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Abstract –A reliable and precise classification of tumours is 
essential for successful treatment of cancer. Recent researches 
have confirmed the utility of ensemble machine learning 
algorithms for gene expression data analysis. In this paper, a new 
ensemble machine learning algorithm is proposed for 
classification and prediction on gene expression data. The 
algorithm is tested and compared with three popular adopted 
ensembles, i.e. bagging, boosting and arcing. The results show 
that the proposed algorithm greatly outperforms existing 
methods, achieving high accuracy over 12 gene expression 
datasets.

Index Terms – ensemble machine learning, pattern 
recognition, microarray 

I. INTRODUCTION

 One of the most active areas of researches in supervised 
learning has been to study methods for constructing good 
ensembles of classifiers. The main discovery is that the 
ensemble classifier constructed by ensemble machine learning 
algorithms, such as bagging and boosting approaches, often 
performs much better than single classifiers that make them 
up. Recent researches [1, 2] have confirmed the utility of 
ensemble machine learning algorithms for gene expression 
analysis. In this paper, a new ensemble machine learning 
algorithm is proposed for classification and prediction on gene 
expression data. The algorithm is tested and compared with 
other ensemble machine learning algorithms, including 
Bagging, Boosting and Arcing, over 12 gene expression 
datasets [5, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. The results 
show that the proposed algorithm greatly outperforms existing 
methods, achieving high accuracy in classification.
 The outline of this paper is as follows. The ensemble 
machine learning approach and three popular ensembles, i.e. 
bagging, boosting and arcing, are introduced in section 2. The 
proposed method is presented in section 3. The evaluation on 
the proposed algorithm is displayed in section 4 with 
comparison on three ensembles. The paper is concluded in 
section 5.  

II. TECHNICAL ANALYSIS

A. Ensemble Machine Learning Methods 

 Ensemble methods are learning algorithms that construct 
a set of base classifiers and then classify new data points by 
taking a vote of their predictions. The spirit in ensemble 
machine learning is to combine a number of rough “rules-of-

thumb” into a more accurate aggregate class prediction rule. 
The learning procedure for ensemble algorithms can be 
divided into the following two parts.  
 1) Constructing base classifiers / base models: The main 
tasks of this division are (1) Data processing: prepare the 
input training data for building base classifiers by perturbing 
the original training data, and (2) Base classifier 
constructions: build base classifiers on the perturbed data with 
a learning algorithm as the base learner. In this project, the 
C4.5 decision tree algorithm [4] is employed as the base 
learner.

2) Voting: The second stage of ensemble methods is to 
combine the base models built in the previous step into the 
final ensemble model. There are various kinds of voting 
systems. Two main voting systems are generally utilized, 
namely weighted voting and un-weighted voting. In the 
weighted voting system, each base classifier holds different 
voting power. On the other hand, in the un-weighted system, 
individual base classifier has equal weight, and the winner is 
the one with most number of votes.  

B. Bagging, Boosting and Arcing 

1) Bagging: The bagging algorithm, which is introduced by 
Breiman [11], constructs base classifiers with inputs generated 
by the bootstrapping technique. The construction process of 
every base classifier is independent to each other. It perturbs 
the training set repeatedly to generate multiple predictors, and 
combines these base classifiers by simple voting 
(classification) or averaging (regression) so as to obtain an 
aggregated predictor. The multiple input data for building 
base classifiers is formed by bootstrapping replicates of the 
original learning data.  

2) Boosting: Boosting was introduced by Schapire [6] as a 
method to enhance the performance of a weak learning 
algorithm. Freund and Schapire [3] proposed an algorithm 
called AdaBoost. There are lots of varieties of boosting 
algorithms, and AdaBoostM1 is chosen as the boosting 
method used in this project. Boosting adaptively re-weights 
the training set in a way based on an error rate of the previous 
base classifier. The boosting algorithm improves its behaviour 
in reflection to the latest faults it makes. Moreover, if the error 
rate of a base classifier is greater than 0.5 or equal to 0, the 
sequential construction of base classifiers stops.  
 3) Arcing: The framework of arcing introduced by 
Breiman [7] is similar to the one employed in boosting. They 
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both proceed in sequential steps. The major difference 
between arcing and boosting is that arcing improves its 
behaviour based on the accumulation of its faults in history. It 
examines all previous base classifiers’ faults for construction 
of a new base classifier while boosting only checks the 
previous one base classifier. Apart from this, arcing adopts 
un-weighted voting system whereas boosting uses weighted 
voting. In addition, unlike boosting, no checking procedure 
exists through the constructions of base classifiers. 

