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Abstract. We construct new explicit examples of nonsmoothable Gorenstein

algebras with Hilbert function (1, n, n, 1). This gives a new infinite family of
elementary components in the Gorenstein locus of the Hilbert scheme of points

and solves the cubic case of Iarrobino’s conjecture.
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1. Introduction

Hilbert schemes of points were first constructed by Grothendieck in 1960-61
[Gro95]. Since then they have found many applications, notably in combinatorics
[Hai03] and in constructing hyperkähler manifolds [Bea83]. Hilbert schemes of points
also appear in complexity theory while studying tensor and border ranks [Lan17].
One of the more important results of the theory is that by Fogarty stating that
the Hilbert scheme of points of a smooth, irreducible surface is itself smooth and
irreducible [Fog68]. The Hilbert scheme of points for three- and higher-dimensional
varieties is singular and not well understood.
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2 ROBERT SZAFARCZYK

The topology of the Hilbert scheme of points is still poorly understood and finding
its irreducible components remains a challenge. The building blocks for them are the
elementary components, those parametrizing subschemes with one-point support.
Points of the Hilbert scheme of points corresponding to Gorenstein zero-dimensional
subschemes form an open set, called the Gorenstein locus. Few components of this
locus are known. Additionally, the smooth points of these components are often
not explicitly given. Explicit points outside of the smoothable component are of
interest in applications to tensors [JLP22] and in computations.

Let S = k[α1, ..., αn] and P = k[x1, ..., xn] be polynomial rings of n variables over
a field k of characteristic 0. There is an action of S on P defined as follows

αb1
1 α

b2
2 ... α

bn
n · x

a1
1 x

a2
2 ... x

an
n =

{
xa1−b1
1 xa2−b2

2 ... xan−bn
n if ∀i ai ≥ bi

0 otherwise.

This action is called contraction and is somewhat similar to differentiation. For any
polynomial f ∈ P the set Ann(f) = {s ∈ S : s · f = 0} forms a homogeneous ideal
of S, called the apolar ideal. In this paper, we present the following result.

Theorem 1. If n ≥ 6 (except for n = 7), then for a general f ∈ P homogeneous
of degree 3 the ideal Ann(f) is a smooth point of an elementary component of the
Hilbert scheme.

This is a corollary of the following theorem. The apolar algebra S/Ann(f), denoted
Apolar(f), with Hilbert function (1, n, n, 1) is said to satisfy the small tangent space
condition if the k-algebra S/Ann(f)2 has the smallest Hilbert function possible.

Theorem 2. If n ≥ 6 (except for n = 7), then for a general f ∈ P homogeneous of
degree 3 the apolar algebra Apolar(f) satisfies the small tangent space condition.

Loosely speaking, Theorem 2 asserts that Apolar(f) has only trivial deformations
of second order. For why it is false when n ≤ 5 or n = 7 see [CN11] and [BCR22].

The characteristic 0 assumption can be removed for n ≥ 18, see Theorem 3.1.
We believe this to be true for all n, but small n would probably require a direct
verification. We make this verification on computer for characteristics 0,2, and 3.
For n less than 13 this was also done by Iarrobino and Kanev [IK99, Lemma 6.21].

Summing up, we show Theorem 2 to hold for all characteristics when n ≥ 18
and for characteristics 0,2, and 3 in general. This resolves the following conjecture,
posed by Iarrobino and Kanev, in the case d = 3.

Conjecture 3 ([IK99], Conjecture 6.30). Let d be an odd integer. If one of the
following conditions holds

(1) n = 4 and d ≥ 15,
(2) n = 5 and d ≥ 5,
(3) n ≥ 6 and d ≥ 3 (except for (n, d) = (7, 3)),

then for a general f ∈ P homogeneous of degree d the apolar algebra Apolar(f)
satisfies the small tangent space condition.

For d > 3 essentially nothing is known.
In order to prove Theorem 2 it suffices to give, for every n, a single example of a

polynomial whose apolar algebra satisfies the small tangent space condition. In our
proof, we give three rather simple ones covering all n greater than 8. For n divisible
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by 3 we take the following polynomial

F =

m∑
i=1

aibici + aia
2
i+1 + bib

2
i+1 + cic

2
i+1.

As a consequence, we provide an explicit description of a smooth point of an
elementary component of the Hilbert scheme. Since the apolar ideals associated to
our examples admit a set of generators consisting only of monomials and binomials
they are also convenient from a computational point of view. Moreover, for n ≥ 18,
our proof does not use any computer computations. This is important in complexity
theory, where structure tensors of such algebras correspond to 1-generic tensors
[Lan17, Section 5.6.1].

We begin, in chapter 2, by giving all necessary background such as contraction,
apolar algebras, and Gorenstein rings. It is also there where we compute the tangent
space to the Hilbert scheme and present equivalent descriptions of the small tangent
space condition. Then, in chapter 3, we prove Theorem 2 for sufficiently large n.
Small n are taken care of in chapter 4 where we verify them on a computer.

2. Preliminaries

This chapter introduces all notions related to our study. In section 2.1, we define
the Hilbert scheme and describe its tangent space. In section 2.2, we introduce
apolar algebras and divided power rings associated to polynomial rings. In section
2.3, we introduce the dualizing functor (−)∨ and define zero-dimensional Gorenstein
local rings. In section 2.4, we define the small tangent space condition and relate
it to the tangent space of the Hilbert scheme. Finally, in section 2.5, we give a
link between the small tangent space condition and smooth points on elementary
components of the Hilbert scheme.

2.1. Hilbert scheme.
In this section, we introduce the notion of deformation. The deformation functor

turns out to be representable by a scheme, called the Hilbert scheme of points.
Let k be a field. Given two k-algebras S and A, we write SA for the ring S ⊗k A

treated as an A-algebra.

Definition 2.1. Let S be a fixed, finitely generated k-algebra. The embedded
deformation functor Defemb : k-Alg → Set assigns to a k-algebra A the set of
isomorphism classes of ideals I / SA such that SA/I is a locally free A-module of
finite rank. To a morphism A → B of k-algebras the functor Defemb assigns the
function taking I ∈ Defemb(A) to ISB ∈ Defemb(B).

We consider the following theorem as the definition of the Hilbert scheme.

Theorem 2.2 ([HS04], Theorem 1.1). Let S be a fixed, finitely generated k-algebra.
Then, there exists a finite type k-scheme H, called the Hilbert scheme of points,
representing the deformation functor Defemb in the sense that there is an isomorphism
of sets Defemb(A) ∼= MorSch(SpecA,H) natural in A.

Note that Defemb(k), and hence H(k), is the set of ideals I /S such that dimk S/I
is finite. Since S/I is Noetherian dimk S/I being finite is equivalent to S/I being
zero-dimensional.
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Theorem 2.3 ([Str96], Theorem 10.1). Let S be a finitely generated k-algebra, and
let H be its associated Hilbert scheme. For an ideal I / S such that dimk S/I is
finite, hence for a rational point of H, the tangent space of H at I is isomorphic to
HomS(I, S/I).

