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Abstract—Removal of short-run dynamics from a stationary time series to
isolate the medium- to long-run component can be obtained by a bandpass
filter. However, bandpass filters are infinite moving averages and can there-
fore deteriorate at the end of the sample. This is a well-known result in the
literature isolating the business cycle in integrated series. We show that the
same problem arises with our application to stationary time series. In this
paper, we develop a method to obtain smoothing of a stationary time series
by using only contemporaneous values of a large data set, so that no end-
of-sample deterioration occurs. Our method is applied to the construction
of New Eurocoin, an indicator of economic activity for the euro area, which
is an estimate, in real time, of the medium- to long-run component of GDP
growth. As our data set is monthly and most of the series are updated with
a short delay, we are able to produce a monthly real-time indicator. As an
estimate of the medium- to long-run GDP growth, Eurocoin performs better
than the bandpass filter at the end of the sample in terms of both fitting and
turning-point signaling.

I. Introduction

THIS paper presents a method to estimate in real time
the current state of the economy, with an application to

the euro area. The resulting indicator, New Eurocoin (NE),
is intended to replace the Eurocoin indicator proposed by
Altissimo et al. (2001) and published monthly by the Centre
for Economic Policy Research (see www.cepr.org).

The main objective of NE is to make an assessment of eco-
nomic activity that is (a) comprehensive and nonsubjective,
(b) timely, and (c) free from short-run fluctuations. Require-
ment a is obvious. Regarding requirements b and c, both
private agents and economic policymakers require for their
decisions a clear distinction, in real time, between transitory
and long-lasting changes in the state of the economy. For
example, if an upward change occurs, it is crucial to decide
whether it is the beginning of a long, positive swing or a
short-lived phenomenon. In particular, a countercyclical pol-
icy should target medium- rather than short-term waves. The
latter are both less detrimental and more difficult to fight,
owing to the delays of policy reactions and the effects of
intervention on economic activity.

None of the available macroeconomic series provides a
measure of the state of the economy that fulfills criteria a, b,
and c. GDP, the most comprehensive indicator of real activity,
fails to meet requirements b and c. Regarding timeliness,
the GDP is available only quarterly and with a long delay.
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For instance, the preliminary estimate of euro-area GDP for
the first quarter of the year does not become available until
May. Moreover, the GDP is affected by a sizable short-run
component.

NE is a real-time estimate of GDP growth, cleaned of short-
run oscillations. More precisely, we focus, first, on the growth
rate of the GDP and define the medium- to long-run growth
(MLRG), as the component of the GDP growth rate obtained
by removing the fluctuations of a period shorter than or equal
to 1 year. This component, which is, of course, a smoothing
of GDP growth, is our ideal target. Second, NE is a monthly
and timely estimate of the MLRG for the euro area: around
the twentieth of each month, we are able to produce a reliable
estimate for the previous month.

To avoid possible misunderstandings, let us point out that
“medium- to long-run growth” denotes only the smoothed
component of the growth rate defined above; it bears no rela-
tionship to any definition of trend. In particular, integration of
the medium- to long-run component will never be considered.

The MLRG, as defined above, is obtained by applying a
bandpass filter, which is, however, an infinite, two-sided mov-
ing average. Empirical applications imply replacing missing
with predicted data, and therefore a possible deterioration at
the end of the sample. In particular, poor end-of-sample esti-
mation and serious revisions as new data become available
have been consistently stated in the literature trying to isolate
business cycle fluctuations in macroeconomic integrated time
series (see Baxter & King, 1999; Christiano & Fitzgerald,
2003). The same end-of-sample problem arises applying
bandpass filters to any stationary time series. However, this
paper concentrates on a particular stationary series, the euro-
area GDP growth, and the bandpass filter that removes one
year or shorter fluctuations. The end-of-sample deterioration,
for this case, is discussed in the paper and assessed in a
real-time exercise in section VI.

A substantial mitigation of this conflict between timeliness
and removal of the short-run fluctuations is the main contri-
bution of this paper. Our indicator NE, an estimate of the
MLRG, is based on a large data set, including 145 euro-area
macroeconomic variables. We construct a small number of
smooth factors, which are generalized principal components
of current values of the variables in the data set, specifically
designed to remove short-run and variable-specific sources
of fluctuation. NE is obtained as a linear combination of the
smooth factors. Because only current values of the variables
are used, no end-of-sample deterioration occurs. Moreover,
although NE cannot compete with the truncated bandpass
filter within the sample, we show that NE outperforms the
bandpass filter at the end of the sample in terms of both fitting
and turning-point signaling.

This result can be explained by observing that the data
set contains variables that are leading with respect to cur-
rent GDP, and the smoothness of our factors is obtained by
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Table 1.—The Calendar of Some Macroeconomic Series

Time December 2004 January 2005 February 2005 March 2005 April 2005 May 2005 June 2005 Delay

GDP Q3 - 2004 Q3 - 2004 Q4 - 2004 Q4 - 2004 Q4 - 2004 Q1-2005 Q1-2005 45–90
Industrial production Oct. 04 Nov. 04 Dec. 04 Jan. 05 Feb. 05 Mar. 05 Apr. 05 45–50 days
Surveys Dec. 04 Jan. 05 Feb. 05 Mar. 05 Apr. 05 May 05 Jun. 05 0–25 days
Retail sales Oct. 04 Nov. 04 Dec. 04 Jan. 05 Feb. 05 Mar. 05 Apr. 05 45–50 days
Financial markets Dec. 04 Jan. 05 Feb. 05 Mar. 05 Apr. 05 May 05 Jun. 05 0 days
CPI Nov. 04 Dec. 04 Jan. 05 Feb. 05 Mar. 05 Apr. 05 May 05 15 days
Car registrations Nov. 04 Dec. 04 Jan. 05 Feb. 05 Mar. 05 Apr. 05 May 05 2–30 days
Industrial orders Oct. 04 Nov. 04 Dec. 04 Jan. 05 Feb. 05 Mar. 05 Apr. 05 50 days

The table body lists the last available update period.

linearly combining current values of variables that are lag-
ging, coincident, and leading with respect to the GDP.
Therefore, the information contained in future values of the
GDP, which are unavailable at the end of the sample, can be
partially recovered using the smooth factors.

