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Abstract. On a transverse spin foliation, we give a new lower bound for the square
of the eigenvalues of the basic Dirac operator by the smallest eigenvalue of the basic Yamabe
operator. Moreover, the limiting foliation is transversally Einsteinian.

1. Introduction. In 2001, S.D. Jung [4] proved that, on a foliated Riemannian mani-
fold with a transverse spin structure, any eigenvalue X of the basic Dirac operator Dp satisfies
the inequality

2 q . v 2
(D A Zél(c]——l)llrllflf(a + x|,
where g = codim F, oV is the transversal scalar curvature and « is the mean curvature form
of F. In the limiting case, the foliation F is minimal, transversally Einsteinian with constant
transversal scalar curvature o V. In 2004, S. D. Jung et al. [6] improved the above inequality
(1) by using the basic Yamabe operator Yp. In fact, any eigenvalue 1 of the basic Dirac
operator Dp satisfies the inequality

2 q . 2
(2) AT > iq-1 (1 +11?4f|'€| ),

where 1] is the first eigenvalue of the basic Yamabe operator. In the inequalities (1) and (2),
k is assumed to be basic.

In this paper, we give an estimate sharper than (1) by using a modified connection V /-9
defined by

3) VLI = VW + fr(X) W + gic- (X)W

for any basic functions f and g. Namely, any eigenvalue A of the basic Dirac operator Dp
satisfies

q . v, 9+l 2
4 M>_—1 inf - ,
4) = 3 -1 111‘14 <a + p lkB|
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where «p is the basic part of k. Moreover, by using a transversally conformal change of the
Riemannian metric, we give an estimate sharper than (2). Namely,

q g+1. 2
©) > <m + inf |« | )
4g—1) q M

Obviously, the inequality (5) is sharper than (4). The limiting foliations of (4) and (5) are
transversally Einsteinian with k3 = 0, where kg is the basic part of «.

2. Transversal Dirac operator. Let (M, gy, F) be a (p 4 ¢g)-dimensional Riemann-
ian manifold with a transverse spin foliation F of codimension g and a bundle-like metric gy
with respect to F. Then we have an exact sequence of vector bundles

(6) 0—L—>TM-0—0,

where L is the tangent bundle and Q = T M/L is the normal bundle of F. The metric gy
determines an orthogonal decomposition TM = L @ L*. Identify Q with L+ and let 90
denote the induced metric on Q. The bundle-like condition on gy means that 6(X)gp = 0
for X € I'L, where 6(X) is the transverse Lie derivative. Let V be the transversal Levi-
Civita connection on Q, which is torsion-free and metrical with respect to gg. Let RY, ,oV
and oV be the transversal curvature tensor, transversal Ricci operator and transversal scalar
curvature with respect to V, respectively [10]. The foliation F is transversally Einsteinian if
p¥ = oV/q id. Let 23(F) be the space of all basic forms on M, i.e., forms ¢ satisfying
i(X)¢p =i(X)d¢p =0forall X € I'L. Then £2*(M) is decomposed as 2(M) = 2p(F) &
2p(F)L [1, Theorem 2.1]. Let P : 2(M) — $25(F) be the orthogonal projection onto
basic forms [9, Lemma 1.8]. For any r-form ¢, we denote the basic part of ¢ by ¢p := P¢.
The exterior differential on the de Rham complex £2*(M) is restricted to a differential dp :
Q5F) — .(21’;“1(.7-'). Let k € Q* be the mean curvature form of F. It is well-known [1,
Corollary 3.5] that kp := Pk is closed, i.e., dkp = 0. The basic Laplacian Ap is given by
Ap = dpdp + Spdp, where 8 is the formal adjoint operator of dp.

Let S(F) be a foliated spinor bundle [3, 4] and ( , )gQ a Hermitian metric on S(F)
induced by gg. By the Clifford multiplication in the fibers of S(F) for any vector field X
in Q and any foliated spinor field @, the Clifford product X - @, which is also a foliated
spinor field, is defined. This product has the following properties: for all X, Y € I'Q and
D, W e I'S(F),

) (X Y+Y-X)® =-2g9(X. V),
®) (X W, ®)g, + (¥, X - P)g, =0,
€)) Vy(X-¥) =(VyX) ¥+ X -Vy¥,

where V is a metric covariant derivation on S(F). Let {E,} be a local orthonormal basic
frame of Q. We now define a canonical section RY of Hom(S(F), S(F)) by the formula

(10) RYW) =) Eq-Ep- R¥(Eq, Ep)V

a<b
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where RS is the curvature tensor of S(F). Then, on the foliated spinor bundle S(F), we have
[4, (4.3) and (4.4)]

1
(1) Y Ear RO EQW = =2 p7(X) -0,
a
1
(12) RY = 2 oVid

for all X € I'Q. The transversal Dirac operator Dy acting on sections of S(F) is locally
defined [3, 4] by

1
(13) Dtr'pzza:Ea-VEa'J/—EKBJI/.

