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Abstract: In order to perform big-data analytics, regression involving large matrices is often necessary.
In particular, large scale regression problems are encountered when one wishes to extract semantic
patterns for knowledge discovery and data mining. When a large matrix can be processed in its
factorized form, advantages arise in terms of computation, implementation, and data-compression.
In this work, we propose two new parallel iterative algorithms as extensions of the Gauss–Seidel
algorithm (GSA) to solve regression problems involving many variables. The convergence study
in terms of error-bounds of the proposed iterative algorithms is also performed, and the required
computation resources, namely time- and memory-complexities, are evaluated to benchmark the
efficiency of the proposed new algorithms. Finally, the numerical results from both Monte Carlo
simulations and real-world datasets are presented to demonstrate the striking effectiveness of our
proposed new methods.

Keywords: Gauss–Seidel algorithm; random iterations; matrix factorization; linear systems; big data

1. Introduction

With the advances of computer and internet technologies, tremendous data will be
processed and archived in our daily life. Data-generating sources include the internet
of things (IoT), social websites, smart-devices, sensor networks, digital images/videos,
multimedia signal archives for surveillance, business-activity records, web logs, health
(medical) records, on-line libraries, eCommerce data, scientific research projects, smart
cities, and so on [1,2]. This is the reason why the quantity of data all over the world has
been growing exponentially. By 2030, the International Telecommunication Union (ITU)
predicts that the trend of this exponential growth of data will continue and overall data
traffic just for mobile devices will reach an astonishingly five zettabytes (ZB) per month [3].

In big-data analysis, matrices are utilized extensively in formulating problems with
linear structure [4–10]. For example, matrix factorization techniques have been applied for
topic modeling and text mining [11,12]. For example, a bicycle demand–supply problem
was formulated as a matrix-completion problem by modeling the bike-usage demand as a
matrix whose two dimensions were defined as the time interval of a day and the region
of a city [13]. For social networks, matrices such as adjacency and Laplacian matrices
have been used to encode social–graph relations [14]. A special class of matrices, referred
to as low-rank (high-dimensional) matrices, which often have many linearly dependent
rows (or columns), is often encountered when various big data analytics applications
need to be addressed. Let’s list several data analytics applications involving such high-
dimensional, low-rank matrices: (i) system identification: low-rank (Hankel) matrices
are used to represent low-order linear, time-invariant systems [15]; (ii) weight matrices:
several signal-embedding problems, for example, multidimensional scaling (see [16]) and
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sensor positioning (see [17]), etc., use weight matrices to represent the weights or distances
between pairs of objects, and such weight matrices are often low-rank since most signals of
interest appear only within the subspaces of small dimensions; (iii) signals over graphs:
the adjacency matrices used to describe connectivity structures, e.g., those resulting from
communication and radar signals, social networks, and manifold learning, are low-rank in
general (see [18–22]); (iv) intrinsic signal properties: various signals, such as the collection
of video frames, sensed signals, or network data, are highly correlated, and these signals
should be represented by low-rank matrices (see [23–29]); (v) machine learning: the raw
input data can be represented by low-rank matrices for artificial intelligence, natural
language processing, and machine learning (see [30–33]).

Let’s manipulate a simple algebraic expression to illustrate the underlying big data
problem. If V is a high-dimensional, low-rank matrix, it is convenient to reformulate
it by a factorization form of V = W H. There are quite a few advantages to working
on the factorization form W H rather than the original matrix V. The first advantage is
computational efficiency. For example, the alternating least squares (ALS) method is often
invoked for collaborative-filtering based recommendation systems. In the ALS method,
one has to approximate the original matrix Vm×n by Wm×k × Hk×n for solving Wm×k
by keeping Hk×n fixed and then solving Hk×n by keeping Wm×k fixed iteratively. By
repeating the aforementioned procedure alternately, the final solution can be obtained. The
second advantage is resource efficiency. Since V is usually large in dimension, the ALS
method can thus reduce the required memory-storage space from the size m× n to only
k (m + n). Such reduction can save memory and further reduce communication overhead
significantly if one implements the ALS computations using the factorized matrices. Finally,
the third advantage for applying the factorization technique to large matrices is data
compression. Recall that principal component analysis (PCA) aims to extract more relevant
information from the raw data by considering those singular vectors corresponding to
large singular values (deemed signals) but ignoring the data spanned by those singular
vectors corresponding to small singular values (deemed noise). The objective of PCA is
to efficiently approximate an original high-dimensional matrix by another matrix with a
(much) smaller rank, i.e., low-rank approximation. Therefore, the factorization can lead to
data compression consequently.

Generally speaking, given a vector c (dependent variables), we are interested in the
linear regression of V (independent variables) onto c for a better understanding of the rela-
tionship between the dependent and independent variables because many data processing
techniques are based on solving a linear-regression problem, for example, beamforming
(see [34]), model selection (see [35,36]), robust matrix completion (see [37]), data process-
ing for big data (see [38]), and kernel-based learning (see [39]). Most importantly, the
Wiener–Hopf equations are frequently invoked in optimal or adaptive filter design [40].
When tremendous “taps” or “states” are considered, the correlation matrix in the Wiener–
Hopf equations becomes very large in dimension. Thus, solving Wiener–Hopf equations
with large dimensions is mathematically equivalent to solving a big-data-related linear-
regression problem. Because the factorization of a large, big-data-related matrix (or a large
correlation matrix) can bring us advantages (as previously discussed), the main contri-
bution of this work is to propose new iterative methods that can work on the factorized
matrices instead of the original matrix. By taking such a matrix-factorization approach, one
can enjoy the associated benefits in computation, implementation, and representation for
solving a linear-regression problem. Our main idea is to utilize a couple of stochastic itera-
tive algorithms for solving the factorized matrices by the Gauss–Seidel algorithm (GSA) in
parallel and then combine the individual solutions to form the final approximate solution.
There are many existing algorithms to solve large, linear systems of equations, however, the
proposed GSA is easier to program and takes less time to compute each iteration compared
to existing ones [41,42]. Moreover, we even provide parallel framework to accelerate the
proposed GSA. Figure 1 presents a high-level illustration for the proposed new method.
This approach can serve as a common framework for solving many large problems by
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use of the approximate solutions. In this information-technology boom era, problems are
often quite large and have to be solved by digital computers subject to finite precision. The
proposed new divide-and-iterate method can be applied extensively in data processing for
big data. This new approach is different from the conventional divide-and-conquer scheme
as there exist no horizontal (mutual iterations among subproblems) computations in the
conventional divide-and-conquer approach. Under the same divide-and-iterate approach,
this work uses GSA, instead of the Kaczmarz algorithm (KA) [43], to solve factorized
subsystems in a parallel method.

Figure 1. Illustration of the proposed new divide-and-iterate approach.