The method we use is based on the large-scale general-
ized dynamic factor model (GDFM) proposed by Forni et al.
(2000, 2005) and Forni and Lippi (2001) (see also the litera-
ture cited in section V). Valle e Azevedo, Koopman, and Rua
(2006) propose a multivariate method with bandpass filter
properties, which exploits information from a relatively small
number of variables. We are not far in spirit from their work,
the main difference being that our procedure is designed to
extract information from a large panel of time series.

Our ideal target, being an infinite moving average, is,
strictly speaking, unobservable. However, as we show in
Appendix A, our finite-sample version of the bandpass fil-
ter provides a good approximation to the ideal target until
we are 1 year away from the end and beginning of the
sample. (The appendixes are available online at http://www.
mitpressjournals.org/doi/suppl/10.1162/REST_a_00045.)
This is the basis for our adopted empirical target and mea-
sure of performance for NE. The performance of NE at time
t, with t ≤ T − 12, is measured as the difference between
NE at time t, and the empirical target at t, obtained using the
data up to T .

The paper is organized as follows. Section II collects some
preliminary observations. Section III defines our target—the
medium- to long-run component of GDP—and discusses its
interpretation. Sections IV and V describe and motivate our
estimation procedure. Section VI constructs the NE indicator
and analyzes its real-time performance in comparison with
alternative indicators. Section VII concludes. The appendix
contains a detailed discussion of the ideal target, the empirical
target and their distance, a description of the data set, and a
short comparison between New and Old Eurocoin.

II. Preliminary Observations

To gauge the current state of the economy given the delay
with which GDP is released, market analysts and forecast-
ers resort to more timely and higher-frequency information
and on this basis obtain early estimates of GDP. However,
two problems immediately arise: (a) looking at the typical
release calendar for the euro area, one can see that timeliness

varies greatly even among monthly statistics (end-of-sample
unbalance), and (b) since GDP is quarterly, we have to handle
monthly and quarterly data simultaneously.

In what follows, we show how to combine the compre-
hensive and nonsubjective information provided by GDP
with the early information provided by surveys and other
monthly series to obtain a reliable and timely picture of
current economic activity.

Our data set includes monthly series of consumer and pro-
duction prices, wages, share prices, money, unemployment
rates, job vacancies, interest rates, exchange rates, industrial
production, orders, retail sales, imports, exports, and con-
sumer and business surveys for the euro-area countries and
the euro area as a whole (see Appendix B for details). The
data set has been organized taking into account the calendar
of data releases that is typical in real situations, with the aim
of reproducing the staggered flow of information available
through time to policymakers and market forecasters. This
lack of synchronism, though little considered in the litera-
ture, is crucial for assessing realistically the performance of
alternative real-time indicators.1

As illustrated in table 1, financial variables and surveys
are the most timely data, while industrial production and
other “real variables” are usually available with longer delays.
Around the twentieth of month T + 1, when we calculate the
indicator for month T , surveys and financial variables are
usually available up to time T (thus with no delay), car reg-
istrations and industrial orders up to T − 1, and industrial
production indexes up to T − 2 or T − 3. The GDP series
is observed quarterly, so that its delay varies with time. For
example, on April 20, only data up to the fourth quarter of
the previous year are available; thus there is a three-month
delay with respect to T , which is March. On May 20, the
delay with respect to T is reduced to one month, as a first-
quarter preliminary estimate is released, and will be two
months when T is May—hence, an average delay of two
months.

The most timely variables (such as purchasing managers
indexes, consumer surveys, and business climate indexes) are
far from being comprehensive and smooth. Other standard
series, such as industrial production and exports, comple-
ment the information content of the surveys but are less

1 Important exceptions are Bernanke and Boivin (2003) and Giannone,
Reichlin, and Sala (2002).
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Figure 1.—Some Economic Indicators for the Euro Area

(Normalized Scale)

timely. Furthermore, all monthly series exhibit heavy short-
run fluctuations and might provide contradictory signals (see
figure 1). As a result, none of them is fully satisfactory,
and “there is much diversity and uncertainty about which
indicators are to be used” (Zarnowitz & Ozyildirim, 2006).

We tackle the end-of-sample unbalance in the following
way. Let x∗

it , i = 1, . . . , n, be the series after outliers and
seasonality have been removed and stationarity achieved by
a suitable transformation (see Appendix B). Let ki be the
delivery delay (in months) for variable x∗

it , so that when we
are at the end of the sample, its last available observation is
x∗

i,T−ki
. We define the panel xit , i = 1, . . . , n, by setting

xit = x∗
i,t−ki

, (1)

so that the last available observation of xit is at T for all i. Of
course, this realignment implies cutting some observations
at the beginning of the sample for several variables. As a
result, after transforming and realigning, the data set goes
from June 1987 to June 2005—hence, T = 217. The same
realignment is used both when we consider the whole sample
up to T and when we consider subsamples [1 τ], as in the
pseudo-real-time exercises carried out in section VI.

To use our monthly data set to obtain a timely GDP indi-
cator, it is convenient to think of GDP as a monthly series of
quarterly aggregates with missing observations. The figure
for month t, denoted by zt , is defined as the aggregate of GDP
for months t, t − 1, and t − 2, so that there is a two-month
overlap between two subsequent elements of the series. Obvi-
ously the monthly series is observable only for March, June,
September, and December.

The monthly GDP growth rate is defined as

yt = log zt − log zt−3.

Thus, yt is the usual quarter-on-quarter growth rate, except
that it is defined for all months.

How to deal with the missing observations in GDP is
discussed in detail in section III and in Appendix A.1.