Here the Clifford product w - ¥ of a 1-form w € Q* and a foliated spinor field ¥ is defined
byw-¥ = " - ¥, where o is the gp-dual vector field of w. Then it is well known that Dy, is
formally self-adjoint. Now we define the subspace I'p (S(F)) of basic or holonomy invariant
sections of S(F) by

Tp(S(F) ={¥ eT'S(F); VxW =0 forX e I'L}.

Trivially, we see that Dy leaves I'p(S(F)) invariant. Let Dg = Dy|ry(sF)) : 1B(S(F)) —
I'p(S(F)). This operator Dp is called the basic Dirac operator on (smooth) basic sections.

THEOREM 2.1 ([3,4]). On a transverse spin foliation F with §pxp = 0, the Lich-
nerowicz type formula is given by

1
(14) D2¥ = ViV, + ZKJVlI/ :
where KUV =0V + |kg|? and

2
(15) ViVeV = — Xa: Vg ¥ V¥

with V5 y = VxVy — Vouy forall X, Y € I'TM.

Now, we consider, for any real basic function # on M, the transversally conformal metric
go = e*go. Let S(F) be the foliated spinor bundles associated with gg. For any section ¥
of S(F), we write ¥ = I,¥, where I, : S(F) — S(F) is an isometry. Then, for any @,
v e I'S(F), we have

(16) (D, W)y, = (D, ¥)z, .
and the Clifford multiplication in S(F) is given by
(17) X'U=X-¥ forXelQ.

The connections V and V acting respectively on the sections of S(F) and S(F) are related,
for any vector field X and any spinor field ¥, in [6] by

. 1 1 _
(18) VxW¥ =Vx¥ — > 7(X) dpu ¥ ~ 5 go(dpu w (X)) .
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Let Dy be the transversal Dirac operator associated with the metric go and acting on the
sections of the foliated spinor bundles S(F). Let {Ea} be a local frame of Psq (F). Then Dy
is locally expressed by

(19) DWW =Y E, Vp ¥ -

where k5 = ek is the mean curvature form associated with go- It is easy to prove that Dy

is formally self-adjoint with respect to (, )g,. Using (17), we have, for any ¥,
_ uf~— q—1 ——
(20) Dtr'J/ =e Dtr'J/ + T dBl/l -y ).

For any basic function f, the equality Dy (f¥) = dpf - ¥ + f D ¥ holds. Hence we have
1) Du(f¥) =e“dpf-W + f Dy .

From (20) and (21), we have the following proposition.
PROPOSITION 2.2 ([6]). Let F be the transverse spin foliation of codimension q.
Then the transverse Dirac operators Dy and Dy satisfy

(22) Dtr(e_(q_l)”/zll_/) _ e—(q+1)u/2m

for any spinor field ¥ € S(F).

From Proposition 2.2, if Dg¥ = 0, then Dy@ = 0, where @ = ¢~ @~ D4/2y  and con-
versely. Therefore the dimension of the space of the foliated harmonic spinors is transversally
conformal invariant.

THEOREM 2.3 ([6]). On the transverse spin foliation F with pkp = 0, we have the
equality

(23) D2 = V29,0 + 3 kY@

for every & € S(F), where

(24) ViVul = =3 Vi Ve U+ Vg g 5+ Vipe ¥
a

25) kY =0V + [kg)> +2(q — 2) Prcg(u) .

3. The proof of (4). Let (M, gy, F, S(F)) be a compact Riemannian manifold with
a transverse spin foliation F of codimension g and a bundle-like metric gy satisfying dpkp =
0. Now, for any basic functions f and g, we define a new connection V/9 on S(F) by

(26) VW = VW + fr(X)- W + gip - w(X) - W
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for any vector field X and any spinor field ¥'. By a direct calculation, from (26), we have

IVEIW 2 = VW 12 + gf 21912 + qgPlksP1W1? + glis 219 2

27
—2/Re(Du, W) g, +2gRe(DeW. i - W)go — 4gRe(V, s V. W)y, .

where |¥|2 = (¥, V) g,- Then we have the following theorem.