2.2. Apolar algebras.
In this section, following [Jel17], we introduce the notion of apolar algebra. This

is the easiest to construct and, in the case of zero-dimensional, graded local rings,
the only example of a Gorenstein ring (see Theorem 2.11).

Consider a polynomial ring S = k[α1, .., αn] over a field k. Recall that S is a
graded k-algebra with the ideal S+ equal to (α1, ..., αn). We denote by S∨ the
S-module Homk(S, k) of k-linear functionals on S. Let 〈−,−〉 : S × S∨ → k be the
natural map given by evaluation.

Definition 2.4. Let P be the submodule {f ∈ S∨ : ∀N�0 〈(S+)N , f〉 = 0} of S∨.
The induced action of S on P is called contraction.

We now give a more concrete description of contraction. If a = (a1, a2, ..., an) is
a multi-index, we write αa for the monomial αa1

1 α
a2
2 ... α

an
n ∈ S. For every multi-

index a there is a unique functional x[a] ∈ P dual to αa in the sense that for all
multi-indices b we have

〈αb,x[a]〉 =

{
1 if a = b

0 otherwise.

Note that x[·] form a k-basis of P . The quantity
∑

a :≡
∑
ai is called the degree

of x[a]. An element f ∈ P is called homogeneous of degree d if f is contained in
spank(x[a] :

∑
a = d). Contraction behaves on the basis as follows

αb · x[a] =

{
x[a−b] if a ≥ b (∀i ai ≥ bi)
0 otherwise.

Though we do not need this, we can equip P with a ring structure. Multiplication
on P is given by the formula

x[a]x[b] =

(
a + b

a

)
x[a+b]

where
(
a+b
a

)
=
∏(ai+bi

ai

)
. In this way, P is a divided power ring.

Definition 2.5. Let f ∈ P , and let Ann(f) denote the ideal {s ∈ S : s ·f = 0} of S.
The k-algebra S/Ann(f) is called the apolar algebra of f , and is denoted Apolar(f).

2.3. Zero-dimensional Gorenstein local rings.
Throughout this section let (A,m, k) be a zero-dimensional, finitely generated

local k-algebra. We denote by A-mod the category of finitely generated modules
over A.

We recall basic definitions and properties concerning zero-dimensional Gorenstein
rings following [Eis95, Chapter 21].

Definition 2.6. A functor E : A-modop → A-mod is called dualizing if E2 ∼= 1.

Proposition 2.7 ([Eis95], Proposition 21.1). If E : A-modop → A-mod is dualizing,
then there is an isomorphism of functors E ∼= HomA(−, E(A)). Moreover, up to
isomorphism there exists at most one dualizing functor on A-mod.
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Consider the functor (−)∨ :≡ Homk(−, k). For an A-module M , the vector space
Homk(M,k) naturally forms an A-module with the A-action given by

(a · ϕ)(m) = ϕ(am)

where ϕ ∈ M∨, m ∈ M , and a ∈ A. Therefore, we can view (−)∨ as a functor
A-modop → A-mod.

Proposition 2.8 ([Eis95], Section 21.1). The functor (−)∨ is dualizing.

Combining Propositions 2.7 and 2.8 shows that up to isomorphism there exists a
unique dualizing functor on A-mod.

Definition 2.9. We say that A is Gorenstein if A∨ ∼= A.

If A is Gorenstein, then in view of Proposition 2.7 we have an isomorphism
of functors HomA(−, A) ∼= HomA(−, A∨) ∼= (−)∨. In particular HomA(−, A) is
dualizing. Conversely, if HomA(−, A) is dualizing, then, by Proposition 2.7 and
Yoneda lemma, A is isomorphic to A∨, so A is Gorenstein.

We have the following characterization of zero-dimensional Gorenstein rings.

Proposition 2.10 ([Eis95], Proposition 21.5). Let (A,m, k) be a zero-dimensional,
finitely generated local k-algebra. Then, the following conditions are equivalent.

(1) A is Gorenstein.
(2) A is injective as an A-module.
(3) The annihilator of the maximal ideal Ann(m) ⊂ A is one dimensional.
(4) HomA(−, A) is dualizing.

2.4. Small tangent space condition.
In this section, we introduce the small tangent space condition and better describe

the tangent space of the Hilbert scheme associated to a polynomial ring. We also
prove Proposition 2.18, which is needed in the proof of Theorem 3.1.

As in section 2.2, let S be a polynomial ring of n variables over a field k, and
let P be its associated divided power ring. We denote by H the Hilbert scheme
associated to S. Recall that Apolar(f) = S/Ann(f). If I = Ann(f) we write S/I
and Apolar(f) interchangeably.

When saying that a graded module M has Hilbert function (h0, h1, ..., hj), hi ∈ N
we mean that H(M)i is equal to hi for i ∈ {0, 1, ..., j} and that H(M)i is equal to 0
for i /∈ {0, 1, ..., j}. For example, S has Hilbert function (1, n,

(
n+1
2

)
,
(
n+2
3

)
, ...). We

denote a shift of gradation in square brackets, so M [d]i = Md+i.

Theorem 2.11 ([Iar94], Lemma 1.2 and Theorem 1.5). For every nonzero f ∈ P
homogeneous of degree d the apolar algebra Apolar(f) is a graded zero-dimensional
Gorenstein local ring. Moreover, there is a graded isomorphism Apolar(f) ∼=
Apolar(f)∨[−d].

For every homogeneous ideal I / S, if S/I is a zero-dimensional Gorenstein local
ring, then there exists homogeneous f ∈ P such that I = Ann(f).

We can now describe the tangent space of the Hilbert scheme more concretely.

Proposition 2.12. Let f ∈ P be homogeneous of degree d, and let I = Ann(f).
Then, the tangent space TIH is isomorphic as a graded module to (I/I2)∨[−d].
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Proof. By Theorem 2.3 the tangent space to H at I is isomorphic to HomS(I, S/I).
By the tensor-hom adjunction and the isomorphism I ⊗S S/I ∼= I/I2 we get

HomS(I, S/I) ∼= HomS/I(I/I2, S/I).

Then, Theorem 2.11 yields

HomS/I(I/I2, S/I) ∼= HomS/I(I/I2, (S/I)∨)[−d].

Now, again by the tensor-hom adjunction, we obtain

HomS/I(I/I2, (S/I)∨)[−d] ∼= (I/I2)∨[−d].

Hence TIH ∼= (I/I2)∨[−d] as required. �

From now on, since we are mainly interested in degree 3 homogeneous elements
of P , we reduce ourselves to this special case.

Let f ∈ P be homogeneous of degree 3, and let I = Ann(f). Since S≥4 is
contained in I the Hilbert function of S/I can be nonzero only in degrees 0, 1, 2,
and 3. Moreover, since (S/I)∨ ∼= (S/I)[3] the Hilbert function is symmetric in the
sense that H(S/I)0 = H(S/I)3 and H(S/I)1 = H(S/I)2. Clearly, H(S/I)0 = 1
and H(S/I)1 ≤ n. In view of the following proposition, the case H(S/I)1 < n might
be considered degenerate.

