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Abstract

A number of recent studies finds two asymmetries in dependence structures in international
equity markets; specifically, dependence tends to be high in both highly volatile markets
and in bear markets. In this paper, a further investigation of asymmetric dependence struc-
tures in international equity markets is performed by using the Markov switching model
and copula theory. Combining these two theories enables me to model dependence struc-
tures with sufficient flexibility. Using this flexible framework, I indeed find that there are
two distinct regimes in the U.S.-U.K. market. I also show that for the U.S.-U.K. market the
bear regime is better described by an asymmetric copula with lower tail dependence with
clear rejection of the Markov switching multivariate normal model. In addition, I show that
ignorance of this further asymmetry in bear markets is very costly for risk management.
Lastly, I conduct a similar analysis for other G7 countries, where I find other cases in which
the use of a Markov switching multivariate normal model would be inappropriate.

I. Introduction

The study of dependence structures in international equity markets has re-
cently attracted increasing attention among theorists, empirical researchers, and
practitioners. For instance, to control for risks that they face, portfolio managers
and regulators have to take into account dependence between international equity
markets when studying the returns across international financial markets. There-
fore, the issue of asymmetric dependence structures, such as high dependence
in a certain period or market, is particularly important for risk control and pol-
icy management. In addition, benefits from international diversification of asset
allocation could be considerably affected by asymmetric dependence structures.
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A number of recent studies investigate asymmetry in dependence structures
in international equity markets and observe the following two interesting asym-
metries: dependence tends to be high in both i) highly volatile markets and ii) bear
markets. For example, Hamao, Masulis, and Ng (1990) investigate the relations
among equity markets across Japan, the U.K., and the U.S. using daily stock
indices data. They estimate the GARCH-M model and find volatility spillover ef-
fects from the U.S. and U.K. stock markets to the Japanese market. Also, Longin
and Solnik (1995) analyze monthly stock indices data for several industrial coun-
tries and conclude that the correlations between major stock markets increases
in periods of high volatility based on a multivariate GARCH model. Similarly
using a multivariate SWARCH model, Ramchand and Susmel (1998) report that
monthly equity markets in the U.K., Germany, and Canada become more highly
correlated with the U.S. equity market during periods of high U.S. variance. See
also King, Sentana, and Wadhwani (1994), Ball and Torous (2000), Bekaert and
Wu (2000), Ang and Bekaert (2002), and Das and Uppal (2004).

While these studies find evidence of the first asymmetry, several other studies
recognize the second asymmetry. For instance, King and Wadhwani (1990) con-
struct a contagion mechanism model and find evidence of contagion effects. They
also find an increase in volatility raised its size using high frequency data from
the stock markets in Japan, the U.K., and the U.S. Similarly, Lin, Engle, and Ito
(1994) analyze two international transmission mechanism models based on daily
stock indices in Japan and the U.S. to support the findings of King and Wadhwani
(1990). Erb, Harvey, and Viskanta (1994) document that monthly cross-equity
correlations among the G7 countries are highest when any two countries are in
a common recession and also show that they are much higher in bear markets.
Also, following Davison and Smith (1990) and Ledford and Tawn (1997), Longin
and Solnik (2001) formally describe a method to measure the extreme correlation
by the conditional tail correlation based on extreme value theory. They find that
it is only in bear markets that conditional correlation between the U.S. and other
G5 countries strongly increases, while conditional correlation does not seem to
increase in bull markets. Other recent studies include Campbell, Koedijk, and
Kofman (2002), Ang and Bekaert (2002), Das and Uppal (2004), Patton (2004),
and Poon, Rockinger, and Tawn (2004).

Those findings suggest that there are two regimes in international equity
markets: a high dependence regime with low and volatile returns and a low de-
pendence regime with high and stable returns. Following this conjecture, Ang
and Bekaert (2002) estimate a Markov switching multivariate normal (MSMVN)
model using the U.S., the U.K., and German monthly stock indices. They find
weak evidence of a bear regime characterized by low expected returns, high
volatility, and high correlation, and a normal regime associated with high expected
returns, low volatility, and low correlation. They also show that the MSMVN
model can fairly successfully replicate Longin and Solnik’s (2001) results. In ad-
dition, following Ang and Chen (2001), they confirm that an asymmetric bivariate
GARCH model, which has been used as a main tool to analyze the international
equity markets, cannot replicate them. Lastly, they consider the international as-
set allocation problem and evaluate economic significance measured by the utility
cost of ignoring the regime switching dependence structure.
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The contribution of this paper is to provide further evidence of asymmet-
ric dependence structures in international equity markets. More precisely, in this
paper I explicitly assume that two regimes exist in international equity markets.
Then, I investigate characteristics of each regime, paying close attention to the
asymmetries of the dependence structure. For this purpose, I use copula the-
ory, which can be regarded as an explicit representation of dependence structure,
in a Markov switching framework. Combining these two modern econometric
techniques allows me to model asymmetric dependence structures with sufficient
flexibility without losing any tractability of the models. These two theories enable
me to introduce further asymmetries in a very natural way. Rodriguez (2007) con-
siders similar models by using copulas with Markov switching parameters. Note
that in this paper I consider more general models with Markov switching copulas.