THEOREM 3.1. Let (M, gy, F) be a compact Riemannian manifold with a transverse
spin foliation F of codimension q > 1 and a bundle-like metric gy satisfying pkp = 0. As-
sume that oV is nonnegative. Then any eigenvalue A of the basic Dirac operator Dy satisfies

q . g+1
(28) > —" 1nf<a + 170, |).
4qg—-1) M q

PROOF. Since V is metrical and dgxp = 0, we have
/MRe(VKg'JI, V)g, =0.

Hence if DpW¥ = AW, from (14) and (27), we have

- 1
/ngi’gW:/ (qf2—2Af+A2+q|KB|2g2+|KB|2g—ZKZ)WF.
M M

If we put f = A/q and g = —1/2¢, then we have

1 1
29 Vfg /‘1 (Az_ q {KV L 2}>tp2,
e [ - T (K e 1w

which proves (28). O

COROLLARY 3.2. Under the assumptions in Theorem 3.1, if the transverse scalar cur-
vature is zero, then we get the inequality

1
22> 1L gl
Aqg—1) M

Now we study the limiting case. We define Rlcvg Ir'o®SF)— S(F) by
(30) Ricl/ (X @ ¥) = Y E. RM(X.E)W,
where R/9 is the curvature tensor with respect to V/-9. Then we have the following lemma.

LEMMA 3.3. Forany vector field X € I" Q and spinor field ¥ € I' S(F), the equality

Ricl/(X @ W) = —% oV X —gX (/)W +2(q— D f?X-¥ —dpgf -X W
+(q —2)X(9kp - ¥ +(q —2)gVxkp - ¥ +2qf 990(X, kp)¥
+2(q — 2)¢° Ik’ X - ¥ —2(q — 2)g°go(X, kp)Kp - ¥
—dpg-kp-X -W+2fgkp-X - W+ glkp|*’X - ¥

€29

holds.
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PROOF. From (26), a direct calculation gives

VLIVEIW = Vx Ve, W + X (f)Eq - ¥ + fVxEq - ¥ + fEq - Vx¥
+X(@Qkp - Eq-¥ +gVxkp-Eq- W + gkp - VxE, - ¥
+ gk - Eq-VxW + fX - Ve, W + X -E,- ¥
+ fgX kp-Ey W +gkp-X-VEY + fgkp- X - Eq- ¥
+92KB-X-KB-EQ~'1/.

Moreover, we have

X -kp-Eq—E;-kp-X=2«p -E;-X+290(X, Eq)kp —290(X,kp)E,
+2g0(E4, k)X .

Therefore, we have

RI9(X, E))W = RS(X, E)¥ + X(f)Eq - ¥ — X(9)Eq - k5 - ¥
—2X(9)go(kp, E)W — gEq - Vxkp - ¥ — 2990 (Vxkp, E)W
—2f2E, - X W —2f%90(X, E)W —2fgg0(X.,kp)Eq - ¥
+21990(Ea. k)X - ¥ — 20°|kg|*Ea X - W
—29%90(X. E) k¥ +29° 90 (X. kp)Eq - k5 - ¥
+4¢%90(X, k)90 (Eq, kp)W +2¢° g0 (Eq, kp)kp - X - W
—Eo()X ¥ — Eq(g)kp - X W — gV,kp - X W

From (11) and (30), we get the equality. a

Hence we have the following theorem.

THEOREM 3.4. Let (M, gy, F) be a compact Riemannian manifold with a transverse
spin foliation F of codimension q > 1 and a bundle-like metric qy satisfying $pxkp = 0.
Assume that oV is nonnegative. If there exists an eigenspinor field W1 of the basic Dirac
operator Dp for the eigenvalue A satisfying

q . v g+ 1 2
(32) M= 1nf<a +— lksl* ).
'Ag-D M q

then F is transversally Einsteinian with a positive constant transversal scalar curvature oV

and kg = 0.

PROOF. Let DpW¥; = XY with

2= L s <oV + q—H|KB|2) .
4qg-1) M q
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From (29), we see Vt{“g' ¥, = 0, where f| = A1/q and g = —1/2q. Hence, from (26), we
have

A 1
(33) Ve = - X w4+ — kg X,
q 2q
Hence, from (33), we have
A 1
D EaVE Y1 ==") Ea-Ea-¥i+ 3. ) Ea-kp-Ea-
a a a

qg—2

=M¥Y + kB -¥1.