The rest of this paper is organized as follows. The linear-regression problem and the
Gauss–Seidel algorithm are discussed in Section 2. The proposed new iterative approach to
solve a factorized system is presented in Section 3. The validation of the convergences of
the proposed methods is provided in Section 4. The time- and memory-complexities for
our proposed new approach are discussed in Section 5. The numerical experiments for the
proposed new algorithms are presented in Section 6. Finally, conclusion will be drawn in
Section 7.

2. Solving Linear Regression Using Factorized Matrices and Gauss–Seidel Algorithm

A linear-regression problem (especially involving a large matrix) will be formulated
using factorized matrices first in this section. Then, the Gauss–Seidel algorithm will be
introduced briefly, as this algorithm needs to be invoked to solve the subproblems involving
factorized matrices in parallel. Finally, the individual solutions to these subproblems will
be combined to form the final solution.

2.1. Linear Regression: Divide-and-Iterate Approach

A linear regression is given by Vy = c, where V ∈ Cm×n and C denotes the set of
complex numbers. It is equivalent to the following:

Vy = WHy = c, (1)

where the matrix V is decomposed as the product of the matrix W and the matrix H,
W ∈ Cm×k, and H ∈ Ck×n. Generally, the dimension of V is large in the context of big data.
Therefore, it is not practical to solve the original regression problem. We propose to solve
the following subproblems alternatively:

W x = c, (2)

and:
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H y = x. (3)

One can obtain the original linear-system solution to Equation (1) by first solving the
sub-linear system given by Equation (2) and then substituting the intermediate solution x
into Equation (3) to obtain the final solution y. A linear system Vy = c is called consistent
if it has at least one solution. On the other hand, it will be called inconsistent if there exists
no solution. The sub-linear system can be solved by the Gauss–Seidel algorithm, which
will be briefly introduced in the next subsection.

2.2. Gauss–Seidel Algorithm and Its Extensions

The Gauss–Seidel algorithm (GSA) is an iterative algorithm for solving linear equations
Vy = c. It is named after the German mathematicians Carl Friedrich Gauss and Philipp
Ludwig von Seidel, and it is similar to the Jacobi method [44]. The randomized version of
the Gauss–Seidel method can converge linearly when a consistent system is expected [45].

Given V ∈ Cm×n and c as in Equation (1), the randomized GSA will pick column

j ∈ {1, 2, · · · , n} of V with probability
‖V(,j)‖2

2
‖A‖2

F

, where C denotes the set of complex numbers,

V(,j) is the j-th column of the matrix V, ‖·‖F is the Frobenius norm, and ‖·‖2 is the Euclidean
norm. Thus, the solution y will be updated as:

yt = yt−1 +
V∗(,j)(c−Vyt−1)∥∥∥V(,j)

∥∥∥2

2

e(j), (4)

where t is the (iteration) index of the solution at the t-th step (iteration), e(j) is the j-th basis
vector (a vector with 1 at the j-th position and 0 otherwise), and ∗ denotes the Hermitian
adjoint of a matrix (vector).

However, the randomized GSA updated by Equation (4) does not converge when
the system of equations is inconsistent [45]. To overcome this problem, an extended
GSA (EGSA) was proposed in [46]. The EGSA will pick row i ∈ {1, 2, · · · , m} of V

with probability
‖V(i,)‖2

2
‖V‖2

F

and pick column j ∈ {1, 2, · · · , n} of V with probability
‖V(,j)‖2

2

‖V(,j)‖2
F

,

where V(i,) represents the i-th row of the matrix V. Consequently, the solution y will be
updated as:

dt = dt−1 +
V∗(,j)(c−Vdt−1)∥∥∥V(,j)

∥∥∥2

2

e(j), (5)

and:

yt = yt−1 +
V(i,)(dt − yt−1)∥∥∥V(i,)

∥∥∥2

2

V∗(i,). (6)

When the EGSA is applied for the consistent systems, it behaves exactly like the GSA.
For the consistent systems, the EGSA has been shown to converge linearly in expectation
to the least-squares solution (yopt = V†c, where † denotes the pseudo-inverse based on the
least-squares norm) according to [46].

3. Parallel Random Iterative Approach for Linear Systems

In this section, we will propose a novel parallel approach to deal with vector ad-
ditions/subtractions and inner-product computations. This new parallel approach can
faster the computational speed of the GSA and the EGSA as stated in Sections 3.1 and 3.2.
Suppose that we have p processors (indexed by P1, P2, . . ., Pp) available to carry out vector
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computations in parallel. The data involved in such computations need be allocated to each
processor in balance. Such balanced load of data across all processors can make the best use
of resource, maximize the throughput, minimize the computational time, and mitigate the
chance of any processor’s overload. Here we propose two strategies to assign data evenly,
namely (i) cyclic distribution and (ii) block distribution. For the cyclic distribution, we
assign the i-th component of a length-m vector y to the corresponding processor as follows:

y(i) → Pi|p, (7)

where i|p denotes i modulo by p. On the other hand, for block distribution, we assign the
i-th component of a length-m vector x to the corresponding processor as follows:

y(i) → Pb i
` c, (8)

where 0 ≤ i < m, ` specifies the block size such that ` def
=
⌈

m
p

⌉
, bc denotes the integer

rounding-down operation, and de denotes the integer rounding-up operation. The cyclic
and block distributions for four processors are illustrated in Figure 2.

Figure 2. Illustration of the cyclic and block distributions for p = 4.

For example, the parallel computation of an inner product between two vectors using
the cyclic distribution is illustrated by Figure 3.

In Figure 3, we illustrate how to undertake a parallel inner product between two

vectors a def
= [1, 0, 4, 7,−1, 2, 1, 4, 3, 6, 3, 4] and b def

= [1, 2, 3,−2, 0, 1, 3, 4, 2, 2, 4, 0] via four
(p = 4) processors. Processor 1 is employed to compute the inner product of the com-
ponents indexed by 1, 5, and 9, so we obtain 1× 1 + (−1)× 0 + 3× 2 = 7; processor 2
is employed to compute the inner product of the components indexed by 2, 6, and 10,
so we obtain 0× 2 + 2× 1 + 6× 2 = 14; processor 3 is employed to compute the inner
product of the components indexed by 3, 7, and 11, so we obtain 4 × 3 + 1 × 3 +3 × 4
= 27; finally, processor 4 is employed to compute the inner product of the components
indexed by 4, 8, and 12, so we get 7 × (−2) + 4 × 4 + 4 × 0 = 2. The overall inner product
can thus be obtained by adding those above-stated sub-inner products resulting from the
four processors.
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Figure 3. Illustration of an inner-product computation on the parallel platform using cyclic distribu-
tion (p = 4 and m = 12).