Proposition 2.13 ([IK99], Proposition 3.12). There is an open, dense subset U
of the space of cubics Spec Sym(P3)∨ such that for all rational points f ∈ U(k) the
Hilbert function of Apolar(f) is (1, n, n, 1).

Proposition 2.14. Let f ∈ P be homogeneous of degree 3, and let I = Ann(f). If
Apolar(f) has Hilbert function (1, n, n, 1), then H(S/I2)4 ≥ n.

Proof. This follows from [Jel18, Lemma 3.4]. �

Definition 2.15. Let f ∈ P be homogeneous of degree 3, and let I = Ann(f).
Then, we say that Apolar(f) satisfies the small tangent space condition if Apolar(f)
has Hilbert function (1, n, n, 1) and H(S/I2)4 = n, H(S/I2)5 = 0.

Proposition 2.16. Let f ∈ P be homogeneous of degree 3. Then, Apolar(f)
satisfies the small tangent space condition if and only if the tangent space of H at
I = Ann(f) has Hilbert function n,

(
n+2
3

)
−1,

(
n+1
2

)
−n in degrees −1, 0, 1 respectively,

and 0 elsewhere.

Proof. First suppose that Apolar(f) satisfies the small tangent space condition. In
view of Proposition 2.12 we need to compute the Hilbert function of I/I2. The
ring S/I has Hilbert function (1, n, n, 1), so I≤1 = 0. It follows that S/I2 is all of S
in degrees 0, 1, 2, and 3. Furthermore, since S/I satisfies the small tangent space
condition S5 is contained in I2, so S≥6 is contained in I2 as well, which means

that H(S/I2)≥6 is 0. Thus, the Hilbert function of S/I2 is (1, n,
(
n+1
2

)
,
(
n+2
3

)
, n).

Furthermore, since S/I has Hilbert function (1, n, n, 1), we get that the Hilbert
function of I/I2 is equal to (0, 0,

(
n+1
2

)
− n,

(
n+2
3

)
− 1, n), hence the tangent space

TIH ∼= (I/I2)∨[−3] has the desired Hilbert function.
Now suppose that TIH has the given Hilbert function. Then, I/I2 has Hilbert

function (0, 0,
(
n+1
2

)
−n,

(
n+2
3

)
−1, n). Since S≥4 ⊂ I this means that H(S/I2)4 = n

and H(S/I2)5 = 0. Moreover, since I2 is not all of S we have H(I)0 = 0, so
H(I2)1 = 0. Thus, H(S/I)0 = 1 and H(S/I)1 = n, which since S/I is Gorenstein
implies that S/I has Hilbert function (1, n, n, 1) as required. �
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Corollary 2.17. Let f ∈ P be homogeneous of degree 3 such that Apolar(f)
has Hilbert function (1, n, n, 1). Then, Apolar(f) satisfies the small tangent space
condition if and only if the tangent space of H at Ann(f) has the smallest Hilbert
function possible.

Proposition 2.18. Let f ∈ P be homogeneous of degree 3 such that Apolar(f)
satisfies the small tangent space condition. Then, for a general g ∈ P homogeneous
of degree 3 the apolar algebra Apolar(g) satisfies the small tangent space condition.

Proof. Let U be the open subscheme of Spec Sym(P3)∨ from Proposition 2.13. By
[Jel18, Section 2.2] there is a family Z ⊂ U × An

k → U such that the fibre over
f ∈ U(k) is Spec Apolar(f). Hence, the claim follows from Corollary 2.17 and upper
semi-continuity of rank for the quasicoherent sheaf I(Z)/I(Z)2. �

2.5. Elementary components.
We now describe the connection between the small tangent space condition and

smooth points on elementary components of the Hilbert scheme.
As in section 2.4, we only consider degree 3 homogeneous elements of P .

Definition 2.19. An irreducible component Z of the Hilbert scheme is called
elementary if for all rational points I ∈ Z(k) the S-module S/I is supported at a
single point.

Proposition 2.20. Let f ∈ P be homogeneous of degree 3. If Apolar(f) satisfies the
small tangent space condition, then I = Ann(f) is a smooth point of an elementary
component of H.

Proof. Since Apolar(f) satisfies the small tangent space condition, by Proposition
2.16, we have dimk HomS(I, S/I)<0 = n. Hence, by [Jel19, Theorem 4.5 and
Corollary 4.7], all irreducible components containing I are elementary. Smoothness
follows from the discussion in [IK99, Proof of Lemma 6.21]. �

3. Small tangent space condition in degree 3

In this chapter, we prove Theorem 3.1, which confirms Conjecture 3 in the case
where d = 3 and n ≥ 18.

Theorem 3.1. Let S be a polynomial ring of n variables over a field k, and let P be
its associated divided power ring. If n ≥ 18, then for a general f ∈ P homogeneous
of degree 3 the apolar algebra Apolar(f) satisfies the small tangent space condition.

Proof. In view of Proposition 2.18 it suffices to find, for each n ≥ 18, a single f ∈ P
such that Apolar(f) satisfies the small tangent space condition. We divide the proof
into three cases: n = 3m, n = 3m + 1, and n = 3m + 2, where m ≥ 6. They are
resolved by Propositions 3.11, 3.18, and 3.24 respectively. �

Corollary 3.2. Let S be a polynomial ring of n variables over a field k, and let P be
its associated divided power ring. If n ≥ 18, then for a general f ∈ P homogeneous
of degree 3 the ideal Ann(f) is a smooth point of an elementary component of the
Hilbert scheme.

Proof. This follows by combining Proposition 2.20 and Theorem 3.1. �
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3.1. Proof of Theorem 3.1; case n = 3m.
Let S = k[ai, bi, ci]

m
i=1 be a polynomial ring of n = 3m variables. Recall that we

assume m ≥ 6. When writing indices we treat them modulo m.
Consider the following polynomial

F =

m∑
i=1

aibici + aia
2
i+1 + bib

2
i+1 + cic

2
i+1.

Also by F we denote its dual element in the divided power ring associated to S.
Let I be the smallest ideal such that the following remark holds.

Remark 3.3. For all x, y ∈ {a, b, c}, and for all indices i, j, if j /∈ {i − 1, i, i + 1},
then xiyj ∈ I.

For all x, y ∈ {a, b, c}, and for all indices i, j, if x 6= y, then xiyi+1 − xjyj+1 ∈ I.
For all x, y ∈ {a, b, c}, and for all indices i, j, one of the following holds:

(1) xiyj is contained in I.
(2) x 6= y and j ∈ {i− 1, i+ 1}.
(3) There exists an index k and p, q ∈ {a, b, c}, p 6= q, such that xiyj − pkqk ∈ I.

The polynomial F is chosen such that I ⊂ AnnF .
Let J denote the ideal I2 + 〈aiai+1a

2
i+2, bibi+1b

2
i+2, cici+1c

2
i+2 | i = 1, ...,m〉. Note

that F, I, and J are invariant under index translation and permutations of the set
{a, b, c}.