Therefore Dp¥1 = A1¥] implies kp - ¥1 = 0, which means kg = 0. If V)J;’glll = 0 for any
X e I' Q, then Ricé’g = 0. Since kg = 0, from (31), we have

(34) Ty w = 12D

MX-w.

This means that F is transversally Einsteinian with a constant transversal scalar curvature
v 2
o' =g —D/g)ri. .

4. The proof of (5). Let (M, gy, F, S(F)) be a compact Riemannian manifold with
a transverse spin foliation F of codimension g and a bundle-like metric gy satisfying dpkp =
0. In this section, we estimate the eigenvalues of the basic Dirac operator by a transversally
conformal change of the metric. Now, we consider, for any real basic function u on M, the
transversally conformal metric gg = e go. Let S(F) be its corresponding spinor bundle.
For any basic functions f and g, we define the modified connection V/-9 on S(F) by

(35) VI = VW + fr(X) " & + g(Pig) “m(X) W
for any vector field X and any spinor field ¥ on M.

LEMMA 4.1. Let (M, gy, F) be a Riemannian manifold with a transverse spin folia-
tion F and a bundle-like metric gy. Then, for any basic-harmonic 1-form o € .Q}; (F), the

equality
Du(fo=¥) =—fo~ De¥ —2fVo¥ — (¢ +2) fo)¥
—2fw-dpu ¥ +dpf -w-¥

holds, where f is a basic function.

(36)

PROOF. Note that, for any basic function f, we have

37 Dy(fo -¥)=— fw-Dg¥ —2fV,W +dpf -w-¥.
From (20), we have

Du(fw~W) =e "dpe" - fo-¥ +e"Dy(fo - W)

q—

2

1 -
= fdpu - -V + Dy(fow-¥) + dpu- fo-V¥.
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From (18), (20) and (37), we have

_ _ 1 -
Dtr(fa)TlI/)=—chTDtrlI/—2walI/+dBf~w~lP+%deu-a)-lP

- S -3
= foT Dy¥ —2walI/+qT fo - dgu- ¥
g+l

2
which implies (36). O

+ fdpu-w-¥ +dpf - ¥ — fou)¥,

Let K={u e Qg (F); k(u) = 0}. Then we have the following corollary.

COROLLARY 4.2. Let (M, gy, F) be a Riemannian manifold with a transverse spin
foliation F and a bundle-like metric gy. For some transversally conformal metric gg =
et go foru € I, we have

(38) Dy(e *kp= W) = —e > (kp" Dy +2V : &)
B

By a long calculation, we have, for any basic functions f and g on M, and for any spinor
field ¥,

VW2, = 1VeP 2, + af 2101, + ag? I Pg 2, 1B 12, + gl Prgld 1912,
(39) —2f(Du¥, ¥)g, — fRe(Pig =W, W)g, + 2gRe(Dy ¥, Pk~ W);
_ 4gRe<6(PK§)uJ/, @5, -

[

Let Dp® = A® for some nonzero . From (22), we have Dtrlﬁ = Le "W, where ¥ =
e~@=Du2¢ Since (X - ¥, W)g, is pure imaginary, we have

(40) Re(Pky W, ¥)g, =0 and Re(DyW, Pig~¥)g, =0.
By integration, the equation (39) together with (23) gives
o932 _ —2uf4,2 _ u _l 2u 1V \ 112
/MWtr ¥13, _fMe <A 2fe' 2 Ka>|l1/|gQ
(41) + /M (af* +qa’|Pgl3, + g1Pigl3 ) 1912,
_4g/MRe(6(pK§);q7,q7>gQ.
Let u be in K. Since k5 = ek, from (38) and (40), we have
—2/ Re(ip,ﬁ)u‘p, ‘p>§Q Z/ R9<Dtr(€_2“KBTlp),e4”lﬁ)gQ
M I M
+[ e®Re(kp - DyW, ¥)g,
M

= / Re(e kg~ W, Dtr(€4u‘f’)>gg .
M
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From (20), we have

(e kg~ W, Dy(e™W))g, = (™kp~ ¥, DuW)g, +4e“kp ~ ¥, dpu - ¥)g,

= (e™kp "W, DuW)g, + 4™ kp - W, dpu - W)y,
On the other hand, for any u € K, we have
2Re(kp - W.dpu - W)g, = (kp - W, dpu - W)y, +mgg
=2kp(w)|¥|*> =0.
Hence from (40), we have
Re(e kg =W, Du(e*W))g, =0,

which means
(42) /M Re(Vip, ¥, ¥)go = 0.