III. The MLRG and Its Interpretation

A natural way to define the medium- to long-run fluctu-
ations of a time series is by considering its spectral repre-
sentation. Assuming stationarity, yt can be represented as an
integral of sine and cosine waves with frequency ranging
between −π and π, with respect to a stochastic measure (see
Brockwell & Davis, 1991). Based on the spectral represen-
tation, we define the medium- to long-run component of yt

by taking the integral over the interval [−π/6 π/6] instead
of [−π π]. The frequency π/6 for a monthly series corre-
sponds to a 1-year period; thus, we cut off seasonal and other
higher-frequency waves.

This frequency-domain construction has a time-domain
counterpart, which is known as bandpass filter. Here we
do not delve into the details of this correspondence and go
directly to the result (Baxter & King, 1999; Christiano &
Fitzgerald, 2003). Our medium- to long-run component—
call it ct—is the following infinite, symmetric, two-sided
linear combination of the GDP growth series:

ct = β(L)yt =
∞∑

k=−∞
βkyt−k , βk =

{
sin(kπ/6)

kπ
for k �= 0

1/6 for k = 0.
(2)

The time series yt therefore has the decomposition

yt = ct + st = β(L)yt + [1 − β(L)]yt , (3)

where st includes all the waves of period shorter than 1 year.
Since β(1) = 1, the mean of the GDP growth series, denoted
by μ, is retained in ct , while the mean of st is 0. Because ct

and st are orthogonal, the variance of yt is broken down into
the sum of a short-run variance and a medium- to long-run
variance. The medium- to long-run component ct is our ideal
target MLRG.

Application of equation (2) to the GDP growth rate requires
some elaboration. First, as we know, yt is not observed
monthly. Several solutions are possible, including linear
interpolation of the missing values or the more sophisticated
techniques introduced in Chow and Lin (1971). However, as
far as the variable ct is concerned, the particular interpolation
of the missing values in yt makes no significant difference (see
Appendix A.1 for details).

Second, we choose linear interpolation. Precisely, consider
the months from 1 to τ ≤ T . We assume that 1 is the first
publication date of the GDP and denote by TP the last pub-
lication date within [1 τ]. Moreover, denote by μ̂ the mean
of yt , estimated using its quarterly observations within [1 τ].
Then define y̌t by setting y̌t = yt for t = 1, 4, . . . , TP and

yt = μ̂ for t = −2, −5, −7, . . . and

t = TP + 3, TP + 6, TP + 9. . . .

http://www.mitpressjournals.org/action/showImage?doi=10.1162/REST_a_00045&iName=master.img-000.jpg&w=246&h=177
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The series y̌t is infinite, with two missing observations for
each quarter.

Third, call yt(τ) the result of the linear interpolation of
y̌t(τ) and define, for t = 1, 2, . . . , τ,

c∗
t (τ) = β(L)yt(τ). (4)

Thus, we use the notation c∗
t (T) when the whole interval [1 T ]

is considered, or simply c∗
t if no confusion arises.

In Appendix A we show that c∗
t (T) provides a very good

approximation of ct for 13 ≤ t ≤ T − 12, where T = 217,
the size of our sample. Our argument is based on both a
simulation exercise and theoretical calculations.

The simulation design is as follows. Mimicking the
dynamic structure of yt , we generate 2,000 time series of
length M = 2N + T + 2N :

yj,t , j = 1, . . . , 2000;

t = −2N + 1, . . . , 0, 1, . . . , T ,︸ ︷︷ ︸ T + 1, . . . , T + 2N .

A preliminary simulation determines N as such that the
revision

c∗
j,t(2N + T + 2N) − c∗

j,t(N + T + N)

is negligible for all 1 ≤ t ≤ T and all j = 1, . . . , 2,000 (see
Appendix A.2). As a consequence, setting M̂ = N + T + N ,
for t belonging to the central subsample of length T , we set
cj,t = c∗

j,t(M̂). Then for 1 ≤ q ≤ T , we consider the ratio

vj,t,T =
(
c∗

j,t(T) − cj,t
)2

σ2
j

,

where σ2
j is the estimated variance of c∗

j,t(M̂). Denoting by Vt,T

its average over 2,000 replications, we find, for T = 217,

VT ,T = 0.14, VT−12,T = 0.008, VT−108,T = 0.0013,

thus a close approximation up to T − 12, followed by a
rapid deterioration (further details on the deterioration are
in Appendix A.2).

A similar pattern, as shown in Appendix A.3, results from
the theoretical frequency-domain calculation of the ratio

var
(
c∗

t (T) − ct
)

var(ct)
,

where ct and c∗
t (T) are obtained by applying, respectively,

β(L) and the truncated version equivalent to equation (4) (see
Appendix A.3), to several monthly stationary processes.

We henceforth take c∗
t (T) as our empirical target for 13 ≤

t ≤ T − 12. In section VI, we use c∗
t (T), within [13 T − 12],

to compare the performance of NE and other indicators in
terms of both fit and ability to signal turning points.

Figure 2 presents the approximation c∗
t (T) for the euro

zone GDP, 13 ≤ t ≤ T − 12, along with quarterly GDP

Figure 2.—c∗
t (T) and the Monthly Quarter-on-Quarter

GDP Growth Rate

growth, yt , where T is June 2005. We see that c∗
t closely tracks

the GDP growth (it captures about 70% of the variance of yt).
Figure 2 provides a clear illustration of the smoothing effect
of the bandpass filter. Short-run waves are removed, so that
observers can distinguish longer oscillations and their turning
points. The main task of this paper is a good estimate of ct at
the end of the sample, so that turning points can be detected
in real time (see section VI).

We conclude this section with a few observations about the
relationship between MLRG and the year-on-year change of
GDP, which is often reported as a measure of medium- to
long-run growth. Indicating by ỹt the year-on-year change
of GDP—the difference between the quarter ending at t and
the quarter ending at t − 12 (divided by 4 to obtain quarterly
rates)—we have

ỹt = yt + yt−3 + yt−6 + yt−9

4
.