We want to show that Apolar(F ) satisfies the small tangent space condition. The
main part of the proof is checking that all polynomials of degree 4 are contained in
J , hence that H(S/I2)4 = n.

In this section, we use the following notation. For polynomials Q,R ∈ S we write
Q ≡ R if Q is equal to R in S/I2.

Lemma 3.4. For all x, y, z, w, p, q ∈ {a, b, c}, and for all indices i, j, k,

(1) there exists an index t such that xiyjztwt+1 is in I2.
(2) there exist indices s, t such that each of xiyi+1ztwt+1, xsys+1zjwj+1, and

xsys+1ztwt+1 is in I2.
(3) if j, k ∈ {i − 1, i, i + 1}, then there exists an index s such that each of

xiyjzsws+1 and zsws+1pkqk is in I2.

Proof. Throughout the proof we use the assumption m ≥ 6.
We first prove (1). If j /∈ {i + 1, i + 2, i + 3}, then we take t = i + 2, so that

xiyjzi+2wi+3 = (xiwi+3)(yjzi+2) ≡ 0. If j ∈ {i + 1, i + 2, i + 3}, then we take
t = i− 2, so that xiyjzi−2wi−1 = (xizi−2)(yjwi−1) ≡ 0.

Now we show (2). If j /∈ {i+ 1, i+ 2, i+ 3}, then we take s = j + 2, t = j − 2, so
that

xiyi+1zj−2wj−1 = (xizj−2)(yi+1wj−1) ≡ 0

xj+2yj+3zjwj+1 = (xj+2zj)(yj+3wj+1) ≡ 0

xj+2yj+3zj−2wj−1 = (xj+2zj−2)(yj+3wj−1) ≡ 0.

If j ∈ {i+ 1, i+ 2, i+ 3}, then we take s = j − 2, t = j + 1, so that

xiyi+1zj+1wj+2 = (xizj+1)(yi+1wj+2) ≡ 0

xj−2yj−1zjwj+1 = (xj−2zj)(yj−1wj+1) ≡ 0

xj−2yj−1zj+1wj+2 = (xj−2zj+1)(yj−1wj+2) ≡ 0.
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Finally, we prove (3). If k = i+ 1, then we take s = i− 3, so that

xiyjzi−3wi−2 = (xiwi−2)(yjzi−3) ≡ 0

zi−3wi−2pi+1qi+1 = (zi−3pi+1)(wi−2qi+1) ≡ 0.

If k ∈ {i− 1, i}, then we take s = i+ 2, so that

xiyjzi+2wi+3 = (xizi+2)(yjwi+3) ≡ 0

zi+2wi+3pkqk = (zi+2pk)(wi+3qk) ≡ 0.

This finishes the proof. �

Lemma 3.5. For all x, y, z, w ∈ {a, b, c}, z 6= w, and for all indices i, j, k, if either
xjyk ∈ I or x 6= y and k = j + 1, then the monomial ziwi+1xjyk is contained in I2.

Proof. By symmetry we can assume z = a, w = b. Hence, we only need to examine
monomials of the form aibi+1xjyk, where either xjyk ∈ I or x 6= y and k = j + 1.

First consider the case xjyk ∈ I. By Lemma 3.4 there exists an index t such that
atbt+1xjyk ∈ I2. Therefore, aibi+1xjyk = (aibi+1 − atbt+1)(xjyk) + atbt+1xjyk ≡ 0.

Now consider the case where x 6= y and k = j + 1. Then, by Lemma 3.4, there
exist indices t and s such that atbt+1xjyj+1, aibi+1xsys+1, and atbt+1xsys+1 are in
I2. Therefore, aibi+1xjyj+1 = (aibi+1 − atbt+1)(xjyj+1 − xsys+1) + aibi+1xsys+1 +
atbt+1xjyj+1 − atbt+1xsys+1 ≡ 0. �

Lemma 3.6. For all indices i and j, the monomial aiajbici is contained in J .

Proof. First assume that j /∈ {i− 2, i− 1, i, i+ 1}. Then, we can rewrite aiajbici as
follows.

aiajbici = (aibi − ci−1ci)(ajci) + (ajci−1)(c2i − ai−1bi−1)+

+ ai−1ajbi−1ci−1 ≡ ai−1ajbi−1ci−1
Hence, iterating this procedure, we get aiajbici ≡ ajaj+2bj+2cj+2. Therefore, we
just need to examine monomials ai−2aibici, ai−1aibici, a

2
i bici, and aiai+1bici.

Monomial ai−2aibici can be rewritten in the following way.

ai−2aibici = (aibi − ci−1ci)(ai−2ci) + (ai−2ci−1 − ai+2ci+3)(c2i − ai−1bi−1)+

+ ai−2ai−1bi−1ci−1 + (ai+2ci)(cici+3)− (ai−1ai+2)(bi−1ci+3) ≡
≡ ai−2ai−1bi−1ci−1

Hence, we are reduced to considering ai−1aibici, a
2
i bici, and aiai+1bici. Before we

do so, we make some auxiliary computations.

a4i = (a2i − bi−1ci−1)2 − (b2i−1 − bi−3bi−2)(c2i−1 − ci−3ci−2)+

− b2i−1ci−3ci−2 − bi−3bi−2c2i−1 + bi−3bi−2ci−3ci−2+

+ 2a2i bi−1ci−1

a2i a
2
i+1 = (a2i − bi−1ci−1)(a2i+1 − bici) + a2i bici + (ai+1bi−1)(ai+1ci−1)+

− bi−1bici−1ci
Hence, Lemma 3.5 shows a4i ≡ 0 and a2i a

2
i+1 ≡ a2i bici. We make further computa-

tions, where we assume j /∈ {i− 1, i, i+ 1}.
a2i bici ≡ a2i a2i+1 = (a2i+2 − aiai+1)2 − a4i+2 + 2aiai+1a

2
i+2 ≡ 2aiai+1a

2
i+2 ∈ J

aiaja
2
j+1 = (aiaj)(a

2
j+1 − aj−1aj) + aiaj−1a

2
j ≡ aiaj−1a2j
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Iterating the last computation we get aiaja
2
j+1 ≡ aiai+1a

2
i+2. We are now ready to

rewrite ai−1aibici and aiai+1bici.

ai−1aibici = (ai−1ai − a2i+1)(bici − a2i+1) + ai−1aia
2
i+1+

+ (ai+1bi − ai+3bi+2)(ai+1ci − ai−1ci−2) + (ai−1ai+1)(bici−2)+

+ (ai+1ai+3)(bi+2ci)− (ai−1ai+3)(bi+2ci−2)− a4i+1 ≡
≡ ai−1aia2i+1 ∈ J

aiai+1bici = (aiai+1 − a2i+2)(bici − a2i+1) + (aiai+1 − a2i+2)(a2i+1 − ai−1ai)+
+ ai−1a

2
i ai+1 + a2i+1a

2
i+2 − (ai−1ai+2)(aiai+2) + (ai+2bi)(ai+2ci)+

− a2i+1a
2
i+2 ≡ ai+1ai+2a

2
i+3 ∈ J

This finishes the proof. �

Lemma 3.7. For all x, y, z, w ∈ {a, b, c}, z 6= w, and for all indices i, j, k, the
monomial ziwi+1xjyk is contained in J .

