
New Ensemble Machine Learning Method for
Classification and Prediction on Gene Expression Data

Ching Wei Wang
Vision and Artificial Intelligence Group, Department of Computing & Informatics, University of Lincoln

Brayford Pool, Lincoln LN6 7TS, United Kingdom
cweiwang@lincoln.ac.uk

Abstract –A reliable and precise classification of tumours is
essential for successful treatment of cancer. Recent researches
have confirmed the utility of ensemble machine learning
algorithms for gene expression data analysis. In this paper, a new
ensemble machine learning algorithm is proposed for
classification and prediction on gene expression data. The
algorithm is tested and compared with three popular adopted
ensembles, i.e. bagging, boosting and arcing. The results show
that the proposed algorithm greatly outperforms existing
methods, achieving high accuracy over 12 gene expression
datasets.

Index Terms – ensemble machine learning, pattern
recognition, microarray

I. INTRODUCTION

 One of the most active areas of researches in supervised
learning has been to study methods for constructing good
ensembles of classifiers. The main discovery is that the
ensemble classifier constructed by ensemble machine learning
algorithms, such as bagging and boosting approaches, often
performs much better than single classifiers that make them
up. Recent researches [1, 2] have confirmed the utility of
ensemble machine learning algorithms for gene expression
analysis. In this paper, a new ensemble machine learning
algorithm is proposed for classification and prediction on gene
expression data. The algorithm is tested and compared with
other ensemble machine learning algorithms, including
Bagging, Boosting and Arcing, over 12 gene expression
datasets [5, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. The results
show that the proposed algorithm greatly outperforms existing
methods, achieving high accuracy in classification.
 The outline of this paper is as follows. The ensemble
machine learning approach and three popular ensembles, i.e.
bagging, boosting and arcing, are introduced in section 2. The
proposed method is presented in section 3. The evaluation on
the proposed algorithm is displayed in section 4 with
comparison on three ensembles. The paper is concluded in
section 5.

II. TECHNICAL ANALYSIS

A. Ensemble Machine Learning Methods

 Ensemble methods are learning algorithms that construct
a set of base classifiers and then classify new data points by
taking a vote of their predictions. The spirit in ensemble
machine learning is to combine a number of rough “rules-of-

thumb” into a more accurate aggregate class prediction rule.
The learning procedure for ensemble algorithms can be
divided into the following two parts.
 1) Constructing base classifiers / base models: The main
tasks of this division are (1) Data processing: prepare the
input training data for building base classifiers by perturbing
the original training data, and (2) Base classifier
constructions: build base classifiers on the perturbed data with
a learning algorithm as the base learner. In this project, the
C4.5 decision tree algorithm [4] is employed as the base
learner.

2) Voting: The second stage of ensemble methods is to
combine the base models built in the previous step into the
final ensemble model. There are various kinds of voting
systems. Two main voting systems are generally utilized,
namely weighted voting and un-weighted voting. In the
weighted voting system, each base classifier holds different
voting power. On the other hand, in the un-weighted system,
individual base classifier has equal weight, and the winner is
the one with most number of votes.

B. Bagging, Boosting and Arcing

1) Bagging: The bagging algorithm, which is introduced by
Breiman [11], constructs base classifiers with inputs generated
by the bootstrapping technique. The construction process of
every base classifier is independent to each other. It perturbs
the training set repeatedly to generate multiple predictors, and
combines these base classifiers by simple voting
(classification) or averaging (regression) so as to obtain an
aggregated predictor. The multiple input data for building
base classifiers is formed by bootstrapping replicates of the
original learning data.