Hence ỹt is a moving average of the y series which, unlike
MLRG, is one-sided toward the past and hence not centered
at t. As a result, ỹt is lagging with respect to both yt and
MLRG by several months (precisely four and a half), as is
apparent from figure 3.

The phase shift is reduced if we compare MLRG with the
future of ỹt . In section VI D, we show that our indicator,
which tracks MLRG, is a good predictor of future year-on-
year growth.

IV. Estimation I: Projecting the MLRG on
Monthly Regressors

We now begin the construction of NE, our alternative esti-
mate of ct . A brief outline of our procedure will be helpful to
the reader:

• NE is the projection of ct on a set of regressors, which
are linear combinations of the variables in the data set.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/REST_a_00045&iName=master.img-001.jpg&w=246&h=178
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Figure 3.—c∗
t (T) and the Monthly Year-on-Year GDP Growth Rate

In this section, we give a detailed description of the way
we compute the projection once the regressors have been
constructed.

• In section V, we construct the regressors. Assuming that
our data set can be modeled as a dynamic factor model,
we determine the dimension of the factor space—call it
r—and project ct on the first r principal components of
the series in the data set, which is a basis of the factor
space—call κt the projection. Our regressors are gen-
eralized principal components, specifically designed to
minimize the short-run component. For this reason we
call them smooth factors. In section VI, we determine
the number of smooth factors as the integer s̄ such that
the residual of the projection κt and that of the projection
of ct on the first s̄ smooth factors are approximately of
the same size. We show that s̄ is smaller than r and that
the projection on the s̄ smooth factors is substantially
smoother than κt .

• This projection of ct on the first s̄ smooth factors is NE.
In section VI, we provide a detailed assessment of the
real-time performance of NE.

The variables in the data set are observed monthly. The
regressors, denoted by wkt , k = 1, . . . , r, are contemporane-
ous linear combinations of such variables and are therefore
monthly variables. The projection of ct on the regressors
requires some discussion.

The population projection of ct on the linear space spanned
by wt = (w1t , . . . , wrt)

′ and the constant is

P(ct|wt) = μ + ΣcwΣ−1
w wt , (5)

where Σcw is the row vector whose kth entry is cov(ct , wkt)

and Σw is the covariance matrix of wt . NE is obtained by
replacing the above population moments with estimators:

ĉt = μ̂+ Σ̂cwΣ̂−1
w wt . (6)

Estimation of Σ̂w is standard once the regressors wt have
been defined. Estimation of Σ̂cw is less obvious. The covari-
ances between ct and wt can be estimated using wt and
the approximation c∗

t , leaving aside end- and beginning-of-
sample data. Alternatively, we can start by estimating the
cross-covariances between the quarterly series yt and wt .
Note that this is possible for any monthly lead and lag,2
while it is not possible to estimate a monthly autocovariance
for yt . Using such cross-covariances we obtain an estimate
of the cross-spectrum between ct and wt—call it Ŝcw(θ).
Finally, Σ̂cw is obtained by integrating Ŝcw(θ) over the band
[−π/6 π/6].

The results obtained with the two techniques do not differ
substantially. The latter is more elegant and therefore has
been selected.3

V. Estimation II: Constructing the Regressors

A. Dynamic Factor Models

The regressors wkt are constructed using techniques from
large-dimensional dynamic factor models. We assume that
each of the variables xit in the data set is driven by a small
number of common shocks, plus a variable-specific (usually
called idiosyncratic) component. The idea that this common-
idiosyncratic decomposition provides a useful description of
macroeconomic variables goes back to the seminal work of
Burns and Mitchell (1946) and has been recently developed
in the literature on large-dimensional dynamic factor mod-
els (see Bai, 2003; Bai & Ng, 2002; Forni, Hallin, Lippi, &
Reichlin, 2000, 2001, 2004, 2005—henceforth FHLR; Forni
& Lippi, 2001; Stock & Watson, 2002a, 2002b; Kapetanios
& Marcellino, 2009).

Large-dimensional factor models estimate a small (rela-
tive to the size of the data set) number of “common factors,”
obtained as linear combinations of the xit’s, which remove the
idiosyncratic components and retain the common sources of
variation. The innovation of this paper with respect to this
literature is a procedure to remove both the idiosyncratic and
the short-run components, so that the resulting factors are
both common and smooth.

Let us briefly recall the main features of the dynamic factor
model we are referring to. Each series xit in the data set is
the sum of a common component—call it χit—that is driven
by a small number of common shocks, and an idiosyncratic
component, ξit:

xit = χit + ξit

= bi1(L)u1t + bi2(L)u2t + · · · + biq(L)uqt + ξit . (7)

2 Our method is closely related to the mixed-data sampling (MIDAS)
approach. See Ghysels, Sinko, and Valkanov (2007).

3 We should keep in mind that the series yt(T), which used construct c∗
t (T),

has been obtained by linear interpolation, so that c∗
t (T), strictly speaking, is

not covariance stationary, or costationary with the variables in the data set.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/REST_a_00045&iName=master.img-002.jpg&w=245&h=177


NEW EUROCOIN 1029

Figure 4.—Comparing c∗
t (T) with Various Indicators

Note: Upper panel: c∗
t (T), thick line, κt , solid line, κ

(1)
t , dash-dotted line. Lower panel: c∗

t (T), thick line, New Eurocoin, solid line.