Proof. By symmetry we can assume z = a, w = b. Hence, we only need to examine
monomials of the form aibi+1xjyk.

Lemma 3.5 covers some of the cases. In any other there exist p, q ∈ {a, b, c},
p 6= q, and an index t such that xjyk − ptqt ∈ I. Furthermore, since xjyk /∈ I
we have k, t ∈ {j − 1, j, j + 1}, hence, by Lemma 3.4, we can choose an index s
such that both asbs+1xjyk and asbs+1ptqt are in I2. Then, we have aibi+1xjyk =
(aibi+1 − asbs+1)(xjyk − ptqt) + aibi+1ptqt + asbs+1xjyk − asbs+1ptqt ≡ aibi+1ptqt.
Hence, to finish the proof it suffices to consider monomials of the form aibi+1xjyj
with x 6= y.

If j /∈ {i− 1, i, i+ 1, i+ 2}, then aibi+1xjyj = (aixj)(bi+1yj) ≡ 0.
Since x 6= y one of them is not a, say x 6= a. Then, if j = i − 1, we can

write aibi+1xi−1yi−1 as xi−1aiyi−1bi+1, and since yi−1bi+1 ∈ I, Lemma 3.5 applies
showing xi−1aiyi−1bi+1 ≡ 0. Similarly, if j = i+ 2, since one of x, y in not b, say
x 6= b, we know, by Lemma 3.5, that bi+1xi+2aiyi+2 ≡ 0.

In the case j = i+ 1 we need to consider monomials aiai+1b
2
i+1, aiai+1bi+1ci+1,

and aib
2
i+1ci+1. Monomial aiai+1bi+1ci+1 is a special case of Lemma 3.6. Others

can be rewritten as follows.

aiai+1b
2
i+1 = (aibi+1 − ai−2bi−1)(ai+1bi+1 − c2i+2) + aibi+1c

2
i+2+

+ (ai−2ai+1)(bi−1bi+1)− (ai−2ci+2)(bi−1ci+2) ≡ 0

aib
2
i+1ci+1 = (aibi+1 − ai−2bi−1)(bi+1ci+1 − a2i+2) + aia

2
i+2bi+1+

+ (ai−2bi+1)(bi−1ci+1)− (ai−2ai+2)(bi−1ai+2) ≡ 0

where aibi+1c
2
i+2 and aia

2
i+2bi+1 are in I2 by Lemma 3.5.

It remains to consider j = i. We need to examine three monomials, a2i bibi+1,
a2i bi+1ci, and aibibi+1ci. We can rewrite them as follows.

a2i bibi+1 = (a2i − ai−2ai−1)(bibi+1 − b2i+2) + (aibi+2)2+

+ (ai−2bi)(ai−1bi+1)− (ai−2bi+2)(ai−1bi+2) ≡ 0

a2i bi+1ci = (a2i − ai−2ai−1)(bi+1ci − bi+3ci+2) + (aibi+3)(aici+2)+

+ (ai−2ci)(ai−1bi+1)− (ai−2ci+2)(ai−1bi+3) ≡ 0

Since, by symmetry, aibibi+1ci is a special case of Lemma 3.6 the proof is finished. �
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Lemma 3.8. For all x, y, z, w ∈ {a, b, c}, and for all indices i, j, k, t such that
xiyj ∈ I, the monomial xiyjzkwt is in J .

Proof. If zkwt is contained in I as well, then xiyjzkwt ∈ I2. If zkwt is of the form
psqs+1 for some index s and p, q ∈ {a, b, c}, p 6= q, then Lemma 3.7 applies.

In any other case there exist p, q ∈ {a, b, c}, p 6= q, and an index s such that
zkwt − psqs ∈ I. Therefore, we have xiyjzkwt = (xiyj)(zkwt − psqs) + xiyjpsqs ≡
xiyjpsqs. Hence, by symmetry, it suffices to examine monomials of the form aibixjyk
with xjyk ∈ I.

If any of j, k are in {i− 1, i+ 1}, then Lemma 3.7 applies. If both j and k are
not in {i− 1, i, i+ 1}, then aibixjyk = (aixj)(biyk) ≡ 0. Thus, we can assume one
of j, k equal to i, say k = i.

Now, if y 6= c, since xjyi ∈ I, we get aibixjyi = (aibi− ci−1ci)(xjyi) + ci−1yicixj ,
hence Lemma 3.7 applies. We are therefore reduced to monomials of the form
aibicixj . By symmetry we can assume x = a, and use Lemma 3.6 to finish the
proof. �

Proposition 3.9. Every degree 4 homogenous polynomial of S is contained in J .

Proof. In view of Lemma 3.8 it suffices to verify monomials where no two indices
differ by more than 1. Moreover, if two indices differ exactly by 1, and not all letters
are equal, then Lemma 3.7 applies. Hence, by symmetry, it suffices to examine
a2i bici, a

2
i b

2
i , a

3
i bi, a

4
i , a

3
i ai+1, aia

3
i+1, and a2i a

2
i+1. Clearly, a2i bici is in J . Monomial

a4i was shown to be in I2 in the proof of Lemma 3.6, hence, by symmetry, c4i is also
in I2. We can rewrite the remaining monomials as follows.

a2i b
2
i = (aibi − c2i+1)2 + 2(aici+1)(bici+1)− c4i+1 ≡ 0

a3i bi = (aibi − c2i+1)(a2i − bi−1ci−1) + (aibi−1)(bici−1) + (aici+1)2+

− (ci−1ci+1)(bi−1ci+1) ≡ 0

a3i ai+1 = (a2i − bi−1ci−1)(aiai+1 − bi+1ci+1) + a2i bi+1ci+1+

+ aiai+1bi−1ci−1 − (bi−1bi+1)(ci−1ci+1)

aia
3
i+1 = (aiai+1 − bi+1ci+1)(a2i+1 − bici) + aiai+1bici+

+ a2i+1bi+1ci+1 − bibi+1cici+1

a2i a
2
i+1 = (a2i − ai−2ai−1)(a2i+1 − bici) + a2i bici + (ai−2ai+1)(ai−1ai+1)+

− (ai−2bi)(ai−1ci − ai+1ci+2)− (ai−2ai+1)(bici+2)

Then, Lemmas 3.6 and 3.7 finish the proof. �

Lemma 3.10. For all x, y ∈ {a, b, c}, and for all indices i, j, the monomial
xiyjajbjcj is in I2.

Proof. By symmetry we can assume y = a. Note that a2jbj annihilates F , so

is in I. If i /∈ {j − 1, j, j + 1}, then xicj ∈ I, so xia
2
jbjcj = (xicj)(a

2
jbj) ∈ I2.