Therefore, (41) yields
/|v v, = fe—ZM(qu—ze”Af+A2)|l17|§Q
1 &\ -
2 2 2 v 2
+[M (qIP/cg|§Qg +|PKg|§Qg—ZKJ>|II/|§Q.
If we put f = (A/gq)e™ and g = —1/2¢q, then we have

S 9 ) oupv l -2 712
@9 /M'V "PlG, = / ( gD {e Koty sl D'W'-‘?Q

Hence we have the followmg theorem.

(43)

THEOREM 4.3. Let (M, gy, F) be a compact Riemannian manifold with a transverse
spin foliation F of codimension q > 2 and a bundle-like metric gy satisfying Spxp = 0.
Assume that K Gv is nonnegative for some transversally conformal metric gg = e go. Then
we have

q wmpv L 2
(45) V> —1 1nf< K, + — kBl )
4g—1) pex ° Ty

V_ V.02
where K =o' + |ig|”.
The transversal Ricci curvature pV of go = e go and the transversal scalar curvature

oV of go are related to the transversal Ricci curvature p¥ of go and the transversal scalar
curvature o ¥ of gg by the following lemma (cf. [6, Lemma 4.3]).

LEMMA 4.4. On a Riemannian foliation F, we have, for any X € Q,

2oV (X) = p¥(X) + 2 — q)Vxdpu + 2 — @)|dgul*X + (q — 2)X (w)dpu
+ {Apu —kpu)}X,

(46)
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(47) oV =0V +(q— DQ—q)ldpul* +2(q — D{Apu — kp(u)}.

From (47), we have
Ky =0V +Ikpl* +2(q — DAgu+ (q — D2 — q)ldpul* — 2kp(u) .

On the other hand, for ¢ > 3, if we choose the positive function 2z by u = 21Inh/(g — 2), then
we have

2 -2 2, -1
(48) Apu = ———{h""ldgh|”+ h~" Aph},
q—

2
2
(49) |dgu|® = (—) h=2|dgh|*.
qg—2
Hence we have
_ - 4
(50) HKY =h4DKY = h7lygh 4 |kp)? — quh—le(h),

where Yp is the basic Yamabe operator of F defined in [6]. If we choose u in /I, then kg (h) =
0 = kp(u). From (50), we have

(51) KY = KY +2(q — DAgu = h™'Ygh + |k,

where K, av = oV + |kp|?. From (45), we have the following corollary.

COROLLARY 4.5. Under the same condition as in Theorem 4.3, we have

—— supinf{o¥ +2(g — 1)Apu
4(q—1>ue}3M{
+1 .
22> +(q - 1@ —q)ldpul + 2 |KB|2} if =2,
. _ q+1 5 ,
——su 1nfh1YBh+—|ch|} if g=>3.
4(q—1)heEM{ g

COROLLARY 4.6. Let (M, gy, F) be a compact Riemannian manifold with a trans-
verse spin foliation F of codimension g > 3 and a bundle-like metric gy satisfying Spxp = 0.
Assume that oV is nonnegative. Then any eigenvalue ) of the basic Dirac operator satisfies

q qg+1. 2
(52) > <M1 + inf [k p| ) ,
4(q -1 q

where 11 is the first eigenvalue of the basic Yamabe operator Yp of F.

Now, we study the limiting case. We define Ricé’g IO QS(F)— S(F) by

(53) RicZ!(X @ W) = Eg- RM(X, E)W



NEW ESTIMATES FOR EIGENVALUES OF THE BASIC DIRAC OPERATOR 451

where R/9 is the curvature tensor with respect to V59 ForX erl’ Qand ¥ € I'S(F), we