2) Boosting: Boosting was introduced by Schapire [6] as a
method to enhance the performance of a weak learning
algorithm. Freund and Schapire [3] proposed an algorithm
called AdaBoost. There are lots of varieties of boosting
algorithms, and AdaBoostM1 is chosen as the boosting
method used in this project. Boosting adaptively re-weights
the training set in a way based on an error rate of the previous
base classifier. The boosting algorithm improves its behaviour
in reflection to the latest faults it makes. Moreover, if the error
rate of a base classifier is greater than 0.5 or equal to 0, the
sequential construction of base classifiers stops.
 3) Arcing: The framework of arcing introduced by
Breiman [7] is similar to the one employed in boosting. They

Proceedings of the 28th IEEE
EMBS Annual International Conference
New York City, USA, Aug 30-Sept 3, 2006

FrD03.4

1-4244-0033-3/06/$20.00 ©2006 IEEE. 3478

both proceed in sequential steps. The major difference
between arcing and boosting is that arcing improves its
behaviour based on the accumulation of its faults in history. It
examines all previous base classifiers’ faults for construction
of a new base classifier while boosting only checks the
previous one base classifier. Apart from this, arcing adopts
un-weighted voting system whereas boosting uses weighted
voting. In addition, unlike boosting, no checking procedure
exists through the constructions of base classifiers.

III. METHOD

 In this section, we first describe the disadvantage of
existing ensembles and then further present the proposed
approach, which defeats the weakness of current methods and
utilizes the strength of them.

A. Analysis on Weakness of Existing Ensembles

The accuracy of boosting models will remain the same after
specific numbers of base models are established because of
the checking mechanism after each construction of base
classifiers. The specific criterion in boosting stops further
construction while its error rate is equal to 0 or greater than
0.5. Therefore, if the sequential construction halts after
building 6 base classifiers, same result will be obtained on
evaluating over boosting models with any number greater than
6, because fundamentally these models are all identical. In
other words, as long as the error rate of the 1st base classifier
is equal to 0 or greater than 0.5, no matter how many base
models specified, the whole construction terminates, and
consequently the entire ensemble model will be composed of
exactly one base model. This is an extreme case in boosting,
but it does happen very often in our experiments. As gene
expression data consists of large amounts of genes, it helps
learning methods to generate a more precise classifier that fit
exactly on the training set. The checking criterion seriously
influences the diversity of boosted models by forbidding
further construction of base models.

On the other hand, the performance of arcing models may
deteriorate while more base classifiers are constructed. Unlike
boosting, without the checking condition interrupting, the
other unwelcome situation may occur. The extreme
undesirable result is an arced model with all identical base
models. Without the checking criterion, the arcing may keep
on producing same base models. For example, once arcing
develops a base classifier that precisely fits the training data,
there will be no misclassification value to be added in, and all
misclassification values will remain the same. Hence, the
instances’ weights will stay the same as well. With the same
data, the same instances’ weights and the same base learner,
the arcing algorithm will produce exactly the same base
classifier. As a result, due to the low diversity issue of base
models, ensembles with self-optimization learning style may
suffer from over-fitting issue.

On the contrary, bagging generates its base models by

chance. The constructions of individual base model are
independent to each other.

B. Design

 The advantage of boosting and arcing is to refine their
behavior based on previous experience. However, over-fitting
issue decreases the quality of these ensemble models. Hence, a
data-perturbing technique is created for individual
construction on base classifiers in order to produce base
models in higher diversity. Particularly, boosting refines itself
based on errors by the previous model whereas arcing learns
based on errors by all previous models. We found that
boosting structure obtains higher accuracy (See Table I).
Simulating human learning behavior, because the errors have
been adjusted through constructions of base models, it is not
necessary to pay attention on errors by all previous models.
Hence, the boosting structure is adopted for sequential self-
optimization.

1) Sequential self-optimization: Refine its behavior based on
its previous experiences. In other words, pay more attention
on misclassified instances by previous base models.
2) Data Bootstrapping: achieve higher diversity and defeat
overfit issue.

Fig. 1 Behavior of the Proposed Ensemble

C. Design: Data Bootstrapping

 The bootstrapping method is to generate a new dataset by
sampling from the given dataset. Therefore, some instances
may be selected several times whereas others may be ignored.
For every bootstrapping, a list of random floating numbers
will be generated. The number of the random values is exactly
the same as the size of input data set. These floating numbers
are then processed into a list of accumulated probabilities and
the maximum value of this distribution is adjusted to the
summation of instances’ weights. In brief, a random
distribution is generated, and the distribution is represented by
accumulated probabilities. Equation 1 presents the
computation of each accumulated probability:

n

k

kW
1

a

1i

n

1j
)(]P(j) / Random(i)[P(a) (1)

Afterwards, the P(a) value is compared to the accumulated
weight value – W(b).