Now suppose i ∈ {j − 1, j, j + 1}. Either x 6= b or x 6= c, by symmetry we
can assume x 6= c. Then, in the case i ∈ {j − 1, j + 1}, we obtain xia

2
jbjcj =

(xicj − xi+3cj+3)(a2jbj) + (xi+3aj)(ajcj+3)bj ∈ I2. In the case i = j we need to
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consider monomials a3i bici and a2i b
2
i ci. We rewrite them as follows.

a3i bici = (a2i bi)(aici − bi−1bi) + (aib
2
i )(aibi−1 − ai−2bi−3) + (ai−2ai)(bi−3bi)bi ≡ 0

a2i b
2
i ci = (a2i ci)(b

2
i − bi−2bi−1) + (a2i bi−1)(bi−2ci) ≡ 0

This finishes the proof. �

Proposition 3.11. The apolar algebra Apolar(F ) satisfies the small tangent space
condition.

Proof. It is easy to check that no linear form annihilates F , hence Apolar(F )
has Hilbert function (1, n, n, 1). Proposition 3.9 implies that H(S/I2)4 ≤ n, so
H(S/Ann(F )2) ≤ n. Thus, by Proposition 2.14, H(S/Ann(F )2)4 = n. Finally,
since monomials of the form xiaibici generate (S/I2)4 Lemma 3.10 implies that
H(S/I2)5 = 0, so also H(S/Ann(F )2) = 0. �

3.2. Proof of Theorem 3.1; case n = 3m+ 1.
Let S′ = k[ai, bi, ci, d]mi=1 be a polynomial ring of n = 3m+ 1 variables. Recall

that we assume m ≥ 6. When writing indices we treat them modulo m.
Consider the following polynomial

F ′ =

m∑
i=1

aibici + aia
2
i+1 + bib

2
i+1 + cic

2
i+1 + aibi+1d.

Also by F ′ we denote its dual element in the divided power ring associated to S′.
Let I ′ be the smallest ideal such that the following remark holds.

Remark 3.12. For all x, y ∈ {a, b, c}, and for all indices i, j, if j /∈ {i− 1, i, i+ 1},
then xiyj ∈ I ′.

For all x, y ∈ {a, b, c}, and for all indices i, j, if x 6= y, then xiyi+1 − xjyj+1 ∈ I ′.
For all x, y ∈ {a, b, c}, and for all indices i, j, one of the following holds.

(1) xiyj is contained in I ′.
(2) x 6= y and j ∈ {i− 1, i+ 1}.
(3) There exists an index k and p, q ∈ {a, b, c}, p 6= q, such that xiyj−pkqk ∈ I ′.

For any x ∈ {a, b, c}, and any index i, one of the following holds.

(1) xid is contained in I ′.
(2) There exists an index j and p, q ∈ {a, b, c}, p 6= q, such that xid− pjqj ∈ I ′.

The polynomial F ′ is chosen such that I ′ ⊂ AnnF ′.
Let J ′ denote the ideal (I ′)2 + 〈aiai+1a

2
i+2, bibi+1b

2
i+2, cici+1c

2
i+2 | i = 1, ...,m〉+

〈a1b1c1d〉. Note that F ′, I ′, and J ′ are invariant under index translation.
We want to show that Apolar(F ′) satisfies the small tangent space condition.

The main part of the proof is checking that all polynomials of degree 4 are contained
in J ′, hence that H(S′/(I ′)2)4 = n.

In this section, we use the following notation. For polynomials Q,R ∈ S′ we
write Q ≡ R if Q is equal to R in S′/(I ′)2.

Lemma 3.13. All monomials of degree 4, not divisible by d are contained in J ′.

Proof. We have a natural inclusion of rings S ⊂ S′. Note that I ⊂ I ′ ∩ S, so also
J ⊂ J ′ ∩ S. Since every monomial not divisible by d is contained in S, the claim
follows from Proposition 3.9. �
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Lemma 3.14. For all x, y, z ∈ {a, b, c}, and for all indices i, j, k, the monomial
xiyjzkd is contained in J ′.

Proof. If any of xiyj , xizk, yjzk is in I ′, say xiyj ∈ I ′, then either zkd ∈ I ′, so that
xiyjzkd ∈ (I ′)2, or there exist p, q ∈ {a, b, c} and an index t such that zkd−ptqt ∈ I ′,
so xiyjzkd = (xiyj)(zkd− ptqt) + xiyjptqt. Monomial xiyjptqt is contained in J ′ by
Lemma 3.13.

If any of xiyj , xizk, yjzk is of the form wtvt+1, w 6= v, say j = i + 1, x 6= y,
then either zkd ∈ I ′ and we can rewrite xiyi+1zkd = (xiyi+1 − xk+1yk+2)(zkd) +
xk+1yk+2zkd, or zkd /∈ I ′ and there exist p, q ∈ {a, b, c} and an index t such that
zkd− ptqt ∈ I ′, hence xiyi+1zkd = (xiyi+1−xk+1yk+2)(zkd− ptqt) +xk+1yk+2zkd+
xiyi+1ptqt − xk+1yk+2ptqt. In any case the claim follows by the previous paragraph
and Lemma 3.13.

It remains to consider the case where either x = y = z and j, k ∈ {i, i + 1},
or i = j = k. We first consider the case where i = j = k and not all x, y, z
are the same. If x, y, z are not mutually different, say x = y, then since y 6= z
there exists w ∈ {a, b, c}, w 6= x, such that yizi − wi−1wi ∈ I ′. Hence, if xid ∈ I ′
we get xiyizid = (xid)(yizi − wi−1wi) + xiwi−1wid, and if xid /∈ I ′, then there
are p, q ∈ {a, b, c} and an index s such that xid − psqs ∈ I ′, so xiyizid = (xid −
psqs)(yizi −wi−1wi) + xiwi−1wid+ yizipsqs −wi−1wipsqs. Thus, the claim follows
by the previous parts of the proof and Lemma 3.13. Now we consider the case where
x, y, z are mutually different, hence we need to examine the monomial aibicid. We
rewrite it as follows.

aibicid = (aibi − c2i+1)(cid) + (cici+1 − ai+1bi+1)(ci+1d) + ai+1bi+1ci+1d

Therefore, aibicid ≡ ai+1bi+1ci+1d, and so aibicid ≡ a1b1c1d ∈ J ′.
We now consider the case where x = y = z. If i = j = k, then there are three

monomials to consider, a3i d, b3i d, and c3i d. We rewrite them in the following way.

a3i d = (a2i − bi−1ci−1)(aid− ai+1ci+1) + a2i ai+1ci+1+

+ (aibi−1)(ci−1d)− (ai+1bi−1)(ci−1ci+1) ≡ 0

b3i d = (b2i − ai−1ci−1)(bid− a2i ) + a2i b
2
i + ai−1bici−1d+

− ai−1a2i ci−1 ≡ 0

c3i d = (c2i − ci−2ci−1)(cid) + (ci−2ci)(ci−1d) ≡ 0

Hence, Lemma 3.13 and previous parts of the proof apply. Now suppose x = y = z
and at least one of j, k is i + 1, say j = i + 1, hence there exist p, q ∈ {a, b, c},
p 6= q, and an index t such that xixi+1 − ptqt ∈ I ′. Then, either xkd ∈ I ′ and we
get xixi+1xkd = (xixi+1 − ptqt)(xkd) + xkptqtd, or there exist w, v ∈ {a, b, c} and
an index s such that xkd−wsvs ∈ I ′, so we get xixi+1xkd = (xixi+1 − ptqt)(xkd−
wsvs) + xixi+1wsvs + xkptqtd − ptqtwsvs. Either case follows from the previous
parts of the proof and Lemma 3.13. �

Lemma 3.15. For all x, y ∈ {a, b, c}, and all indices i, j, the monomial xiyjd
2 is

contained in J ′.