3.1. Consistent Linear Systems

The parallel random iterative algorithm to solve the original system formulated by
Equation (1) is stated by Algorithm 1 if the original system is consistent. The idea here is to
solve the sub-system formulated by Equation (2) and the sub-system formulated by Equa-
tion (3) alternately using the GSA. The symbols ⊕p, 	p, and �p represent parallel vector
addition, subtraction, and inner-product, respectively, using p processors. Note that ×p is
the operation to scale a vector by a complex value. The parameter T specifies the number
of iterations required to perform the proposed algorithms. This quantity can be determined
by the error tolerance of the solution (refer to Section 5.1 for detailed discussion).

Algorithm 1 The Parallel GSA
Result: yt
Input: W, H, c, T; while t ≤ T do

Pick up column W(,i) with probability
‖W(,i)‖2

2
‖W‖2

F

;

Update xt = xt−1 ⊕p
W∗

(,i)�p(c	pWxt−1)

‖W(,i)‖2
2

×p e(i);

Pick up column H(,j) with probability
‖H(,j)‖2

2
‖H‖2

F

;

Update yt = yt−1 ⊕p
H∗

(,j)�p(xt	pHyt−1)

‖H(,j)‖2
2

×p e(j);

end

3.2. Inconsistent Linear Systems

If the original system formulated by Equation (1) is not consistent, Algorithm 2 is
proposed to solve it instead. Algorithm 2 below is based on the EGSA.
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Algorithm 2 The Parallel EGSA
Result: yt Input: W, H, c, T
while t ≤ T do

Pick up column W(,i) with probability
‖W(,i)‖2

2
‖W‖2

F

Update dt = dt−1 ⊕p
W∗

(,i)�p(c	pVdt−1)

‖W(,i)‖2
2

×p e(i)

Pick up row W(l,) with probability
‖W(l,)‖2

2
‖W‖2

F

Update xt = xt−1 ⊕p
W(l,)�p(dt	pxt−1)

‖W(l,)‖2
2

×p W∗(l,)

Pick up column H(,j) with probability
‖H(,j)‖2

2
‖H‖2

F

Update yt = yt−1 ⊕p
H∗

(,j)�p(xt	pHyt−1)

‖H(,j)‖2
2

×p e(j)

end

4. Convergence Studies

The convergence studies for the two algorithms proposed in Section 3 are manifested
by Theorem 1 for consistent systems and Theorem 2 for inconsistent systems. The necessary
lemmas for establishing the main theorems discussed in Section 4.2 are first presented
in Section 4.1. All proofs will be written using vector operations without the subscript p
because the parallel computations for vector operations should lead to the same results
regardless of the processor index p. Without loss of generality, the instances of subscript p
indexed in Algorithms 1 and 2 are simply used to indicate that those computations can be
carried out in parallel.

4.1. Auxiliary Lemmas

We define the metric $A for a matrix A as:

$A
def
= 1−

σ2
min(A)

‖A‖2
F

, (9)

where σmin(A) denotes the minimum nontrivial singular value of the matrix A and 0 <
σmin(A) < 1. We present the following lemma, which establishes an identity related to the
error bounds of our proposed iterative algorithms.

Lemma 1. Let A be a nonzero real matrix. For any vector v in the range of A, i.e., v can be
obtained by a linear combination of A’s columns (taking columns as vectors), we have:

vT

(
I − AAT

‖A‖2
F

)
v ≤ $A‖v‖2

2. (10)

Proof. Because the singular values of A and AT are the same and σi(AAT) ≥ σ2
min(A)

where the subscript i denotes the i-th largest singular value in magnitude, Lemma 1
is proven.

Since the original solution to Equation (1) can be facilitated from solving the factorized
linear systems, Lemma 2 below can be utilized to bound the error arising from the solutions
to the factorized sub-systems at each iteration.

Lemma 2. The expected squared-norm for Hyt −Hyopt, or the error between the result at the t-th
iteration and the optimal solution conditional on the first t iterations, is given by:

Et

[∥∥Hyt+1 −Hyopt
∥∥2

2

]
≤ $H

∥∥Hyt −Hyopt
∥∥2

2 +Et,x

[∥∥xt+1 − xopt
∥∥2

2

]
(11)
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where the subscript x of the statistical expectation operator Et,x[ ] indicates that the expectation
should be taken over the random variable x.

Proof. Let ŷt+1 be the one-step update in the GSA, so ŷt+1 = yt +
H∗

(,j) (xopt−Hyt)

‖H(,j)‖2
2

e(j) and:

yt+1 = yt +
H∗

(,j) (xt−Hyt)

‖H(,j)‖2
2

e(j).

Then we have:

Et

[∥∥∥Hyt+1 −Hyopt

∥∥∥2

2

]

= (1)Et

[∥∥∥Hyt+1 −Hyopt + Hŷt+1 −Hŷt+1

∥∥∥2

2

]

= (2)Et

[∥∥Hŷt+1 −Hyopt
∥∥2

2

]
+Et

[
‖Hyt+1 −Hŷt+1‖2

2

]

= (3)Et

[∥∥∥Hyt −Hyopt

∥∥∥2

2

]
−Et

[
‖Hŷt+1 −Hyt‖

2
2

]
+Et

[
‖Hyt+1 −Hŷt+1‖2

2

]

= (4)‖Hyt −Hyopt ‖2
2 −Et

 |H∗(,j)Hyopt −H∗(,j)Hyt|2∥∥∥H∗
(,j)

∥∥∥2

2

+Et

 |H∗(,j)xt+1 −H∗(,j)xopt |2∥∥∥H∗
(,j)

∥∥∥2

2

 (12)

= (5)
∥∥Hyt −Hyopt

∥∥2
2 −Et,y

 |H∗(,j)Hyopt −H∗(,j)Hyt|2∥∥∥H∗
(,j)

∥∥∥2

2

+Et,x

Et,y

 |H∗(,j)xt+1 −H∗(,j)xopt|2∥∥∥H∗
(,j)

∥∥∥2

2




= (6)
∥∥Hyt −Hyopt

∥∥2
2 −

∥∥∥H∗
(

Hyopt −Hyt

)∥∥∥2

2
‖H‖2

F
+

Et,x

[∥∥H∗
(
xt+1 − xopt

)∥∥2
2

]
‖H‖2

F

≤(7)
∥∥Hyt −Hyopt

∥∥2
2 −

σ2
min(H)

‖H‖2
F

∥∥∥Hyt −Hyopt

∥∥∥2

2
+

Et,x

[∥∥H∗
(
xt+1 − xopt

)∥∥2
2

]
‖H‖2

F

= (8)$H
∥∥∥Hyt −Hyopt

∥∥∥2

2
+

Et,x

[∥∥H∗
(
xt+1 − xopt

)∥∥2
2

]
‖H‖2

F

≤(9) $H
∥∥∥Hyt −Hyopt

∥∥∥2

2
+Et,x

[∥∥xt+1 − xopt
∥∥2

2

]
.