b

i

iWeightbW
1

)()((2)

3479

If the P(a) < W(b), then add instance b into the result
bootstrapped dataset, and the next comparison will be made
between P(a+1) and W(b). Otherwise, do not select instance
b, and the next comparison will be made between P(a) and

W(b+1). As a result, one instance may be selected many
times, and the higher its weight is the greater the accumulated
weights value becomes, contributing to a bigger chance to be
selected. The algorithm is devised in Fig. 2.
Input: A dataset with n instances
Output: A bootstrapped dataset with the same size of the input dataset
Assumption:

Each instance in the original dataset has a weight, which represent the relative level
of importance in the dataset.

Process:
1. Generate n random numbers: R1 to Rn.

** Compute n accumulated probabilities P1 to Pn
2. P(i) = sum of Random number R1 to Ri, where i =1 to n.

** Normalize probabilities’ values
3. P(m) = [P(m) / (Sum of Probabilities)] * (Sum of weights), where m = 1 to n.

** Compare accumulated probabilities with accumulated weights
4. Initialize two indices for iteration through two lists.

k = the index of the first probability in probabilities’ list
x = the index of the first instance’s weight in weights’ list

** Iterate through lists of probabilities and instances’ weights
5. Check if any components left in both lists

5.1 If yes, sumW(x) = sum of weight1 to weight x
5.1.1 Check if components left in probabilities list and P(k) is smaller

than sumW(x)
5.1.1.1 If yes, add instance x to the output dataset, set the

weight of instance k of the output dataset as x and plus 1
to k.

5.2 Otherwise, plus 1 to x.
6. Terminate with the output dataset

Fig. 2 Algorithm: Data Bootstapping

D. Algorithm

 The proposed method is composed of a sequential self-
optimization structure (boosting) and data-bootstrapping
technique.

Inputs:
1. A training set T < X, Y >, where X represents the instances and Y are the classes.

X: a set of instances: {x | x = <a1,…, aq>}, where ai is an attribute value and q is the
number of attributes.

Y: a set of classes (with z different classes)
T: {<x1, y1>, …, <xn, yn> | x X, y Y}, where n is the size of the training set.

2. Number of base classifiers R
3. The limit value of bootstrap times
4. Base Learner / Inducer: C4.5 decision tree is used in this paper.
Output:

The boosted model: Function C*
Steps:
** Initialise instances’ weights (Normalisation)
1. For i = 1 to n, Weight: W1(i) =1/n
2. Generate a copy of the training data for constructing base classifiers: S (the training

data will be used for evaluation whereas the copy - S is used for building base
classifier and its instances’ weights will be changed in every construction.)

3. Repeat 3.1 to 3.9 R times
3.1 Bootstrap S dataset from previous round S dataset
3.2 Build a new Classifier Cr(X) using weighted S dataset (X, Wr) by base learner.
3.3 Compute the error rate by evaluate the base classifier Cr(X) with training data.
Error rate = Sum of the weights of the misclassified instances by the base classifier
Cr(X)
3.4 Check if the error rate equals to 0 and the number of bootstrap is smaller than the
bootstrap limit. If both true, go back to 3.1 to do the bootstrap.
3.5 If the error bigger than 0.5 or equal to 0, go to step 4.
3.6 Br = error rate / (1 - error rate)
** Set sum of instance weights for next round to 0
3.7 SumWr+1 = 0
** Update instances’ weights
3.8 For i = 1 to n, check if Cr misclassifies instance i.

3.8.1 If true, Wr+1(i) = Wr(i) * Br. Otherwise, Wr+1(i) = Wr(i)
3.8.2 SumWr+1 = SumW r+1 + Wr+1(i)

** Normalise instances’ weights

3.9 For i = 1 to n, Wr+1(i) = Wr+1(i) / SumW r+1
4. Produce the arced model Function C*(instance) by Voting
5. Return Function C*

Auxiliary algorithm: Voting
Function C*(instance)
Input: instance
Output: predicted result yi
Steps:
** Initialise votes of classes y1 yz to 0
1. For i = 1 to z