Proof. If both xid and yjd are in I ′, then xiyjd
2 ∈ (I ′)2. If only one of them is in I ′,

say xid ∈ I ′, then there exist z, w ∈ {a, b, c} and an index k such that yjd−zkwk ∈ I ′,
so xiyjd

2 = (xid)(yjd− zkwk) + xizkwkd. Finally, if xid /∈ I ′, yjd /∈ I ′, then there
exist w, z, p, q ∈ {a, b, c} and indices k, t such that xid−wkzk ∈ I ′ and yjd−ptqt ∈ I ′,
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so xiyjd
2 = (xid − ptqt)(yjd − zkwk) + xizkwkd + yjptqtd − zkwkptqt. Hence, the

claim follows from Lemmas 3.13 and 3.14. �

Proposition 3.16. Every degree 4 homogenous polynomial of S′ is contained in
J ′.

Proof. Lemmas 3.13, 3.14, and 3.15 cover most of the cases. It remains to check
that for any x ∈ {a, b, c} and any index i both xid

3 and d4 are in J ′. Thus, we need
to consider four monomials, which we rewrite as follows.

aid
3 = (aid− ai+1ci+1)(d2) + ai+1ci+1d

2

bid
3 = (bid− bi−1ci−1)(d2) + bi−1ci−1d

2

cid
3 = (cid)(d2) ≡ 0

d4 = (d2)2 ≡ 0

Thus, Lemma 3.15 finishes the proof. �

Lemma 3.17. For all x, y ∈ {a, b, c}, and for all indices i, j, the monomials
xiyjajbjcj, xiajbjcjd and ajbjcjd

2 are in (I ′)2.

Proof. That xiyjajbjcj is in (I ′)2 follows from the inclusion of rings S ⊂ S′ and
Lemma 3.10. Note that ajbjd annihilates F ′, so is in I ′. If xi 6= cj , then xiajbj ∈ I ′,
so xiajbjcjd = (xiajbj)(cjd) ∈ (I ′)2. Thus, it remains to consider ajbjc

2
jd and

ajbjcjd
2. We rewrite them as follows.

ajbjc
2
jd = (ajbjd)(c2j − cj−2cj−1) + (ajcj−2)(cj−1d)bj ≡ 0

ajbjcjd
2 = (ajbjd)(cjd) ≡ 0

Hence, the proof is complete. �

Proposition 3.18. The apolar algebra Apolar(F ′) satisfies the small tangent space
condition.

Proof. It is easy to check that no linear form annihilates F ′, hence Apolar(F ′) has
Hilbert function (1, n, n, 1). Proposition 3.16 implies that H(S′/(I ′)2)4 ≤ n, so
H(S′/Ann(F ′)2) ≤ n. Thus, by Proposition 2.14, H(S′/Ann(F ′)2)4 = n. Finally,
since monomials of the form xiaibici and a1b1c1d generate (S′/(I ′)2)4 Lemma 3.17
implies that H(S′/(I ′)2)5 = 0, so also H(S′/Ann(F ′)2) = 0. �

3.3. Proof of Theorem 3.1; case n = 3m+ 2.
Let S′′ = k[ai, bi, ci, d, e]

m
i=1 be a polynomial ring of n = 3m+ 2 variables. Recall

that we assume m ≥ 6. When writing indices we treat them modulo m.
Consider the following polynomial

F ′′ =

m∑
i=1

aibici + aia
2
i+1 + bib

2
i+1 + cic

2
i+1 + aibi+1d+ bici+1e.

Also by F ′′ we denote its dual element in the divided power ring associated to S′′.
Let I ′′ be the smallest ideal such that the following remark holds.

Remark 3.19. For all x, y ∈ {a, b, c}, and for all indices i, j, if j /∈ {i− 1, i, i+ 1},
then xiyj ∈ I ′′.

For all x, y ∈ {a, b, c}, and for all indices i, j, if x 6= y, then xiyi+1 − xjyj+1 ∈ I ′′.
For all x, y ∈ {a, b, c}, and for all indices i, j, one of the following holds.
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(1) xiyj is contained in I ′′.
(2) x 6= y and j ∈ {i− 1, i+ 1}.
(3) There exists an index k and p, q ∈ {a, b, c}, p 6= q, such that xiyj−pkqk ∈ I ′′.

For any x ∈ {a, b, c}, any y ∈ {d, e}, and any index i, one of the following holds.

(1) xiy is contained in I ′′.
(2) There exists an index j and p, q ∈ {a, b, c}, p 6= q, such that xiy− pjqj ∈ I ′′.

The polynomial F ′′ is chosen such that I ′′ ⊂ AnnF ′′.
Let J ′′ denote the ideal (I ′′)2 + 〈aiai+1a

2
i+2, bibi+1b

2
i+2, cici+1c

2
i+2 | i = 1, ...,m〉+

〈a1b1c1d, a1b1c1e〉. Note that F ′′, I ′′, and J ′′ are invariant under index translation.
We want to show that Apolar(F ′′) satisfies the small tangent space condition.

The main part of the proof is checking that all polynomials of degree 4 are contained
in J ′′, hence that H(S′′/(I ′′)2)4 = n.

In this section, we use the following notation. For polynomials Q,R ∈ S′′ we
write Q ≡ R if Q is equal to R in S′′/(I ′′)2.

Lemma 3.20. All monomials of degree 4, not divisible by de are contained in J ′′.

Proof. We have two inclusions of rings S′ ⊂ S′′, one takes a, b, c, d to a, b, c, d
respectively, the other takes a, b, c, d to b, c, a, e respectively. Note that, in both cases,
I ′ ⊂ I ′′ ∩ S′, so J ′ ⊂ J ′′ ∩ S′. Since every monomial not divisible by de is contained
in at least one of those subrings, the claim follows from Proposition 3.16. �

Lemma 3.21. For all x, y ∈ {a, b, c}, and for all indices i, j, the monomial xiyjde
is contained in J ′′.

Proof. If both xid and yje are in I ′′, then xiyjde ∈ (I ′′)2. If only xid is in I ′′,
then there exist z, w ∈ {a, b, c} and an index k such that yje − zkwk ∈ I ′′, so
xiyjde = (xid)(yje − zkwk) + xizkwkd. Similarly, if only yje is in I ′′, then there
exist z, w ∈ {a, b, c} and an index k such that xid − zkwk ∈ I ′′, so xiyjde =
(xid − zkwk)(yje) + yjzkwke. If both xid and yje are not in I ′′, then there exist
w, z, p, q ∈ {a, b, c} and indices k, t such that xid− wkzk ∈ I ′′ and yjd− ptqt ∈ I ′′,
so xiyjde = (xid − ptqt)(yje − zkwk) + xizkwkd + yjptqte − zkwkptqt. Hence, the
claim follows from Lemma 3.20. �

Proposition 3.22. Every degree 4 homogenous polynomial of S′′ is contained in
J ′′.