Following Ang and Bekaert (2002), I first estimate the MSMVN model as
my benchmark model for the U.S.-U.K. markets. I successfully replicate Ang
and Bekaert’s main findings of weak evidence for two distinct regimes: a bear
regime characterized by high dependence with low and volatile expected returns
and a normal regime identified by low dependence with high and stable expected
returns.

One concern about the MSMVN model is that the conditional dependence
structure in each regime must be symmetric without tail dependence,1 even though
the unconditional dependence structure could be asymmetric and generate greater
“near tail” dependence.2 Obviously, there is little reason to restrict the study to
models exhibiting conditional symmetry on each regime.3 The growing conta-
gion literature also favors the models with conditional lower tail dependence.4

I therefore use a family of asymmetric copula models with lower tail depen-
dence for one regime, presuming that asymmetric copula models are suitable
only for bear markets. Specifically, I use a multivariate normal model for de-
scribing one regime, while I adopt a family of asymmetric copula models with
lower tail dependence for another regime. Using this Markov switching semi-
asymmetric copula (MSSAC) model, I confirm that asymmetric copula models
closely match bear markets for all models. More importantly, all MSSAC models
uniformly improve log-likelihood values compared with the MSMVN model. In
addition, I find stronger evidence of two distinct regimes. Furthermore, the val-
ues of implied lower tail dependences from the MSSAC models are at least 0.64
and are highly significant. With these lower tail dependences, I also verify that
the MSSAC model can reproduce exceedance correlations observed in data bet-
ter than the MSMVN model. Thus, these findings suggest that bear markets are
better characterized by asymmetric copula models than the multivariate normal
model.

To further investigate the appropriateness of the MSSAC model, I also con-
sider another type of asymmetric model. I use a family of asymmetric copulas for
both regimes, instead of only one regime. Using this type of asymmetric model, I
can examine the possibility of asymmetric dependence in the normal regime. With

1For the definition of tail dependence, see the next section.
2I acknowledge the referee for clarifying this point.
3In what follows, I use the term “conditional” to mean conditional on each regime.
4See Pericoli and Sbracia (2003) for an excellent survey of recent contagion literature.
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this Markov switching asymmetric copula (MSAC) model, I find clear evidence
of two distinct regimes as given by the MSSAC model. The results, however,
show that the MSAC models have uniformly lower log-likelihoods than those of
MSSAC models. In addition, I confirm that the MSAC model cannot reproduce
exceedance correlations observed in data as well as the MSSAC model. These
results suggest that the multivariate normal model is more appropriate for normal
markets than asymmetric copula models. Combining this result with the above
finding indicates that bear markets are better characterized by the asymmetric de-
pendence, while the symmetric dependence is more appropriate for normal mar-
kets, hence, the MSSAC model is the most appropriate among the three models
for the U.S.-U.K. markets.

Following these empirical findings, I formally conduct the likelihood ratio
tests against the MSMVN model. Using the MSSAC models, I can uniformly
reject the MSMVN model. This finding clearly demonstrates that the MSMVN
model is not enough to describe the asymmetric dependence in the U.S.-U.K.
markets, specifically the asymmetric dependence in bear markets. Thus, my re-
sults establish that two types of asymmetric dependence exist in the U.S.-U.K.
markets: asymmetric dependence between bear markets and normal markets, and
further asymmetric dependencewith lower tail dependence in bear markets, which
the MSMVN model cannot capture well.

Next I investigate the economic significance of my empirical findings from
a risk management point of view because ignoring the further asymmetry in bear
markets could be costly when risk measures are evaluated. Following Ball and
Torous (2000) and Guidolin and Timmermann (2006), I investigate this possibility
by concentrating on the value at risk (VaR) and expected shortfall. According to
my calculation, ignoring such an asymmetry in bear markets does indeed affect
risk measures. I find that when this further asymmetry is ignored, the 99% VaR is
undervalued by about 10%, while the expected shortfall is undervalued by about
5% to 10% consistently over the whole significance level between 90% to 99%,
which is crucial for risk management.

