2.35 - 4 6 2.11
c104 50 21 81804 73.19 179 5.95 - 144 3.99 - 4 6 2.69
c104 50 22 105756 110.25 199 5.35 - 91 2.52 - 3 6 2.31
c104 50 23 126645 149.81 255 11.00 - 214 9.34 - 8 11 17.45
c104 50 24 157915 275.93 276 19.7 - 238 17.98 - 5 7 13.43
c104 50 25 323641 1016.98 321 18.36 - 381 19.83 - 4 7 13.31

Table 8: RCESPP with capacity and time windows - Instance c 104, 100 vertices

Instance Exact D.P. B&B Res+Arcs B&B Res+Cycles DSSR
Name Labels Time Nodes Time (%) Nodes Time (%) It CN Time

c104 100 01 160 0.01 1 0.04 - 1 0.04 - 1 0 0.04
c104 100 02 227 0.01 1 0.05 - 1 0.05 - 1 0 0.05
c104 100 03 368 0.02 1 0.06 - 1 0.06 - 1 0 0.06
c104 100 04 415 0.04 1 0.07 - 1 0.07 - 1 0 0.07
c104 100 05 427 0.05 1 0.07 - 1 0.07 - 1 0 0.07
c104 100 06 523 0.06 1 0.08 - 1 0.08 - 1 0 0.08
c104 100 07 895 0.11 1 0.08 - 1 0.08 - 1 0 0.08
c104 100 08 1153 0.19 1 0.09 - 1 0.09 - 1 0 0.09
c104 100 09 1393 0.29 1 0.09 - 1 0.09 - 1 0 0.09
c104 100 10 1557 0.37 1 0.09 - 1 0.09 - 1 0 0.09
c104 100 11 2655 0.59 1 0.11 - 1 0.11 - 1 0 0.11
c104 100 12 4504 1.24 1 0.12 - 1 0.12 - 1 0 0.12
c104 100 13 7336 2.37 1 0.11 - 1 0.11 - 1 0 0.11
c104 100 14 8457 3.30 33 1.76 - 11 0.74 - 3 3 1.49
c104 100 15 10932 4.49 65 3.24 - 21 1.05 - 2 3 1.26
c104 100 16 19133 9.75 249 15.12 - 23 1.62 - 2 3 1.56
c104 100 17 39114 23.83 211 20.02 - 21 1.60 - 2 3 1.65
c104 100 18 53650 39.11 75 8.64 - 30 3.54 - 2 3 1.65
c104 100 19 66165 56.43 45 5.85 - 30 2.99 - 4 6 6.32
c104 100 20 91825 110.71 59 4.66 - 42 2.04 - 4 5 7.84
c104 100 21 197498 336.64 67 7.29 - 48 4.26 - 4 5 8.79
c104 100 22 315475 702.11 89 10.78 - 59 5.94 - 3 6 7.54
c104 100 23 437113 1169.71 53 7.94 - 53 7.60 - 7 9 32.06
c104 100 24 547902 1945.73 141 31.02 - 143 33.46 - 5 7 29.87
c104 100 25 - - 187 47.05 - 17 44.32 - 4 7 27.74
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