Common and idiosyncratic components are orthogonal at all
leads and lags. Moreover, the idiosyncratic components ξit

and ξjt are mutually orthogonal at all leads and lags for i �= j.4
Model (7) is further specified by assuming that the common

components χit can be given the static representation

χit = ci1F1t + ci2F2t + · · · + cirFrt . (8)

Under equation (8), different estimators, which are consis-
tent as both the number of observations in each series (T)

and the number of series in the data set (n) tend to infinity,
have been proposed for the space GF spanned by the factors
Fjt (see Stock & Watson, 2002a, 2002b; FHLR, 2005). In
particular, Stock and Watson use the first r principal compo-
nents of the variables xit . Consistent estimates of the common
components χit are obtained by projecting the variables xit

on the estimated factors.
Our assumption is that the variables xit , as well as the

GDP, are driven by the factors Fkt . On the other hand, yt is a
quarter-on-quarter rate of change, whereas the x’s, that is, the
variables used to construct the factors, are month-on-month
rates of change, so that, as we argue in Appendix A.4, repre-
senting yt in terms of the factors transformed by (1+L+L2)2,
that is,

yt = cy1[(1 + L + L2)2F1t] + cy2[(1 + L + L2)2F2t]
+ · · · + cyr[(1 + L + L2)2Frt] + ξyt ,

is parsimonious and fairly reasonable. Thus, the projection of
ct on the factor space will always be estimated by using the

4 This assumption can be relaxed. See for example, FHLR (2000) and
Stock and Watson (2002a, 2002b).

transformed regressors (1 + L + L2)2Fkt , k = 1, . . . , r (the
same transformation will be applied to the smooth factors;
see section VB).

Using our data set over the whole sample period [1 T ], the
dimension of the factor space GF has been estimated using
the Bai-Ng criteria PCP1 and PCP2 (see Bai & Ng, 2002; we
set rmax = 25), the result being r = 12. Second, ct has been
projected on the first twelve principal components, filtered
with (1 + L + L2)2, the projection being based on equation
(6). This projection, denoted by κt , is shown in Figure 4,
together with c∗

t (T).5
We find that κt is a fairly good approximation to c∗

t (T).
Indeed the R2 of the regression of c∗

t (T) on κt , over the
period [13 T − 12], is as high as 0.77. However, as Figure 4
shows, κt (upper panel, solid line) contains a sizable short-run
component.

Smoother versions of κt can be obtained by reducing the
number of principal components. In fact, the first principal
component is quite smooth, but all the others, starting with
the second, exhibit substantial short-run oscillations. The pro-
jection of ct on the first principal component (filtered with
(1 + L + L2)2)—call it κ

(1)
t —is plotted together with c∗

t (T)

in figure 4 (upper panel, dash-dotted line). A considerable
improvement in smoothness is obtained, but first, the R2 falls
to 0.45, and, second, κ

(1)
t has a systematic phase delay with

respect to c∗
t (T). As soon as we project on two principal com-

ponents, the gain in smoothness almost disappears.6 The next

5 We compute κt only for the whole sample. Therefore, we do not need
the notation κt(T).

6 The plots of the projection of ct on principal components are available
on request.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/REST_a_00045&iName=master.img-003.jpg&w=359&h=242
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section shows how smoothness can be obtained by a different
definition of principal components.

B. Smooth Factors

We claim that by conveniently choosing a basis in GF

(different from the twelve principal components used to con-
struct κt), we can obtain a projection with approximately
the same fit but with a considerably reduced short-run com-
ponent. Our construction is as follows. Let xt , χt , and ξt

be the vectors of the variables xit—their common compo-
nents and their idiosyncratic components, respectively. Let
φit be the medium- to long-run component of χit , precisely
φit = β(L)χit , and ψit = χit − φit . For the spectral density
matrices, we have

Sx(θ) = Sχ(θ) + Sξ(θ) = Sφ(θ) + Sψ(θ) + Sξ(θ).

Integrating over the interval [−π π], we obtain the following
decompositions of the variance-covariance matrix of the x’s:

Σx = Σχ + Σξ = Σφ + Σψ + Σξ.

Consistent estimates Σ̂χ, Σ̂φ, and Σ̂ξ can be obtained from the
estimates of the spectral density Sx(θ). (See Forni et al., 2000,
for estimates of Sχ(θ) and Sξ(θ).) Σ̂χ and Σ̂ξ are obtained by
integrating Ŝχ(θ) and Ŝξ(θ) over [−π π] (see Forni et al.,
2005), and Σ̂φ by integrating Sχ(θ) over [−π/6 π/6].

The matrices Σ̂χ, Σ̂φ, and Σ̂ξ are all we need to construct
our smooth regressors. We start by determining the linear
combination of the variables in the panel that maximizes the
variance of the common component in the low-frequency
band, that is, the smoothest linear combination. Then we
determine another linear combination with the same prop-
erty under the constraint of orthogonality to the first, and so
on. These generalized principal components (GPC), denoted
by Wkt , can be obtained by means of the generalized eigen-
vectors v1, . . . , vn associated with the generalized eigenvalues
λ1, . . . , λn, ordered from the largest to the smallest, of the pair
of matrices (Σ̂φ, Σ̂χ + Σ̂ξ), that is, the vectors satisfying

Σ̂φvk = λk(Σ̂χ + Σ̂ξ)vk , (9)

with the normalization constraints v′
k(Σ̂χ + Σ̂ξ)vk = 1

(see Anderson, 1984, theorem A.2.4). The eigenvalue λk is
equal to the ratio of common-low-frequency to total variance
explained by the kth generalized principal component Wkt .7
Of course, this ratio is decreasing with k, so that the greater
is k, the less smooth and more idiosyncratic is Wkt .

Regarding the projection of ct on GF , observe first that
since our model has been specified by equation (8), the first r
GPC’s span the same space GF spanned by the first r ordinary
principal components (see FHLR, 2005), so that projecting ct

7 The generalized principal components used in FHLR (2005) are designed
for a different purpose. They are obtained using the generalized eigenvectors
of the couple (Σ̂χ, Σ̂ξ).

Table 2.—Determining the Number of Generalized

Principal Components

Number of GPCs 1 3 5 6

R2 0.34 0.50 0.75 0.79
Number of PCs 1 3 5 6 12
R2 0.45 0.61 0.71 0.71 0.77

In the second (fourth) row we report the R2’s of the regressions of c∗
t (T) on s generalized (standard)

principal components.

on the first r GPCs would give the same result as projecting
on the first r PCs—namely, κt . However, the variable ct is
by construction very smooth. Therefore, its projection on GF

is likely to be well approximated using only the first, and
smoother, GPCs. In other words, a fit almost as good as that
obtained by the first r ordinary principal components should
be obtained by a substantially smoother approximation.