The equality =(1) results from adding and subtracting the same term “Hŷt+1”. The equality
=(2) holds because Hŷt+1−Hyopt and Hyt+1−Hŷt+1 are orthogonal to each other. The equality
=(3) comes from Pythagoras’ Theorem since Hŷt+1−Hyopt and Hŷt+1−Hyt are orthogonal to
each other. The proof of the orthogonality between Hŷt+1 −Hyopt and Hŷt+1−Hyt is presented
as follows:

(
Hŷt+1 − Hyt

)
is parallel to H(,j) and

(
Hŷt+1 − Hyopt

)
is perpendicular to H(,j)

because:

H(,j)(Hŷt+1 −Hyopt)

= H(,j)

H

yt +
H∗(,j)

(
xopt −Hyt

)
∥∥∥H(,j)

∥∥∥2

2

e(j)

−Hyopt

 (13)

= H(,j)Hyt + H(,j)Hyopt −H(,j)Hyt −H(,j)Hyopt = 0.

Therefore, Hŷt+1−Hyopt and Hŷt+1−Hyt are orthogonal to each other. The relation
Hyopt = xopt is used to establish the identity =(4). Recall that the expectation Et[ ] is
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conditional on the first t iterations. The law of iterated expectations in [47] is thereby
applied here to establish the equality =(5). Since the probability of selecting the column

H(,j) is
‖H(,j)‖2

2
‖H‖2

F

, we can have the equality =(6). The inequality ≤(7) comes from the fact that

‖H∗(Hyopt −Hyt)‖2
2 ≥ $H‖Hyt −Hyopt‖2

2. The equality =(8) results from the definition of

$H in Equation (9). Finally, the inequality ≤(9) comes from the fact that ‖Ax‖2
2 ≤ ‖A‖

2
F ‖x‖

2
2

(according to the Cauchy–Schwarz inequality) for the matrix A ∈ Cm×n and the vector
x ∈ Cn×1.

Lemma 3. Consider a linear, consistent system Vy = c where V has the dimension m× n. If the
Gauss–Siedel algorithm (GSA) with an initial guess y0 ∈ Rn (R denotes the set of real numbers)
is applied to solve such a linear, consistent system, the expected squared-norm for yt − yopt can be
bounded as follows:

E
[
‖yt − yopt‖2

2

]
≤ ρt

V‖y0 − yopt‖2
2. (14)

Proof. See Theorem 4.2 in [45].

The following lemma is presented to bound the iterative results for solving an incon-
sistent system using the extended Gauss–Siedel algorithm (EGSA).

Lemma 4. Consider a linear, inconsistent system Vy = c. If the extended Gauss–Siedel algorithm
(EGSA) with an initial guess y0 within the range of VT and d0 ∈ Rn is applied to solve such a
linear, inconsistent system, the expected squared-norm for ys − yopt can be bounded as follows:

E
[
‖yt − yopt‖2

2

]
≤ $t

V‖y0 − yopt‖2
2 +

t$t
V

‖V‖2
F

‖Vd0 −Vyopt‖2
2. (15)

Proof. Since:

yt − yopt =yt−1 +
V(l,)(dt − yt−1)∥∥∥V(l,)

∥∥∥2

2

V∗(l,) − yopt

=

I−
V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

yt−1 +
V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

dt − yopt (16)

=

I−
V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

(yt−1 − yopt
)
+

V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

(
dt − yopt

)
V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2


2

=
V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

(17)

and:

(
dt − yopt

)T V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

I−
V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

× (yt−1 − yopt
)
= 0 (18)

we have the following:
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∥∥yt − yopt
∥∥2

2 =

∥∥∥∥∥∥∥
I−

V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

(yt−1 − yopt
)∥∥∥∥∥∥∥

2

2

+

∥∥∥∥∥∥∥
V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

(
dt − yopt

)∥∥∥∥∥∥∥
2

2

(19)

The expectation of the first term in Equation (19) can be bounded as:

Et−1


∥∥∥∥∥∥∥
I−

V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

(yt−1 − yopt
)∥∥∥∥∥∥∥

2

2



= Et−1

(yt−1 − yopt
)T

I−
V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2


2(

yt−1 − yopt
)

= Et−1

(yt−1 − yopt
)T

I−
V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

(yt−1 − yopt
) (20)

=
(
yt−1 − yopt

)T

I−
V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

(yt−1 − yopt
)

≤ $V
∥∥yt−1 − yopt

∥∥2
2

Then, we have:

E


∥∥∥∥∥∥∥
I−

V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

(yt−1 − yopt
)∥∥∥∥∥∥∥

2

2

 ≤ $VE
[∥∥yt−1 − yopt

∥∥2
2

]
(21)

The expectation of the second term in Equation (19) is given by:

Et−1


∥∥∥∥∥∥∥

V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

(
dt − yopt

)∥∥∥∥∥∥∥
2

2



= Et−1

(dt − yopt
)T

V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2


2(

dt − yopt
) (22)

= (1)Et−1,(,i)

Et−1,(l,)

(dt − yopt
)T V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

(
dt − yopt

)


= (2)Et−1,(,i)

[(
dt − yopt

)T V∗V
‖V‖2

F

(
dt − yopt

)]
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=
Et−1

[∥∥Vdt −Vyopt
∥∥2

2

]
‖V‖2

F

where the equality =(1) comes from the law of iterated expectations again for the conditional
expectations Et−1,(,i)[ ] (conditional on the i-th column at the (t − 1)-th iteration) and
Et−1,(l,)[ ] (conditional on the l-th row at the (t− 1)-th iteration), and the equality =(2)

comes from the probability of selecting the l-th row to be
‖V(l,)‖2

2
‖V‖2

F

.

From the GSA update rule, we can have the following inequality:

Et−1


∥∥∥∥∥∥∥

V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

(
dt − yopt

)∥∥∥∥∥∥∥
2

2

 =
Et−1

[∥∥Vdt −Vyopt
∥∥2

2

]
‖V‖2

F

=
Et−1

[(
Vdt −Vyopt

)T(Vdt −Vyopt
)]

‖V‖2
F

= (1)

Et−1

(Vdt−1 −Vyopt
)T
(

I−
V∗
(,i)V(,i)

‖V(,i)‖2
2

)2(
Vdt−1 −Vyopt

)
‖V‖2

F
(23)

= (2)Et−1

(Vdt−1 −Vyopt
)T

I−
V∗(,i)V(,i)∥∥∥V(,i)

∥∥∥2

2

 ×(Vdt−1 −Vyopt
)]

/‖V‖2
F

=

(
Vdt−1 −Vyopt

)T
(

I−
V∗
(,i)V(,i)