1.1 V(i) = 0
2. For j = 1 to R
(i = the class index generated by base classifier j in classifying the input instance.)

2.1 V(i) = V(i) + log(1/ Bj)
3. Find class yi with the largest vote V(i)
4. Terminate with the predicted result yi

Fig. 3 Sequential Self-Optimization + Bootstrapping

IV. EXPERIMENTAL RESULTS

Cross-validation is deemed as an objective and common
used tool in model selection. Especially, cross-validation is
markedly superior for datasets with small number of samples,
which exactly matches the gene expression data case; this fact
is demonstrated in [12]. In this paper, 10-fold cross validation
is utilized for evaluation. Moreover, the experiments are
conducted in a linux based cluster [23]. 12 gene expression
datasets are obtained from published research works [5, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22], and the C4.5 decision tree
algorithm [4] is employed as the base learner. Three existing
approaches, namely arcing, boosting and bagging, and two
new proposed methods, i.e. (New1) Data Bootstrapping +
Arcing Skeleton and (New2) Data Bootstrapping + Boosting
Skeleton, are tested.

Table 1 presents the percentage of accuracy in classification
over 12 gene expression datasets by the five ensembles. The
experimental results show that the proposed ensemble
classifiers stably achieve high accuracy over all 12 gene
expression datasets in comparison to existing ensembles.
Particularly, the combination of data bootstrapping and
boosting skeleton (New2) performs best in classifying gene

TABLE I
Dataset Arcing Boost Bagging New1 New2

AMLALL 88.9 91.7 94.4 100 100
Brain
Cancer 84 82 84 94 94
Breast
Cancer 80.41 85.57 90.72 94.85 95.88
CNS 78.33 90 88.33 93.33 95
Colon
Tumor 69.35 80.65 79.03 79.03 83.87
Lung
Cancer 97.24 97.24 97.79 98.34 99.45
Prostate
Outcome 87.5 90.44 94.12 94.85 97.06
Prostate
Tumor 66.67 76.19 61.9 95.24 100
DLBCL
Outcome 84.48 93.1 98.28 100 100
DLBCL
Tumor 85.71 94.81 92.21 97.4 98.7
ALL,MLL,
AML 91.67 91.67 91.67 93.06 98.61
Subtypes 80.12 92.66 91.44 89.3 93.88

3480

expression data among five models.

V. CONCLUSION

Accompanied with the sequential self-optimization
structure, the entire ensemble model is inclined to refine its
behavior in a correct direction. The experimental results on 12
gene expression datasets prove that the proposed ensemble
classifiers are largely upgraded with the data-bootstrapping
technique. The combination of data bootstrapping and
boosting skeleton (New2) is able to obtain high accuracy
stably and hence it is recommended for gene expression data
analysis.

VI. FUTURE WORK

Obtaining patterns and rules with high accuracy in
classification and prediction, we would like to extract
information about sets of influential attributes / genes from the
resulting patterns and rules, allowing advanced study in
biological meaning of genes and drug discovery. With the
decision tree algorithm as the base learner in this study, a
further investigation can be made to discover sets of
influential genes. That is to consider the relative importance of
attributes within each base model. The most important
criterion in classification will be placed as the first priority in
consideration, i.e. the attributes in upper tier are more
meaningful in the classifying procedure. Hence, to obtain a
comprehensive view on the importance of attributes in the
entire ensemble model, a design is created to exhibit
attributes’ precedence among all base models. The plan is to
assign a score for each tree level, and the attributes gain points
related to the score in the particular tree level. By summing up
an attribute’s points gained in all base models, its total score
can then be obtained. The design scheme is presented in Fig.
4.

Fig. 4 Computation on Decision Power of Genes / Attributes

VII. ACKNOWLEDGMENTS

 The author is thankful to Prof. David Gilbert and Dr. Aik
Choon Tan for their valuable comments where this study was
conducted. Three software programs are imported, namely
WEKA machine learning package [8] for boosting and
bagging and C4.5 decision tree models, OAIDTB Boosting
Extension [9] for a variety of boosting algorithms and
JFreeChart [10] for a delicate visualization in presentation.

REFERENCES

[1] Dettling M. [2004] BagBoosting for tumor classification with gene
expression data, Bioinformatics 20(18):3583-3593.