VI. Results

A. The Number of Smooth Factors and the Definition of NE

Based on the definition of smooth factors and the discus-
sion above, the number of smooth factors is determined by
the following procedure. First, we estimate q, the dimension
of the white noise ut (see equation (7)). Applying the criterion
proposed in Hallin and Liška (2007), we set q = 2. Based
on the determination of q, we estimate Ŝχ(θ) and Ŝξ(θ) as in
FHLR (2000, 2005) and compute the covariance matrices Σ̂χ,
Σ̂φ, and Σ̂ξ as indicated above. Second, we estimate r, the
dimension of GF , using Bai and Ng’s criterion. The result (see
section V), is r = 12. Then, using Σ̂χ, Σ̂φ, and Σ̂ξ, we com-
pute the generalized eigenvectors vk , k = 1, . . . , r satisfying
equation (9), and the associated GPCs Wkt = v′

kxt . Finally,
let κ

(s)
t be the projection of ct on the first s GPCs, while κt , as

defined in section V, is the projection of ct on the first r prin-
cipal components. In both cases, the principal components
are filtered with (1 + L + L2)2 (see section V), and the pro-
jection is based on equation (6). Then let ρ and ρs be the R2’s
obtained by projecting c∗

t on κt and κ
(s)
t , respectively. Starting

with s = 1, the number of GPCs is increased. We stop when
the difference between ρ and ρs becomes negligible. Call s
the number of GPCs so determined.

The fit of the indicator κt , that is, the R2 of the regression
of c∗

t (T) on κt , over the period [13 T − 12], is 0.77 (see
section V and table 2). The R2s of the regression of c∗

t (T) on
κ

(s)
t , with s equal to 1, 3, 5, 6, are reported in table 2. Visual

inspection shows that the tiny improvement of the fit between
five and six factors is not offset by reduced smoothness; thus,
we set s̄ = 6.

The projection of ct on the first six GPCs is the NE indi-
cator. We use the notation ĉt(T) for the indicator at time t
obtained using the whole sample to estimate the necessary
covariance matrices and ĉt(τ) when the subsample [1 τ] is
used.

New Eurocoin and c∗
t (T) are plotted together in figure 4

(lower panel, solid line). The advantage of generalized over
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Figure 5.—Pseudo-Real-Time Estimates of MLRG at the End of the Sample, Obtained with NE (Upper Panel) and BP (Lower Panel)

ordinary principal components, when fit and smoothness are
jointly considered, is evident by comparing this to κt (figure 4,
upper panel). The next section contains a systematic compar-
ison, based on a real-time exercise, of NE to κt and c∗

t (t) and
the Christiano-Fitzgerald version of the bandpass filter.

B. The Real-Time Performance

In this section, we report a pseudo-real-time evaluation of
NE. Here “pseudo” refers to the fact that we do not use the true
real-time preliminary estimates of the GDP, but the final esti-
mates as reported in GDP “vintage” available in September
2005. The same holds true for all other monthly variables.8

In figure 5 and table 5 we report quantities resulting from
the estimation of ĉt(τ) and c∗

t (τ), for some values of τ and t
running from November 1998 to June 2005 (the last part of
the graph in figure 5 and the number of consistent signals in
table 5). However, the results using the target c∗

t (T) use data
only up to June 2004.

Intuition for the results presented below is provided in
figure 5. In the upper graph, the long, continuous line rep-
resents c∗

t (T). The short line ending at t represents the three
estimates: ĉt−2(t), ĉt−1(t), and ĉt(t). Therefore, the three
points on the short lines over a given t are the first estimate
and two revisions of NE at t: ĉt(t), ĉt(t + 1), and ĉt(t + 2).
Revisions of NE at t are due to reestimation of the factors and
the projection as new data arrive and are modest. The bullets

8 A true real-time exercise using the different vintages of the data would be
preferable. Unfortunately vintages for most of the monthly series in the data
set are not available. We prefer the pseudo-real-time exercise rather than
resorting to a mixture of latest vintage and real-time vintage data, which
could produce misleading results.

indicate turning points, and the diamonds indicate turning
point signals (see below for formal definitions).

The lower graph shows the corresponding estimates for BP.
Each short line represents c∗

t−2(t), c∗
t−1(t), and c∗

t (t). Clearly
the bandpass filter estimates (BP), although very smooth,
exhibit a large bias toward the sample mean. NE estimates
are more accurate, and the revision errors are smaller.

Let us now establish the formal criteria used in our
evaluation. We are interested in (a) the ability of ĉt(t) −
ĉt−1(t) = Δĉt(t) to signal the correct sign of the change,
that is, the sign of Δc∗

t (T), as measured by the percent-
age of correct signs (see Pesaran & Timmermann, 2009);
(b) the ability of ĉt(t) to approximate (nowcast) c∗

t (T),
for the period T − 81 ≤ t ≤ T − 12, as measured by
the ratio

∑T−12
t=T−81[ĉt(t) − c∗

t (T)]2/
∑T−12

t=13 [c∗
t (T) − c∗

t (T)]2,
where c∗

t (T) = ∑T−12
t=13 c∗

t (T)/(T − 24); and (c) the size of
the revision errors after 1 month, as measured by the ratio∑T−1

t=T−81[ĉt(t + 1) − ĉt(t)]2/
∑T−12

t=13 [c∗
t (T) − c∗

t (T)]2.
Our indicator NE, at time t, is compared, using criteria a,

b, and c, to three alternative approximations of c∗
t (T), which

use information up to time t:

Table 3.—End-of-Sample Performance

% Correct Prediction MS of Nowcast MS of Revision
Indicator of Sign of Δc∗ Error/Variance of c∗ Error/Variance of c∗

NE 0.88a 0.13 0.005
BP 0.63 0.32 0.061
CFBP 0.66 0.27 0.133
PC 0.62 0.21 0.116

Sample: November 1998–June 2004. The first column reports the percentage of correct signs with
respect to those of Δc∗ .