‖V(,i)‖2
2

)(
Vdt−1 −Vyopt

)
‖V‖2

F

≤(3)
$V
∥∥Vdt−1 −Vyopt

∥∥2
2

‖V‖2
F

where the equality =(1) is established by applying the GSA one-step update, and the

equality =(2) is based on the fact that
(

I−
V∗
(,i)V(,i)

‖V(,i)‖2
2

)2
= I−

V∗
(,i)V(,i)

‖V(,i)‖2
2

). The inequality ≤(3)

comes from Lemma 1. Based on this inequality and the law of iterated expectations, the
expectation of the second term in Equation (19) can be bounded as:

E


∥∥∥∥∥∥∥

V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

(
dt − yopt

)∥∥∥∥∥∥∥
2

2

 ≤ $t
V

∥∥Vd0 −Vyopt
∥∥2

2
‖V‖2

F
(24)

According to Equations (19), (21) and (24), we have:

E
[∥∥yt − yopt

∥∥2
2

]
= E


∥∥∥∥∥∥∥
I−

V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

(yt−1 − yopt
)∥∥∥∥∥∥∥

2

2
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+E


∥∥∥∥∥∥∥

V∗(l,)V(l,)∥∥∥V(l,)

∥∥∥2

2

(
dt − yopt

)∥∥∥∥∥∥∥
2

2

 (25)

≤ $VE
[∥∥yt−1 − yopt

∥∥2
2

]
+

$t
V

∥∥Vd0 −Vyopt
∥∥2

2
‖V‖2

F

≤ $2
VE
[∥∥yt−2 − yopt

∥∥2
2

]
+

2$t
V

∥∥Vd0 −Vyopt
∥∥2

2
‖V‖2

F

≤ · · · ≤ $t
V
∥∥y0 − yopt

∥∥2
2 +

t$t
V

‖V‖2
F

∥∥Vd0 −Vyopt
∥∥2

2

Consequently, Lemma 4 is proven.

4.2. Convergence Analysis

Since the necessary lemmas are introduced in Section 4.1, we can begin to present the
main convergence theorems here for the two proposed algorithms. Theorem 1 is established
for the consistent systems, while Theorem 2 is established for the inconsistent systems.

Theorem 1. Let V ∈ Cm×n be a low-rank matrix such that V = WH with a full-rank W ∈ Cm×k

and a full-rank H ∈ Ck×n, where k < m and k < n. Suppose that the systems Vy = c and
Wx = c have the optimal solutions yopt and xopt, respectively. The initial guesses are selected as

y0 ∈ range(HT) and x0 ∈ range(WT). Define ζ
def
= $W

$H . If Vy = c is consistent, we have the
following bound for ζ 6= 1:

E
[
‖Hyt −Hyopt‖2

2

]
≤ $t

H‖Hy0 −Hyopt‖2
2 (26)

+ $t
H
‖x0 − xopt‖2

2(1− ζt)

1− ζ
.

On the other hand, for ζ = 1, we have:

E
[
‖Hyt −Hyopt‖2

2

]
≤ $t

H‖Hy0 −Hyopt‖2
2 (27)

+ t$t
H‖x0 − xopt‖2

2.

Proof. From Lemma 2, we have:

Et−1

[
‖Hyt −Hyopt‖2

2

]
≤ $H‖Hyt−1 −Hyopt‖2

2 (28)

+Et−1,x

[
‖xt − xopt‖2

2

]
.

By applying the bound given by Lemma 3 to Equation (28), we get:

Et−1

[
‖Hyt −Hyopt‖2

2

]
≤ $H‖Hyt−1 −Hyopt‖2

2

+$t
W‖x0 − xopt‖2

2. (29)

If $W 6= $H, from the law of iterated expectations, we can rewrite Equation (29) as:



Big Data Cogn. Comput. 2022, 6, 43 13 of 25

E
[∥∥∥Hy−Hyopt

∥∥∥2

2

]

≤ $t
H

∥∥∥Hy0 −Hyopt

∥∥∥2

2
+
∥∥x0 − xopt

∥∥2
2

t−1

∑
g=0

$
t−g
W $

g
H

= $t
H

∥∥∥Hy0 −Hyopt

∥∥∥2

2
+ $t

H
∥∥x0 − xopt

∥∥2
2

s−1

∑
g=0

ζg (30)

= $t
H

∥∥∥Hy0 −Hyopt

∥∥∥2

2
+ $t

H

∥∥x0 − xopt
∥∥2

2(1− ζs)

1− ζ

On the other hand, if $W = $H, we have:

E
[∥∥∥Hy−Hyopt

∥∥∥2

2

]

≤ $t
H

∥∥∥Hy0 −Hyopt

∥∥∥2

2
+
∥∥x0 − xopt

∥∥2
2

t−1

∑
g=0

ρt−1
H (31)

= $t
H

∥∥∥Hy0 −Hyopt

∥∥∥2

2
+ t$t

H
∥∥x0 − xopt

∥∥2
2

Consequently, Theorem 1 is proven.

Theorem 2. Let V ∈ Cm×n be a low-rank matrix such that V = WH with a full-rank W ∈ Cm×k

and a full-rank H ∈ Ck×n, where k < m and k < n. The systems Vy = c and Wx = c have the
optimal solutions yopt and xopt, respectively. The initial guesses are selected as y0 ∈ range(HT),

x0 ∈ range(WT),and d0 ∈ Ck. Define ζ
def
= $W

$H . If Vy = c is inconsistent, we have the following
bound for ζ 6= 1:

E
[
‖Hyt −Hyopt‖2

2

]
≤ $t

H‖Hy0 −Hyopt‖2
2 + $t

H
‖x0 − xopt‖2

2(1− ζt+1)

1− ζ
(32)

+$t
H
‖Wd0 −Wxopt‖2

2

‖W‖2
F

[
ζ(1− ζt)

(1− ζ)2 −
tζt+1

1− ζ

]
.

On the other hand, for ζ = 1, we have:

E
[
‖Hyt −Hyopt‖2

2

]
≤ $s

H‖Hy0 −Hyopt‖2
2 + t$t

H‖x0 − xopt‖2
2 (33)

+
t(t + 1)

2
$t

H
‖Wd0 −Wxopt‖2

2

‖W‖2
F

.

Proof. From Lemma 2, we have:

Et−1

[
‖Hyt −Hyopt‖2

2

]
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≤ $H‖Hyt−1 −Hyopt‖2
2 (34)

+Et−1,x

[
‖xt − xopt‖2

2

]
.