III. METHOD

 In this section, we first describe the disadvantage of 
existing ensembles and then further present the proposed 
approach, which defeats the weakness of current methods and 
utilizes the strength of them. 

A. Analysis on Weakness of Existing Ensembles 

The accuracy of boosting models will remain the same after 
specific numbers of base models are established because of 
the checking mechanism after each construction of base 
classifiers. The specific criterion in boosting stops further 
construction while its error rate is equal to 0 or greater than 
0.5. Therefore, if the sequential construction halts after 
building 6 base classifiers, same result will be obtained on 
evaluating over boosting models with any number greater than 
6, because fundamentally these models are all identical. In 
other words, as long as the error rate of the 1st base classifier 
is equal to 0 or greater than 0.5, no matter how many base 
models specified, the whole construction terminates, and 
consequently the entire ensemble model will be composed of 
exactly one base model. This is an extreme case in boosting, 
but it does happen very often in our experiments. As gene 
expression data consists of large amounts of genes, it helps 
learning methods to generate a more precise classifier that fit 
exactly on the training set. The checking criterion seriously 
influences the diversity of boosted models by forbidding 
further construction of base models. 

On the other hand, the performance of arcing models may 
deteriorate while more base classifiers are constructed. Unlike 
boosting, without the checking condition interrupting, the 
other unwelcome situation may occur. The extreme 
undesirable result is an arced model with all identical base 
models. Without the checking criterion, the arcing may keep 
on producing same base models. For example, once arcing 
develops a base classifier that precisely fits the training data, 
there will be no misclassification value to be added in, and all 
misclassification values will remain the same. Hence, the 
instances’ weights will stay the same as well. With the same 
data, the same instances’ weights and the same base learner, 
the arcing algorithm will produce exactly the same base 
classifier. As a result, due to the low diversity issue of base 
models, ensembles with self-optimization learning style may 
suffer from over-fitting issue.  

On the contrary, bagging generates its base models by 

chance. The constructions of individual base model are 
independent to each other. 

B. Design 

 The advantage of boosting and arcing is to refine their 
behavior based on previous experience. However, over-fitting 
issue decreases the quality of these ensemble models. Hence, a 
data-perturbing technique is created for individual 
construction on base classifiers in order to produce base 
models in higher diversity. Particularly, boosting refines itself 
based on errors by the previous model whereas arcing learns 
based on errors by all previous models. We found that 
boosting structure obtains higher accuracy (See Table I). 
Simulating human learning behavior, because the errors have 
been adjusted through constructions of base models, it is not 
necessary to pay attention on errors by all previous models. 
Hence, the boosting structure is adopted for sequential self-
optimization. 

1) Sequential self-optimization:  Refine its behavior based on 
its previous experiences. In other words, pay more attention 
on misclassified instances by previous base models. 
2) Data Bootstrapping: achieve higher diversity and defeat 
overfit issue. 

Fig. 1 Behavior of the Proposed Ensemble 

C. Design: Data Bootstrapping 

 The bootstrapping method is to generate a new dataset by 
sampling from the given dataset. Therefore, some instances 
may be selected several times whereas others may be ignored. 
For every bootstrapping, a list of random floating numbers 
will be generated. The number of the random values is exactly 
the same as the size of input data set. These floating numbers 
are then processed into a list of accumulated probabilities and 
the maximum value of this distribution is adjusted to the 
summation of instances’ weights. In brief, a random 
distribution is generated, and the distribution is represented by 
accumulated probabilities. Equation 1 presents the 
computation of each accumulated probability: 
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If the P(a) < W(b), then add instance b into the result 
bootstrapped dataset, and the next comparison will be made 
between P(a+1) and W(b). Otherwise, do not select instance 
b, and the next comparison will be made between P(a) and 