Lastly, I examine whether commensurate asymmetric dependence can be
found in other G7 countries through the adaptation of Longin and Solnik’s (2001)
pair-wise analysis. My analysis shows the existence of normal and bear regimes
in other markets as well. I, however, find different asymmetric dependence struc-
tures. Although no asymmetric dependence is observed for the U.S.-JP pair, evi-
dence of asymmetric dependence across regimes is found in the U.S.-CA market.
Moreover, even though I do not find any strong evidence of asymmetric depen-
dence across regimes in the U.S.-GE and U.S.-FR markets, I show that both mar-
kets are best characterized by the MSAC models but clearly not by the MSMVN
model. In other words, asymmetric dependence exists within each regime in these
markets. This result provides other cases in which the use of the MSMVN model
is inappropriate.

The remainder of this paper is organized as follows. Section II briefly dis-
cusses the idea behind my methodology and the estimation method. Section III
provides the empirical results for the U.S.-U.K. market, while Section IV evalu-
ates the economic significance of my empirical findings in Section III. The results
for other G7 countries are given in Section V. Lastly, Section VI concludes.
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II. Methodology

The basic idea behind this paper is to combine copula theory with the Markov
switching model to characterize two regimes in international equity markets. While
the former can give flexibility in describing asymmetric interdependence across
observations, the latter provides natural and tractable models for processes with
switching regimes. Therefore, combining these two theories enables me to model
regime switching dependence structures with sufficient flexibility.

A. Copula Theory and Measures of Dependence

The purpose of this paper is to investigate the dependence structures in inter-
national equity markets. It is, therefore, desirable to model dependence structure
directly, which could be done by using the notion of a copula. Copula theory is a
classical statistical theory based on Sklar’s (1959) theorem. Despite the fact that
the concept of the copula was introduced over 40 years ago, only recently has
it been used in financial and econometric literature.5 In what follows, I briefly
explain the concept of a copula and related measures of dependence for the two-
dimensional continuous case.6

Let H be a continuous two-dimensional distribution function and let FX, FY

be corresponding continuous marginal distributions. Then, copula theory claims
that there exists a unique distribution function C, which I refer to as a copula, of
a random vector in R

2, with uniform (0,1) margins, such that for all (x, y)′ ∈ R
2,

H(x, y ; θθθ) = C (FX(x ; θθθX), FY(y ; θθθY) ; δδδ) .(1)

Here δδδ is a parameter vector for the copula, θθθX,θθθY are parameter vectors for each
margin, and θθθ=(δδδ′,θθθ′

X ,θθθ′
Y)′ is a parameter vector for the joint distribution. Thus,

according to copula theory, the joint distribution can be decomposed into two
parts: marginal distributions FX and FY , which describe the marginal behavior of
each variable, and a copula C, which represents the dependence structure between
X and Y. This decomposition allows me to model marginal distributions and
dependence structure separately. Hence, I can model the dependence structure
explicitly. As a result, I can model the joint distribution with sufficient flexibility
to investigate dependence structures in international equity markets.

One of my main interests is to detect the difference between dependence
structures across regimes. Although cross-regime comparison of the entire copula
forms works for this purpose, it is often helpful to focus on some scalar measures
of dependence. In particular, in the finance world linear correlation ρ has been
most widely used as a measure of dependence for several reasons. First, it is very
easy to compute since it depends only on the second moments of joint distribu-
tions. Second, some basic theories in finance, such as the capital asset pricing
model and the arbitrage pricing theory, are based on linear correlation between
different financial instruments. Third, it is a natural measure of dependence in

5For instance, see Mashal and Zeevi (2002), Breymann, Dias, and Embrechts (2003), Jondeaua
and Rockinger (2006), Patton (2006), and Rodriguez (2007) for recent applications of copula theory.