By applying the bound in Lemma 4 to Equation (34), we get:

Et−1‖Hyt −Hyopt‖2
2 ≤ $H‖Hyt−1 −Hyopt‖2

2

+$t
W‖x0 − xopt‖2

2 + t$t
W
‖Wd0 −Wxopt‖2

2

‖W‖2
F

. (35)

Next, if $W 6= $H, by applying the law of iterated expectations, we can rewrite
Equation (35) as:

E‖Hyt −Hyopt‖2
2

= $t
H‖Hy0 −Hyopt‖2

2 + ‖x0 − xopt‖2
2

t−1

∑
g=0

$
t−g
W $

g
H

+
‖Wd0 −Wxopt‖2

2

‖W‖2
F

t−1

∑
g=0

(t− g)$t−g
W $

g
H (36)

= $t
H‖Hy0 −Hyopt‖2

2 + $t
H
‖x0 − xopt‖2

2(1− ζs+1)

1− ζ

+$t
H
‖Wd0 −Wxopt‖2

2

‖W‖2
F

[
ζ(1− ζt)

(1− ζ)2 −
sζt+1

1− ζ

]
.

On the other hand, if ζ = 1, or $W = $H, Equation (36) becomes:

E
[
‖Hyt −Hyopt‖2

2

]
= $t

H‖Hy0 −Hyopt‖2
2 + ‖x0 − xopt‖2

2

t−1

∑
g=0

$t
H

+
‖Wd0 −Wxopt‖2

2

‖W‖2
F

t−1

∑
g=0

(t− g)ρt
H (37)

= $s
H‖Hy0 −Hyopt‖2

2 + t$t
H‖x0 − xopt‖2

2

+
t(t + 1)

2
$t

H
‖Wd0 −Wxopt‖2

2

‖W‖2
F

.

Consequently, Theorem 2 is proven.

5. Complexity Analysis

In this section, the time- and memory-complexity analyses will be presented for the
algorithms proposed in Section 3. The details are manifested in the following subsections.

5.1. Time-Complexity Analysis

For a consistent system with $W 6= $H, the error estimate can be bounded as:

E
[∥∥Hys −Hyopt

∥∥2
2

]
def
= Errorcons

$W 6=$W
≤ Ccons

$W 6=$H
$t

max, (38)

where $max
def
= max($W, $H) and Ccons

$w 6=$H
is a constant related to the matrices W and H .

If the (error) tolerance of E
[∥∥∥Hys −Hyopt

∥∥∥2

2

]
is predefined by ε , one has to go through
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the “while-loop” in Algorithm 1 for at least T def
=

log
(

ε/Ccons
e W 6=ρH

)
log(ρmax)

times. For each while-loop

in Algorithm 1, we need 2k+2m
p arithmetic operations for updating xt and another 2k+2n

p
arithmetic operations for updating yt using p processors. Therefore, given the error limit
not exceeding ε , the time-complexity Tcons

$W 6=$w for solving a consistent system with $W 6= $H

can be bounded as:

Tcons
$W 6=$H

≥
(2m + 2n + 4k) log

(
ε

Ccons
$W 6=$H

)
p log($max)

. (39)

For a consistent system with $W = $H, since the growth rate of the term t$t
max is larger

than that of the term $Ht , the error estimate can be bounded by t$t
max (see Theorem 5 in [48])

as follows:

E
[∥∥Hys −Hyopt

∥∥2
2

]
def
= Errorcons

$W=$W
≤ Ccons

$W=$H
t$t

max, (40)

where Ccons
$W=$H

is another constant related to the matrices W and H. As proven by
Theorem 4 in [48], one has to iterate the while-loop in Algorithm 1 for at least

T def
=

√
log
(

ε
Ccons

$W=$H

)
times. For each while-loop in Algorithm 1, the time-complexity

here (for $W = $H) is the same as that for solving the consistent system with $W 6= $H
instead. Therefore, the time-complexity Tcons

$W=$H
for a consistent system with $W = $H can

be bounded as:

Tcons
$W=$H

≥
(2m + 2n + 4k)

√
log
(

ε
Ccons

$W=$H

)
p

. (41)

On the other hand, for an inconsistent system with $W 6= $H, the error estimate can be
bounded as:

E
[
‖Hys −Hyopt‖2

2

]
def
= Errorinco

ρW 6=ρH
≤ Cinco

ρW 6=ρH
$t

max, (42)

where Cinco
ρW 6=ρH

is a constant related to the matrices W and H. For a predefined tolerance ε,

one has to go through the while-loop in Algorithm 2 for at least T def
=

log

(
ε

Cinco
$W 6=$H

)
log($max)

times.

For each while-loop in Algorithm 2, it requires 2m+2k
p arithmetic operations for updating

dt, 4× k
p arithmetic operations for updating xt, and another 2n+2k

p arithmetic operations
for updating yt using p processors. Hence, given the error tolerance ε, the time-complexity
Tinco

$W 6=$H
for solving an inconsistent system with $W 6= $H can be bounded as:

Tinco
$W 6=$H

≥
(2m + 2n + 8k) log

(
ε

Cinco
ρW 6=ρH

)
p log($max)

. (43)

For an inconsistent system with ρW = ρH, we can apply Theorem 5 in [48] to bound
the error estimate as:

E
[
‖Hys −Hyopt‖2

2

]
def
= Errorinco

$W=ρH
≤ Cinco

$W=$H
t$t

max, (44)

where Cinco
$W=$C

is a constant related to the matrices W and H. Similar to the previous
argument for solving a consistent system with $W = $H, one should iterate the while-
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loop in Algorithm 2 for at least T def
=

√
log
(

ε
Cinco

$W=$H

)
times. For each while-loop in

Algorithm 2, the time-complexity is the same as that for solving an inconsistent system
with $W 6= $H. Therefore, the time-complexity Tinco

$W=$H
for solving an inconsistent system

with $W = $H can be bounded as:

Tinco
$W=$H

≥
(2m + 2n + 8k)

√
log
(

ε
Cinco

ρW=$H

)
p

. (45)

According to the time-complexity analysis earlier in this section, the worst case occurs
when ε=0 since it requires t→∞ in Equations (38), (41), (43), and (44). On the other hand,
the best case occurs when ε is fairly large and all constants (determined from the matrices
W and H), Ccons

ρW 6=$H
, Ccons

ρW=$H
, Cinco

ρW 6=$H
and Cinco

ρW=$H
are relatively small and we only need a

single time iteration to make all error estimates less than such an ε.

5.2. Memory-Complexity Analysis

In the context of big data, the memory usage considered here is extended from the
conventional memory-complexity definition, i.e., the size of the working memory used by
an algorithm. Besides, we will also consider the memory used to store the input data.
In this subsection, we will demonstrate that our proposed two algorithms, which solve
the factorized sub-systems, require much less memory-complexity than the conventional
approach to solve the original system. This memory-efficiency is a main contribution
of our work. For a consistent system Vm×n factorized as Wm×k ×Hk×n, our proposed
Algorithm 1 will require m k + n k + m memory-units (MUs) to store the inputs Wm×k,
Hk×n, and cm×1. In Algorithm 1, one needs (k + n) MUs to store the probability values
used for the column-selections. For updating various vectors, (k + n) MUs are required to
store the corresponding updates. Hence, the total number of the required MUs is given by:

k(m + n) + 2(n + k) + m. (46)

Alternatively, if one applies Algorithm 1 to reconsider the memory-complexity for
solving the original system (unfactorized system), it will need (m n + m + 2n) MUs for
storing data.