[2] Tan A.C. and Gilbert D. [2003] Ensemble Machine Learning on Gene
Expression Data for Cancer Classification, Applied BioInformatics, in
press

[3] Freund Y. and Schapire R. [1996] Experiments with a new boosting
algorithm, Machine Learning: Proceedings of the Thirteenth Internation
Conference.

[4] Quinlan J. R. [1996] Bagging, boosting, and C4.5. Proceedings of the
Thirteenth National Conference on Artificial Intelligence:725-730.

[5] Armstrong S. A., Staunton J. E., Silverman L. B., Pieters R., et al. [2002]
MLL translocations specify a distinct gene expression profile that
distinguishes a unique leukemia. Nature Genetics 30:41-47

[6] Schapire R. [1990] The strength of weak learnability, Machine Learning
5(2):197-227

[7] Breiman L. [1998] Arcing Classifiers, the Annals of Statistics,
26(3):801-849

[8] Ian H. W. and Frank E. [2005] Data Mining: Practical machine learning
tools and techniques, 2nd Edition, Morgan Kaufmann

[9] Santiago D. V. B. [2003] http://pisuerga.inf.ubu.es/lsi/Software/oaidtb/
[10] JFreeChart, http://www.jfree.org/jfreechart/index.html
[11] Breiman, L. [1996b] Bagging predictors, Machine Learning 26(2):123-

140
[12] Goutte C. [1997] Note on free lunches and cross-validation, Neural

Computation 9:1245-1249
[13] Golub T. R., Slonim D. K., Tamayo P., Huard C., Gaasenbeek M., et al.

[1999] Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring. Science 286: 531-537

[14] Catherine L. N., Mani D. R. , Rebecca A. B., Pablo T. et al [2003] Gene
expression-based classification of malignant gliomas correlates better
with survival than histological classification. Cancer Research
63(7):1602-1607

[15] Zembutsu H., Ohnishi Y., Tsunoda T., Furukawa Y., Katagiri T.,
Ueyama Y., et al. [2002] Genome-wide cDNA microarray screening to
correlate gene expression profiles with sensitivity of 85 human cancer
xenografts to anticancer drugs. Cancer Res 62(2):518-27

[16] Scott L. Pomeroy, Pablo Tamayo, Michelle Gaasenbeek, Lisa M. Sturla,
et al [2002] Prediction of central nervous system embryonal tumour
outcome based on gene expression. Nature 415:436-442

[17] Alon U., Barkai N., Notterman D. A., Gish K., Ybarra S., Mack D., and
Levine A. J.. [1999] Broad patterns of gene expression revealed by
clustering analysis of tumor and normal colon tissues probed by
oligonucleotide arrays. National Academy of Science, Cell Biology
96:6745-6750

[18] Gavin J. G., Roderick V. J., Li-Li H., Steven R. G., Joshua E. B., Sridhar
R., William G. R., David J. S., and Raphael B. [2002] Translation of
Microarray Data into Clinically Relevant Cancer Diagnostic Tests Using
Gene Expression Ratios in Lung Cancer and Mesothelioma. Cancer
Research 62:4963-4967

[19] Dinesh S., Phillip G. F., Kenneth R., Donald G. J., Judith M., et al.
[2002] Gene expression correlates of clinical prostate cancer behavior.
Cancer Cell 1:203-209

[20] Ash A. A., Michael B. E., Davis R. E. , Ma C., Izidore S. L., Andreas R.,
et al. [2000] Distinct types of diffuse large B-cell lymphoma identified
by gene expression profiling. Nature 403:503-511

[21] van 't Veer L. J., Dai H., van de Vijver M. J., He Y. D., Hart A. A., Mao
M., Peterse H. L., et al. [2002] Gene expression profiling predicts
clinical outcome of breast cancer. Nature 415(6871):484-5

[22] Yeoh E. J., Ross M. E., Shurtleff S. A., Williams W. K., Patel D.,
Mahfouz R., Behm F. G., et al. [2002] Classification, subtype discovery,
and prediction of outcome in pediatric acute lymphoblastic leukemia by
gene expression profiling. Cancer Cell 1(2):133-143

[23] ScotGrid, http://www.scotgrid.ac.uk/

3481