a In this case, the null of no predictive power is rejected at the 1% significance level.
Source: Pesaran and Timmermann (2009).

http://www.mitpressjournals.org/action/showImage?doi=10.1162/REST_a_00045&iName=master.img-004.jpg&w=359&h=243
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Table 4.—Classification of Signals

Δĉt−2(t − 1) Δĉt−1(t − 1) Δĉt−1(t) Δĉt(t) Consistency Signal Type

1 − − − + Yes Upturn at t − 1
2 + − − + Yes Uncertainty
3 − − − − Yes Deceleration
4 + − − − Yes Slowdown
5 + + + − Yes Downturn at t − 1
6 − + + − Yes Uncertainty
7 + + + + Yes Acceleration
8 − + + + Yes Recovery
9 − − + − No Trembling deceleration

10 + − + − No Downturn at t − 2 shifted
11 − − + + No Missed upturn
12 + − + + No Downturn at t − 2 not confirmed
13 + + − + No Trembling acceleration
14 − + − + No Upturn at t − 2 shifted
15 + + − − No Missed downturn
16 − + − − No Upturn at t − 2 not confirmed

All possible sign patterns for Δĉt−2(t − 1), Δĉt−1(t − 1), Δĉt−1(t), Δĉt (t) are listed and classified into signal types.

• BP
• CFBP: the optimal approximation to the bandpass fil-

ter proposed in Christiano and Fitzgerald (2003). Their
filter is applied to the interpolated series yt(τ), for τ

running from T − 81 to T − 12. We use the program
recommended by Christiano and Fitzgerald9 in the sta-
tionary version, with a long moving average whose
coefficients are obtained by inverting an AR model esti-
mated for the interpolated series yt(T − 81), as defined
in section III.10

• PC: κt , the estimate obtained using ordinary principal
components.

All the comparisons reported below are fair, in that the
same information set is available at any time t for each of the
four competing indicators (though different indicators use
different subsets).

Table 3 shows that as far as the criteria a, b, and c are
concerned, NE scores better than BP and CFBP, the second
outperforming the first as regards the nowcast error and the
slope changes.11 As expected, PC performs fairly well as far
as b and c are concerned,12 but is outperformed by NE by
criterion a. Hence, NE dominates the other indicators for the
criteria we selected.

As regards the nowcast error of BP and CFBP, we must
keep in mind that in the pseudo-real-time exercise, the delay
of the GDP with respect to t can be 1, 2, or 3 months (see
section II). The figures 0.32 and 0.27 in the table can be
referred to the average delay, which is 2 months. We should
also observe that further publication delay for the GDP may
occur in actual NE production.

9 The code was downloaded from http://www.clevelandfed.org/research/
models/bandpass/bpassm.txt.

10 The observation in note 3 applies to the AR model estimated using the
covariances of yt(T − 81).

11 The advantage of CFBP at the end of the sample vanishes at T − 12. In
other words, the target computed using BP and CFBP is almost identical.

12 By construction, NE should nowcast as well as PC; hence, the better
performance of NE in the second column is due to the particular sample
chosen for the real-time exercise.

C. The Behavior Around Turning Points

The figures in the first column of table 3, concerning the
percentage of correct signs, suggest that NE should perform
well in signaling turning points in the target. In the remainder
of this section, we explore this issue, but for that purpose, we
need precise definitions of turning point, turning point signal,
and false signal.

We define a turning point as a slope sign change in our
target, c∗

t (T). We have an upturn (downturn) at time t if
Δc∗

t+1(T) = c∗
t+1(T) − c∗

t (T) is positive (negative), whereas
Δc∗

t (T) = c∗
t (T) − c∗

t−1(T) is negative (positive). According
to this definition, in the subsample involved in the pseudo-
real-time exercise, the target exhibits three downturns and
three upturns (see figure 5).

Next we define a rule to decide when a slope sign change
of our indicator ĉ can be interpreted as a reliable signal of a
turning point in the target c∗. To this end, we focus on the
sign of the last two changes of the current estimate of our
indicator ĉt(t) and the sign of the last two changes of the
previous estimate ĉt(t − 1), that is,

Current estimate: · · · Δĉt−1(t) Δĉt(t) (10)

Previous estimate: Δĉt−2(t − 1) Δĉt−1(t − 1) · · · (11)

A sign change between Δĉt−1(t) and Δĉt(t) makes equa-
tion (10) a candidate as a signal at t locating a turning point at
t−1. However, we accept the sign change in equation (10) as a
turning point signal only if (a) the signal is consistent, that is,
the signs of Δĉt−1(t −1) and Δĉt−1(t) coincide, and (b) there
is no sign change in equation (11) between t − 2 and t − 1,
that is, the signs of Δĉt−2(t − 1) and Δĉt−1(t − 1) coincide.

The reason for conditions a and b is that we want to be
strict enough to rule out sign changes that may be caused by
unstable estimates rather than by true turning points. Condi-
tion a is obvious. Condition b rules out a sign change between
t − 1 and t that follows the opposite change between t − 2
and t − 1 in the previous estimate.

Table 4 lists the eight possible consistent (rows 1–8) and
the eight possible inconsistent signals (rows 9–16), which
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Table 5.—Real-Time Detection of Turning Points (TP)

Consistent Uncertainty TP TP Signals Correct Correct over Missed over
Target Signals Signals Signals Excluding Last 12 Months TP Signaled TP All TP

NE 81 0 11 8 6 6/8 0
BP 80 0 4 4 1 1/4 5/6
CFBP 68 0 6 6 2 2/6 4/6
PC 81 9 22 20 6 6/20 0

Sample: November 1998–August 2005. The first column reports the number of consistent signals (over a total of 81 signals). The fourth column reports the number of turning point signals when excluding the last
12 signals. The fifth column counts the number of correct turning point signals—those matching the ones in the target. The last shows the percentage of turning points in the target missed by each indicator.