have
6){’9@5;947 =VxVg W+ fX7V5 W+ gPkg X"V W+ X(HE, W
+ fVXE. W + fE-VxW + f?X T E, ¥
+ fgPkg X" Eq W +X(g)Pkg E, W
+ g@XPKg7 TE,TW 4 gPkg ™ VxE, ¥
+gPxg~Eq VxW + fgX = Pkg E,~ W
—l—gzPlchXTPKgTEaTlI_/.
Hence we have
RIIX,E))W = RS (X, E)¥ 4+ X(f)Ea ¥ —2f2E, " X~ —2f%50(X, E)¥
—2f990(Pkg, X)Ea =¥ — X(9)Ey~ Pig =¥ — Eo(f)X W
—2X(9)Go(Pkg, E))W — gE, ~ Vx Pk~ W —2930(Vx Pig, Eq)¥
—2¢%|Pkg1PEq - X T — 2% P> Go (X, E)W
+2¢%G0(X, Pkg)Eq~ Pig ™ ¥ +4¢°G0(X, Prg)jo(Pkg, E)¥
+2¢°Go(Prg, E))Pig = X =W +2fggo(Pkg, E)X - ¥
— Ea(g)PKg TXTY— g@Ea Prg- X~ 7
By a simple calculation, we have, from (11) and (53),
Ricl? (X @ ) = —3 p¥(X) 70 — gX ()1 +2(g — DX 7
+2qf950(Prg, X)¥ + (g —2)X (9) Picg - ¥
+ (g —2)g@XPK§7lI_/ —dpf X W
+2(q — 2)g*|Pkg P X - W
—2(q — 2)92§Q(X, Pkg)Pkg - U — 2fgPkg- X~ 17
—dpg~ Prg= X W + g|Pig’ X~V .

(54)

On the other hand, we have the following proposition.

PROPOSITION 4.7. If a non-zero spinor field ¥ satisfies @t{’gtﬁ =0, then

1
Vx¥ = —fe'n(X) - ¥ —gkp -1(X)- ¥ + 3 go(dpu, m(X)¥
(55) 1
+§7t(X)-dBu~l1/.
PROOF. Let @t{’gll_/ = 0. From (35), we have
VxW¥ + fr(X) ¥ + gPkg " n(X)"¥ =0.
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Hence, from (18), we have

1 1 -
VXlI/—ETr(X)-dBu-'J/— EX(u)'J/—i—fe”n(X)-lI/—i—gKB -r(X)-¥ =0,
which proves (55). O

THEOREM 4.8. Let (M, gy, F) be a compact Riemannian manifold with a transverse
spin foliation F of codimension q > 3 and a bundle-like metric gy satisfying épxkp = 0.
Assume that oV is nonnegative. If there exists an eigenspinor field @1 of the basic Dirac
operator Dp for the eigenvalue A1 satisfying

q qg—+1. 2
A= 7<u1+ inf |« | )
"4 - q

then F is transversally Einsteinian with a positive constant transversal scalar curvature oV

and kg = 0.
PROOF. Let Dp®| = AP with

q qg+1, 2
A= —(m + inf|kp| )
"Tag -1 q

Let ¥ = e~ @~ D42, From (44), we see that @t{"’gl!f/ = 0, where fi = (A1/q)e " and
g1 = —1/2q. Hence we have, from (35),

Ve, W+ fE." W +gPkg " E, "W =0.
Therefore, we have
D E TV =qf¥ —(q—2)gPk; "W,
a
and then
DMI’%—%PK@T@ =qfl1_/—(q—2)gPK§7lp.
Since DgW = Aje "W, we have

re o+ l Piz "W = re "W + u Pk~ W
29 2q g7
Hence we have kp - ¥ = 0, which implies kg = 0. If @;glp = 0 forany X € I'Q, then

Ricé’g =0.Let X = (dBf)t. Then, from (54), we get

1 5 - - -
(56) <( — 5P (X0 +2( - 1)f2X) ", w> = (g — DldpfI5,1¥13, -
90
Hence the left-hand side in the equation (56) is pure imaginary while the right-hand side in
the equation (56) is real, and so both sides are all zero. That is, dp f = 0. So u is constant.
Also, we have, from (54),

(57) p¥(X) =4(q — 1) f2X
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for any X € I' Q. Since u is constant, from (46), we have

4g -1
(58) pY(X) = ——5—iiX.
Hence F is transversally Einsteinian with a constant transversal scalar curvature oV =
(4(q = D/ O

REMARK 4.9. The existence of the bundle-like metric such that « is basic-harmonic
is assured from [2, Theorem 4], [7, Theorem 2.10] and [8, Theorem 6.2]. So Theorems 3.4
and 4.8 imply that F is minimal, transversal Einsteinian.
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