Proof. Lemmas 3.20 and 3.21 cover most of the cases. The rest we rewrite as follows.

aid
2e = (aie)(d

2) ≡ 0

bid
2e = (bie− c2i+2)(d2) + (ci+2d)2 ≡ 0

cid
2e = (cid)(de) ≡ 0

aide
2 = (aie)(de) ≡ 0

bide
2 = (bid− a2i )(e2) + (aie)

2 ≡ 0

cide
2 = (cid)(e2) ≡ 0

d3e = (d2)(de) ≡ 0

d2e2 = (de)2 ≡ 0

de3 = (de)(e2) ≡ 0
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This finishes the proof. �

Lemma 3.23. For all x, y ∈ {a, b, c}, z, w ∈ {d, e}, and for all indices i, j, the
monomials xiyjajbjcj, xiajbjcjz and ajbjcjzw are in (I ′′)2.

Proof. We have two inclusions of rings S′ ⊂ S′′, one takes a, b, c, d to a, b, c, d
respectively, the other takes a, b, c, d to b, c, a, e respectively. Hence, in view of Lemma
3.17 it suffices to consider ajbjcjde. We have ajbjcjde = (aje)(cjd)bj ∈ (I ′′)2. �

Proposition 3.24. The apolar algebra Apolar(F ′′) satisfies the small tangent space
condition.

Proof. It is easy to check that no linear form annihilates F ′′, hence Apolar(F ′′) has
Hilbert function (1, n, n, 1). Proposition 3.22 implies that H(S′′/(I ′′)2)4 ≤ n, so
H(S′′/Ann(F ′′)2) ≤ n. Thus, by Proposition 2.14, H(S′′/Ann(F ′′)2)4 = n. Finally,
since monomials of the form xiaibici, a1b1c1d, and a1b1c1e generate (S′′/(I ′′)2)4
Lemma 3.23 implies that H(S′′/(I ′′)2) = 0, so also H(S′′/Ann(F ′′)2) = 0. �

4. Computer computations for n < 18

Let S be a polynomial ring of n variables. In this chapter, we give examples
of degree 3 polynomials F such that Apolar(F ) satisfies the small tangent space
condition for n = 6 and 7 < n < 18 (the case n ≥ 18 is covered by Theorem 3.1).

We have checked on computer, using Macaulay2 [GS], that they are indeed
correct for fields of characteristic 0, 2, and 3. We believe that they work in any
characteristic, though a proof would probably require a direct verification, so we
restrict ourselves to supplying a computer code which one can use to verify these
examples in any given characteristic.

Note that in order to verify Conjecture 3 for a field k of characteristic 0 it suffices
to check k = Q. Similarly, for a field k of characteristic p is suffices to check k = Fp.

Our examples from chapter 3 work also for n ≥ 9. For n = 6 and n = 8 we
construct different polynomials. For n = 6 we have chosen the polynomial

F = a1b1c1 + a2b2c2 + a1a
2
2 + b1b

2
2 + c1c

2
2 + a31 + b31 + c31.

For n = 8 we have chosen

F = a1b1c1 + a2b2c2 + a1a
2
2 + b1b

2
2 + c1c

2
2 + a1de+ b21d+ c21e.

4.1. Macaulay2 code.
In this section, we describe the computer code we have used to verify our examples.

First one needs to chose a field, hence to type

kk = QQ;

or (replacing p by a prime number of choice)

kk = ZZ/p;

into the Macaulay2 console. Then, one needs to specify the number of variables of
the polynomial ring typing

n = ?

with ? replaced by the chosen number. If n was chosen to be 6, then the following
code generates the appropriate polynomial.

S = kk[a_1,a_2,b_1,b_2,c_1,c_2];

F = a_1*b_1*c_1 + a_2*b_2*c_2 + a_1*a_2^2 + b_1*b_2^2 +

c_1*c_2^2 + a_1^3 + b_1^3 + c_1^3;
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If n = 8 one needs to enter the following lines.

S = kk[a_1,a_2,b_1,b_2,c_1,c_2,d,e];

F = a_1*b_1*c_1 + a_2*b_2*c_2 + a_1*a_2^2 + b_1*b_2^2 +

c_1*c_2^2 + a_1*d*e + b_1^2*d + c_1^2*e;

If n is divisible by 3 and greater than 8, then the following code needs to be entered.

m = n//3;

S = kk[a_1..a_m,b_1..b_m,c_1..c_m];

F = 0;

for i in 1..m-1 do F = F + a_i*b_i*c_i + a_i*a_(i+1)^2 +

b_i*b_(i+1)^2 + c_i*c_(i+1)^2;

F = F + a_m*b_m*c_m + a_m*a_1^2 + b_m*b_1^2 + c_m*c_1^2;

If n gives remainder 1 upon division by 3 and is greater than 8, then one uses the
following code.

m = (n-1)//3;

S = kk[a_1..a_m,b_1..b_m,c_1..c_m,d];

F = 0;

for i in 1..m-1 do F = F + a_i*b_i*c_i + a_i*a_(i+1)^2 +

b_i*b_(i+1)^2 + c_i*c_(i+1)^2 + a_i*b_(i+1)*d;

F = F + a_m*b_m*c_m + a_m*a_1^2 + b_m*b_1^2 + c_m*c_1^2 +

a_m*b_1*d;

Lastly, if n gives remainder 2 upon division by 3 and is greater than 8, then the
following code needs to be used.

m = (n-2)//3;

S = kk[a_1..a_m,b_1..b_m,c_1..c_m,d,e];

F = 0;

for i in 1..m-1 do F = F + a_i*b_i*c_i + a_i*a_(i+1)^2 +

b_i*b_(i+1)^2 + c_i*c_(i+1)^2 + a_i*b_(i+1)*d +

b_i*c_(i+1)*e;

F = F + a_m*b_m*c_m + a_m*a_1^2 + b_m*b_1^2 + c_m*c_1^2 +

a_m*b_1*d + b_m*c_1*e;

To verify whether the apolar algebra induced by the generated polynomial satisfies
the small tangent space condition one can run the following lines.

I = ideal fromDual(matrix{{F}}, DividedPowers => true);

if (hilbertFunction(0,S/I) == 1 and

hilbertFunction(1,S/I) == n and

hilbertFunction(4,S/I^2) == n and

hilbertFunction(5,S/I^2) == 0)

then print True else print False;

If the answer given by Macaulay2 reads ”True”, then Apolar(F ) satisfies the small
tangent space condition. If on the other hand the answer reads ”False”, then
Apolar(F ) does not satisfy the small tangent space condition.
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