On the other hand, for an inconsistent system, our proposed Algorithm 2 will require
m k + n k + m memory units to store the inputs Wm×k, Hk×n, and cm×1. In Algorithm 2, one
needs (m+ k+ n) MUs to store the probability values used for the row and column selections.
For updating various vectors, (2k + n) MUs are required to store the corresponding updates.
Therefore, the total number of the required MUs is given by:

(k + 2)(m + n) + 3k. (47)

Alternatively, if one applies Algorithm 2 to enumerate the memory-complexity for
solving the original system, it will require (m n + 2m + 2n) MUs to store data.

6. Numerical Evaluation

The numerical evaluation for our proposed algorithms is presented in this section.
Convergence and time/memory-complexities of our proposed new algorithms will be
evaluated in Sections 6.1, 6.3 and 6.4, respectively.

6.1. Convergence Study

First consider a consistent system. The entries of W, H, and c are drawn from an
independently and identically distributed (i.i.d.) random Gaussian process with zero-mean
and unit variance where m = 200, n = 150, and k = 100. We plot the convergence trends
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of the expected error E
[
‖Hyt −Hyopt‖2

2

]
and the actual L2-errors (shown by the shadow

areas) with respect to ($W = 0.997, $H = 0.894) and ($W = 0.988, $H = 0.907) in Figure 4.
The convergence speed subject to $W = 0.997 is slower than that subject to $W = 0.988
because the convergence speed is determined solely by $W according to Equation (26),
where $H = $W

ζ and $W > $H. Each shadow region spans over the actual L2-errors resulting
from one hundred Monte Carlo trials.

0 250 500 750 1000 1250 1500 1750 2000
Iteration s

10−7

10−5

10−3

10−1

101

Er
ro
r

ϱW=0.997, ϱϱ=0.894
ϱW=0.988, ϱϱ=0.907

Figure 4. The effect of $W on the convergence of a random consistent system.

On the other hand, consider an inconsistent system. One has to apply
Algorithm 2 to solve it. The entries of W, H, and c are drawn from an independently
and identically distributed (i.i.d.) random Gaussian process with zero-mean and unit
variance where m = 200, n = 150, and k = 100. We plot the convergence trends of the
expected error E

[
‖Hyt −Hyopt‖2

2

]
and the actual L2-errors (shown by the shadow areas)

with respect to ($W = 0.894, $H = 0.993) and ($W = 0.882, $H = 0.987) in Figure 5. Again,
the convergence speed subject to $H = 0.993 is slower than that subject to $H = 0.987
because the convergence speed is determined solely by $H according to Equation (32),
where $H > $W. Each shadow region spans over the actual L2-errors resulting from one
hundred Monte Carlo trials.

0 250 500 750 1000 1250 1500 1750 2000
Iteration s

10−8

10−6

10−4

10−2

100

102

Er
ro
r

ϱW=0.894, ϱϱ=0.993
ϱW=0.882, ϱϱ=0.987

Figure 5. The effect of $H on the convergence of a random inconsistent system.

6.2. Validation Using Real-World Data

In addition to the Monte Carlo simulations shown in Section 6.1, we also validate our
proposed new algorithms for real-world data on wine quality and bike rental. Here we
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use two real-world datasets from the UCI Machine Learning Repository [49]. The first set
is related to wine quality, where we chose the data related to red wine only. The owner
of this data set invoked twelve physicochemical and sensory variables to measure the
wine quality. These variables include: 1—fixed acidity, 2—volatile acidity, 3—citric acid,
4—residual sugar, 5—chlorides, 6—free sulfur dioxide, 7—total sulfur dioxide, 8—density,
9—pH value, 10—sulphates, 11—alcohol, and 12—quality (each score ranging from 0 to
10). Consequently, these twelve categories of data can form an overdetermined matrix (as a
matrix V) with size 1599× 12. If the nonnegative matrix factorization is applied to obtain
the factorized matrices W and H for k = 5, we have $W = 0.99840647 and $H = 0.99838774.
The expected errors E

[
‖Hyt −Hyopt‖2

2

]
and the actual L2 errors for wine data (denoted

by triangle) are depicted in Figure 6, where Algorithm 2 is applied to solve the pertinent
linear-regression problem in this case. On the other hand, another dataset about a bike-
sharing system includes categorical and numerical data. Since the underlying problem
is linear regression, we can work on the numerical attributes of the data only. These
attributes include: 1—temperature, 2—feeling temperature, 3—humidity, 4—windspeed,
5—causal counts, 6—registered counts, and 7—total rental-bike counts. The matrix size
for this dataset is thus 17, 379× 7, and the corresponding parameters to this matrix are
$W = 0.99599172, $H = 0.98568833, and k = 7. The expected errors E

[
‖Hyt −Hyopt‖2

2

]
and the actual L2 errors for bike data (denoted by rhombus) are delineated in Figure 6.
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Figure 6. Error-convergence comparison for the wine data and the bike-rental data.

6.3. Time-Complexity Study

The time-complexity is studied here according to the theoretical analysis in Section 5.1.
First consider an arbitrary consistent system (a random sample drawn from the Monte
Carlo trials stated in Section 6.1). The effect of error tolerance ε on time-complexity can
be visualized in Figure 7. It can be observed that time-complexity increases as ε decreases.
In addition, we would like to investigate the effects of the number of processors p and
the dimension k on time-complexity. The time-complexity results versus the number of
processors p and the dimension k are presented in Figure 8 subject to ε = 10−5.
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Figure 7. Time-complexity versus n for an arbitrary consistent system (k = 100, m = 1.25 n).

On the other hand, let’s focus on an arbitrary inconsistent system (an arbitrary Monte
Carlo trial as stated in Section 6.1) now. The corresponding time-complexities forε = 10−5

and ε = 10−4 are delineated by Figure 9. Note that one more vector is required to be
updated in Algorithm 2 compared to Algorithm 1, the time-complexities shown in Figure 9
are higher that those shown in Figure 7 subject to the same ε. Because our derived error-
estimate bound is tighter than that presented in [46] for the EGSA, the time-complexity of
the proposed method for an inconsistent system has been reduced about 60% from that
of the approach proposed by [46] subject to the same ε. How the number of processors p
and the dimension k affect the time-complexity for inconsistent systems is illustrated by
Figure 10 subject to the error tolerance ε = 10−5.
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Figure 8. Time-complexity versus the number of processors p and the dimension k subject to ε = 10−5

for an arbitrary consistent system (m = 1.25 n).
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Figure 9. Time-complexity versus n for an arbitrary inconsistent system (k = 100, m = 1.25 n).
The curves denoted by “ZF” illustrate the theoretical time-complexity error-bounds for solving the
original system involving the matrix V without factorization (theoretical results from [46]).