W(b+1). As a result, one instance may be selected many 
times, and the higher its weight is the greater the accumulated 
weights value becomes, contributing to a bigger chance to be 
selected. The algorithm is devised in Fig. 2. 
Input: A dataset with n instances
Output: A bootstrapped dataset with the same size of the input dataset 
Assumption: 

Each instance in the original dataset has a weight, which represent the relative level 
of importance in the dataset. 

Process: 
1. Generate n random numbers: R1 to Rn.

** Compute n accumulated probabilities P1 to Pn
2. P(i) = sum of Random number R1 to Ri, where i =1 to n. 

** Normalize probabilities’ values 
3. P(m) = [ P(m) / (Sum of Probabilities) ] * (Sum of weights), where m = 1 to n. 

** Compare accumulated probabilities with accumulated weights 
4. Initialize two indices for iteration through two lists. 

k = the index of the first probability in probabilities’ list 
x = the index of the first instance’s weight in weights’ list 

** Iterate through lists of probabilities and instances’ weights  
5. Check if any components left in both lists 

5.1 If yes, sumW(x) = sum of weight1 to weight x 
5.1.1 Check if components left in probabilities list and P(k) is smaller 

than sumW(x) 
5.1.1.1 If yes, add instance x to the output dataset, set the 

weight of instance k of the output dataset as x and plus 1 
to k. 

5.2 Otherwise, plus 1 to x. 
6. Terminate with the output dataset 

Fig. 2 Algorithm: Data Bootstapping 

D. Algorithm 

 The proposed method is composed of a sequential self-
optimization structure (boosting) and data-bootstrapping 
technique. 

Inputs:
1. A training set T < X, Y >, where X represents the instances and Y are the classes. 

X: a set of instances: {x | x = <a1,…, aq>}, where ai is an attribute value and q is the 
number of attributes. 

Y: a set of classes (with z different classes) 
T: {<x1, y1>, …, <xn, yn> | x X, y Y}, where n is the size of the training set. 

2. Number of base classifiers R 
3. The limit value of bootstrap times 
4. Base Learner / Inducer: C4.5 decision tree is used in this paper. 
Output:

The boosted model: Function C* 
Steps:
** Initialise instances’ weights (Normalisation)
1. For i = 1 to n, Weight: W1( i ) =1/n
2. Generate a copy of the training data for constructing base classifiers: S (the training 

data will be used for evaluation whereas the copy - S is used for building base 
classifier and its instances’ weights will be changed in every construction.) 

3. Repeat 3.1 to 3.9 R times 
3.1 Bootstrap S dataset from previous round S dataset
3.2 Build a new Classifier Cr(X) using weighted S dataset (X, Wr) by base learner. 
3.3 Compute the error rate by evaluate the base classifier Cr(X) with training data. 
Error rate = Sum of the weights of the misclassified instances by the base classifier 
Cr(X)
3.4 Check if the error rate equals to 0 and the number of bootstrap is smaller than the 
bootstrap limit. If both true, go back to 3.1 to do the bootstrap. 
3.5 If the error bigger than 0.5 or equal to 0, go to step 4. 
3.6 Br = error rate / (1 - error rate)
** Set sum of instance weights for next round to 0 
3.7 SumWr+1 = 0 
** Update instances’ weights 
3.8 For i = 1 to n, check if Cr misclassifies instance i. 

3.8.1 If true, Wr+1(i) = Wr(i) * Br. Otherwise,  Wr+1(i) = Wr(i)
3.8.2 SumWr+1 = SumW r+1 + Wr+1(i)

** Normalise instances’ weights 

3.9 For i = 1 to n, Wr+1(i) = Wr+1(i) / SumW r+1
4. Produce the arced model Function C*(instance) by Voting
5. Return Function C*

Auxiliary algorithm: Voting 
Function C*(instance)
Input: instance 
Output: predicted result yi
Steps:
** Initialise votes of classes y1  yz to 0 
1.  For i = 1 to z 

1.1  V(i) = 0 
2.  For j = 1 to R 
( i = the class index generated by base classifier j in classifying the input instance.) 