Table 6.—How to Relate the Monthly Indicator to Actual GDP Growth

RMSE with Respect to Different Growth Rates (%)

Quarter-on-Quarter Year-on-Year Year-on-Year Year-on-Year
Indicator Current Quarter Current Quarter One Quarter Ahead Two Quarters Ahead

NE 0.20 0.18 0.13 0.17
BP 0.32 0.22 0.22 0.25
CFBP 0.32 0.23 0.23 0.25
PC 0.21 0.17 0.15 0.21

Sample: December 1998–June 2005.

in principle could arise. Note that only two of the eight
consistent sign changes in equation (10) are classified as
turning point signals; those in the first and the fifth rows of
table 4—an upturn and a downturn, respectively. Once we
have established a rule to identify turning point signals in
our indicator, we can compare them with turning points that
actually occurred in the target.

We say that an upturn (downturn) signal at t locating a
turning point at t −1 is false if c∗ has no upturns (downturns)
in the interval [t − 3, t + 1], and correct otherwise. With this
definition, an upturn signal in ĉt leading or lagging the true
upturn (an upturn in c∗

t ) by a quarter or more is false, whereas
a 2-month error is tolerated.

Table 5 shows results for the competing indicators in our
real-time exercise. Signals are reported up to the last possible
date within our data set, which is August 2005, although
interestingly, across methods most signals in real time are
consistent—all of them for NE and PC. PC also provides
nine uncertain signals. NE signals eleven turning points (third
column), eight of which are before the last 12 months, where
c∗ is reliable. The latter include all of the six turning points
in the target. The PC indicator correctly signals all turning
points but produces many false signals. By contrast, BP and
CFBP produce only a few turning point signals, but most
of them are false. Overall, the results on turning points are
consistent with the figures in the first columns of table 3 and,
as regards BP, with figure 5.

D. Forecasting Properties of the Indicator

In section III, we argued that we should expect a close
match between NE and the GDP growth rate once the latter
is smoothed with a moving average such as the one induced
by the year-on-year transformation and adjusted for the phase
shift.13 This is confirmed by the results shown in the last two

13 A similar idea is exploited in Cristadoro et al. (2005) to motivate their
result that a core inflation indicator obtained as a smoothed projection of
CPI inflation on factors is a good forecaster of the CPI headline inflation.

Table 7.—Pseudo-Real-Time Forecast Performance

Target Growth Rates (%)

Quarter-on-Quarter Year-on-Year Year-on-Year
Model Current Quarter Current Quarter One Quarter Ahead

NE 0.20 0.18 0.13
AR (AIC) 0.29∗∗∗ 0.16 0.17
AR (BIC) 0.29∗∗∗ 0.16 0.17
ARMA (AIC) 0.31∗∗ 0.18 0.21∗∗
ARMA (BIC) 0.30∗∗ 0.17 0.19∗
Random walk 0.31∗∗ 0.18 0.19

Sample: December 1998–June 2005. The first column reports the root mean square forecast error with
respect to current quarter-on-quarter GDP growth rate, the second with respect to current year-on-year GDP
growth rate, the third with respect to next quarter year-on-year GDP growth rate. NE is the New Eurocoin
forecast obtained using the monthly data set with information updated at most up to the last month of
the current quarter. The AR and ARMA models are selected at each step according to their in-sample
performance (in parentheses the selection criterion used) and are estimated on the quarterly GDP series.
∗∗∗ , ∗∗ , ∗: Rejection of the null of equal forecast accuracy at 1%, 5% or 10%, respectively, according to
Diebold and Mariano (1995) test.

columns of table 6. While the root mean squared error of NE
with respect to quarter-on-quarter GDP growth (first column)
is 0.20, the same statistic with respect to year-on-year growth
(divided by 4) is 0.18 (second column) and decreases to 0.13
and 0.17 when we adjust for the phase shift by consider-
ing future year-on-year growth (third and fourth column).14

None of the competing indicators have similar forecasting
properties.

To better gauge the forecasting ability of NE, we compare
it with univariate ARMA models of quarterly GDP growth,
selected by standard in-sample criteria. Such models are often
used as benchmarks in forecasting studies (Stock & Watson,
2002b).

As shown in table 7, for quarter-on-quarter GDP growth
(first column) and for the year-on-year growth rate one quarter
ahead (third column), the forecast error of the indicator is far
lower than those obtained either with the ARMA or with the
random walk.

14 Obviously we can compare our monthly indicator with actual GDP
growth rates only at the end of each quarter.
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VII. Summary and Conclusion

Our coincident indicator NE is a timely estimate of the
medium- to long-run component of the euro-area GDP
growth. The latter, our target, has been defined as a cen-
tered, symmetrical moving average of GDP growth, whose
weights are designed to remove all period fluctuations shorter
than 1 year. As observed in section III, the target, which has
a rigorous spectral definition, leads the “popular” measure
of medium- to long-run change—namely, year-on-year GDP
growth—by several months.

We avoid the end-of-sample bias typical of two-sided filters
by projecting the target onto suitable linear combinations of
a large set of monthly variables. Such linear combinations
are designed to discard useless information (idiosyncratic
and short-run noise) and retain relevant information (com-
mon, cyclical and long-run waves). Both the definition and
the estimation of the common, medium- to long-run waves
are based on recent factor model techniques. Embedding the
smoothing into the construction of the regressors is, in our
opinion, an important contribution of this paper.

The performance of NE as a real-time estimator of the
target has been presented in detail in section VI. The indi-
cator is smooth and easy to interpret. In terms of detection
of turning points, it scores much better than the competitors
that naturally arise as estimators of the medium- to long-run
component of GDP growth in real time. The reliability of the
signal is reinforced by the fact that the revision error of our
indicator is fairly small as compared with the competitors. We
have also shown that NE is a very good forecaster of year-on-
year GDP growth one and two quarters ahead; it also scores
well in forecasting quarter-on-quarter GDP growth, with an
RMSE of 0.20, which ranks well even in comparison with
best-practice results.
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