According to [50], we define the spectral radius η(A) of the “iteration matrix” A def
= V∗V,

where V is given by Equation (1), by:

η(A)
def
= max

{
|λ1|, |λ2|, · · · ,

∣∣∣λ|A|∣∣∣}. (48)

Note that |A| denotes the cardinality of A and λ1, λ2, . . ., λ|A| specify the eigenvalues
of A. In Figure 11, we delineate the time-complexities required by the close-form solution
(denoted by “Closed-Form” in the figure) and our proposed iterative Gauss–Seidel ap-
proach (denoted by “GS” in the figure) versus the dimension n for V with different spectral
radii subject to ε = 10−10 for an inconsistent system (m = 1.25 n) such that η(V∗V) = 0.9, 0.5,
and 0.1. Even under such a small error tolerance ε = 10−10, the time-complexity required
by the closed-form solution to Equation (1) is still much larger than the that required by
the iterative Gauss–Seidel algorithm proposed in this work when only a single processor
is used.
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Figure 10. Time-complexity versus the number of processors p and the dimension k subject to
ε = 10−5 for an inconsistent system (m = 1.25 n).

Figure 11 demonstrates that if η(V∗V) < 1, our proposed new iterative Gauss–Seidel
approach requires less time-complexity than the exact (closed-form) solution. According
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to Figure 11, the time-complexity advantage of our proposed approach becomes more
significant as the dimension grows.

250 500 750 1000 1250 1500 1750 2000
Dimension n

103

105

107

109

1011

Ti
m
e 
Co

m
pl
ex

ity

Closed-Form
GS: η(V*V) = 0.9
GS: η(V*V) = 0.5
GS: η(V*V) = 0.1

Figure 11. Time-complexity versus n for V with different spectral radii subject to ε=10−10 for an
arbitrary inconsistent system (m = 1.25 n) such that η(V∗V) = 0.9, 0.5, and 0.1.

The run-time results listed by Tables 1 and 2 are evaluated for different dimensions: k
= 0.2 n and m = 1.2 n with respect to different n. The run-time unit is seconds. The computer
specifications are as follows: GeForce RTX 3080 Laptop GPU, Windows 11 Home, 12th Gen
Intel Core i9 processor, and SSD 8GB. Table 1 compares the run-times for the LU matrix
factorization method in [51] and alternate least-squares (ALS) method in [52] with respect
to different dimensions involved in the factorization step formulated by Equation (1).
According to Table 1, the ALS method leads to a shorter run-time compared to the LU
matrix factorization method. Table 2 compares the run times of the LAPACK solver [53], our
proposed Gauss–Seidel algorithms with the factorization step formulated by Equation (1)
(acronymed as “Fac. Inc.” in the tables), and our proposed Gauss–Seidel algorithms
without the factorization step formulated by Equation (1) (acronymed as “Fac. Exc.” in
the tables) for $max = 0.99 and $max = 0.01. If $max = 0.99, the convergence speeds of our
proposed Gauss–Seidel algorithms are slow since $max is close to one and thus it requires
a longer time than the LAPACK solver. However, our proposed method can outperform
the LAPACK solver when $max is small since our proposed Gauss–Seidel algorithms will
converge to the solution much faster.

Table 1. Run-times (in seconds) for the factorization of V.

Dimensions, n 100 1000 10,000 100,000
LU 5.31 8.18 × 101 2.18 × 102 7.01 × 103

ALS 4.31 17.81 9.18 × 101 4.81 × 102

Table 2. Run-times (in seconds) for solving V using the Gauss–Seidel algorithms.

Dimensions, n 100 1000 10,000 100,000
$max = 0.99, LAPACK 5.71 25.1 2.4 × 102 9.2× 102

$max = 0.99, Fac. Inc. 6.63 41.61 8.08 × 102 2.30 × 103

$max = 0.99, Fac. Exc. 2.32 23.8 7.18 × 102 1.91 × 103

$max = 0.01, LAPACK 5.31 23.1 2.28 × 102 9.01 × 102

$max = 0.01, Fac. Inc. 4.43 20.1 1.71 × 102 7.60 × 102

$max = 0.01, Fac. Exc. 0.13 2.31 8.18 × 101 2.81 × 102

6.4. Memory-Complexity Study

Memory-complexity is also investigated here according to the theoretical analysis
stated in Section 5.2. Figure 12 depicts the required memory-complexity for solving
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an arbitrary consistent system (the same as the system used in Section 6.3) using Al-
gorithm 1. The memory-complexity is evaluated for different dimensions: k = 0.2 n,
k = 0.1 n, and k = 0.05 n. We further set m = 1.25 n. On the other hand, for an arbitrary
inconsistent system (the same as the system used in Section 6.3), all of the aforemen-
tioned values of m, n, and k remain the same and Algorithm 2 should be applied instead.
Figure 13 plots the required memory-complexity for solving an inconsistent system using
Algorithm 2. In Figures 12 and 13, for both consistent and inconsistent systems, we also
present the required memory-complexity for solving the original system involving the
matrix V without factorization. According to Figures 12 and 13, the storage-efficiency can
be significantly improved by at least 75% to 90% (dependent on the dimension k).
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Figure 12. The memory -complexity versus n for a consistent system (m = 1.25 n).
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Figure 13. The memory -complexity versus n for an inconsistent system (m = 1.25 n).

7. Conclusions

For a wide variety of big-data analytics applications, we designed two new efficient
parallel algorithms, which are built upon the Gauss–Seidel algorithm, to solve large linear-
regression problems for both consistent and inconsistent systems. This new approach
can save computational resources by transforming the original problem into subproblems
involving factorized matrices of much smaller dimensions. Meanwhile, the theoretical
expected-error estimates were derived to study the convergences of the new algorithms
for both consistent and inconsistent systems. Two crucial computational resource metrics—
time-complexity and memory-complexity—were evaluated for the proposed new algo-
rithms. Numerical results from artificial simulations and real-world data demonstrated the
convergence and the efficiency (in terms of computational resource usage) of the proposed
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new algorithms. Our proposed new approach is much more efficient in both time and
memory than the conventional method. Since the prevalent big-data applications frequently
involve linear-regression problems (such as how to undertake linear regression when the
associated matrix dimension is very large) with tremendous dimensions, our proposed new
algorithms can be deemed very impactful and convenient to future big-data computing
technology. In the future, we would like to consider the problem about how to perform
the matrix factorization V properly to have $max = max($W, $H) as small as possible. If
we have a smaller $max, we can expect faster convergences of our proposed Gauss–Seidel
algorithms. In general, it is not always possible to have the linear system characterized by
V having a small value of $max. Future research suggested here will help us to overcome
this main challenge.
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