2.1 V(i) = V(i) + log( 1/ Bj ) 
3.  Find class yi with the largest vote V(i) 
4.  Terminate with the predicted result yi

Fig. 3 Sequential Self-Optimization + Bootstrapping 

IV. EXPERIMENTAL RESULTS

Cross-validation is deemed as an objective and common 
used tool in model selection. Especially, cross-validation is 
markedly superior for datasets with small number of samples, 
which exactly matches the gene expression data case; this fact 
is demonstrated in [12]. In this paper, 10-fold cross validation 
is utilized for evaluation. Moreover, the experiments are 
conducted in a linux based cluster [23]. 12 gene expression 
datasets are obtained from published research works [5, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22], and the C4.5 decision tree 
algorithm [4] is employed as the base learner. Three existing 
approaches, namely arcing, boosting and bagging, and two 
new proposed methods, i.e. (New1) Data Bootstrapping + 
Arcing Skeleton and (New2) Data Bootstrapping + Boosting 
Skeleton, are tested.

Table 1 presents the percentage of accuracy in classification 
over 12 gene expression datasets by the five ensembles. The 
experimental results show that the proposed ensemble 
classifiers stably achieve high accuracy over all 12 gene 
expression datasets in comparison to existing ensembles. 
Particularly, the combination of data bootstrapping and 
boosting skeleton (New2) performs best in classifying gene 

TABLE I
Dataset Arcing Boost Bagging New1 New2

AMLALL 88.9 91.7 94.4 100 100
Brain 
Cancer 84 82 84 94 94
Breast 
Cancer 80.41 85.57 90.72 94.85 95.88 
CNS 78.33 90 88.33 93.33 95
Colon
Tumor 69.35 80.65 79.03 79.03 83.87 
Lung
Cancer 97.24 97.24 97.79 98.34 99.45 
Prostate
Outcome 87.5 90.44 94.12 94.85 97.06 
Prostate
Tumor 66.67 76.19 61.9 95.24 100
DLBCL
Outcome 84.48 93.1 98.28 100 100
DLBCL
Tumor 85.71 94.81 92.21 97.4 98.7 
ALL,MLL,
AML 91.67 91.67 91.67 93.06 98.61 
Subtypes 80.12 92.66 91.44 89.3 93.88 
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expression data among five models. 

V. CONCLUSION

Accompanied with the sequential self-optimization 
structure, the entire ensemble model is inclined to refine its 
behavior in a correct direction. The experimental results on 12 
gene expression datasets prove that the proposed ensemble 
classifiers are largely upgraded with the data-bootstrapping 
technique. The combination of data bootstrapping and 
boosting skeleton (New2) is able to obtain high accuracy 
stably and hence it is recommended for gene expression data 
analysis.

VI. FUTURE WORK

Obtaining patterns and rules with high accuracy in 
classification and prediction, we would like to extract 
information about sets of influential attributes / genes from the 
resulting patterns and rules, allowing advanced study in 
biological meaning of genes and drug discovery. With the 
decision tree algorithm as the base learner in this study, a 
further investigation can be made to discover sets of 
influential genes. That is to consider the relative importance of 
attributes within each base model. The most important 
criterion in classification will be placed as the first priority in 
consideration, i.e. the attributes in upper tier are more 
meaningful in the classifying procedure. Hence, to obtain a 
comprehensive view on the importance of attributes in the 
entire ensemble model, a design is created to exhibit 
attributes’ precedence among all base models. The plan is to 
assign a score for each tree level, and the attributes gain points 
related to the score in the particular tree level. By summing up 
an attribute’s points gained in all base models, its total score 
can then be obtained. The design scheme is presented in Fig. 
4.

Fig. 4 Computation on Decision Power of Genes / Attributes
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