6For a more general discussion, see Joe (1997) and Nelsen (1999).
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elliptical distributions,7 such as the multivariate normal distribution and multi-
variate t-distribution, as discussed below. In general, however, linear correlation
is not a good measure of dependence, as emphasized by Embrechts, McNeil, and
Straumann (2002), and Embrechts, Lindskog, and McNeil (2003). Since it can
capture only symmetric linear dependence, it does not have one of the desired
properties for measures of dependence: invariance under nonlinear strictly in-
creasing transformation. In addition, it is possible to construct random variables
that are perfectly dependent in the sense of comonotonicity or countermonotonic-
ity,8 but their linear correlation is arbitrarily close to 0. It is, therefore, sometimes
very misleading to use linear correlation as a measure of dependence for non-
elliptical distributions such as the distributions employed in this paper. The main
reason why linear correlation fails to provide a reasonable measure in general is
that it is not a copula-based measure. As I have shown, the entire dependence
structure is described by a copula, hence measures of dependence must be based
on copulas. Since linear correlation can be viewed as the common determinant
of all elliptical copulas,9 it can be considered as a reasonable measure of depen-
dence within the elliptical distributions, but it is not always the case. For general
non-elliptical distributions, Joe (1997) introduced three copula-based measures of
dependence10—Kendall’s tau τK , Spearman’s rho ρS, and (lower) tail dependence
λL. Using these three measures, I can compare the degree of dependence from
three different aspects, which can be very helpful for the paper’s purpose. I will
use all three as measures of dependence in the paper. In what follows, I briefly
discuss definitions, basic characteristics, and formulas to calculate each measure.
For more details, see Joe (1997) and Nelsen (1999).

Both Kendall’s tau and Spearman’s rho are sometimes called rank correla-
tions since they can be interpreted as the linear correlation between some “ranks”
of the data. They are very reasonable alternatives to linear correlation as mea-
sures of dependence for non-elliptical distributions. Like linear correlation they
can take values between −1 and 1, and independence implies both measures are
0. On the other hand, unlike linear correlation, comonotonicity is equivalent to
τK = 1 and ρS = 1, while countermonotonicity is completely characterized by
τK = −1 and ρS = −1. They can also be considered as measures of a particular
dependence called concordance since they satisfy all conditions for a measure of
concordance as proposed by Scarsini (1984).

Kendall’s tau is defined as the difference of the probability of two random
concordant pairs and the probability of two random discordant pairs for two iid
vectors (X1, Y1) and (X2, Y2), which can be calculated from copulas by the fol-
lowing formula:

7See Fang, Kotz, and Ng (1987) about the elliptical distributions in detail.
8For continuous random variables (X, Y), comonotonicity can be defined as the existence of

strictly increasing transformation T such that Y = T(X) with probability 1 and similarly counter-
monotonicity can be defined as the existence of strictly decreasing function. See Embrechts et al.
(2002) for more detail and other dependence concepts that appeared in this section.

9Copulas for elliptical distributions are called elliptical copulas.
10For other possible measures, see Nelsen (1999).
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τK = Prob[(X1 − X2)(Y1 − Y2) > 0] − Prob[(X1 − X2)(Y1 − Y2) < 0](2)

= 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v) − 1.

Similarly, Spearman’s rho is defined to be proportional to the probability of
concordance minus the probability of discordance for the two vectors (X1, Y1)
and (X2, Y3), i.e., a pair of vectors with the same margins, but one vector has a
distribution function H, while the components of the other are independent. It can
also be considered as linear correlation between FX(X) and FY(Y), which can be
calculated from copulas as follows:

ρS = 3 {Prob[(X1 − X2)(Y1 − Y3) > 0](3)

− Prob[(X1 − X2)(Y1 − Y3) < 0]}
=

Cov(FX(X), FY(Y))√
Var(FX(X) · Var(FY(Y))

= 12
∫ 1

0

∫ 1

0
C(u, v)dudv− 3.

Tail dependence measures the dependence in the upper right quadrant or the
lower left quadrant tail of a bivariate distribution. It is a concept that is relevant
to dependence in extreme values. In particular, lower tail dependence is closely
related to the concept of contagion in the sense that the existence of contagion
effects naturally implies positive lower tail dependence. Hence, the growing con-
tagion literature indicates that lower tail dependence is a very important measure
of dependence in international equity markets. Therefore, I use lower tail de-
pendence as one of my measures of dependence. The definition of lower tail
dependence is the probability that one variable takes an extremely large negative
value, given that the other variable took an extremely large negative value, which
can be equivalently defined in terms of copulas as follows:

λL = lim
u↓0

Prob[X ≤ F−1
X (u)|Y ≤ F−1

Y (u)](4)

= lim
u↓0

Prob[Y ≤ F−1
Y (u)|X ≤ F−1

X (u)] = lim
u↓0

C(u, u)
u

,

provided the limit exists. A bivariate copula C has lower tail dependence if λL ∈
(0, 1] and no lower tail dependence if λL = 0.

B. Markov Switching Model

The Markov switching model was originally developed by Hamilton (1989)
for describing the process influenced by an unobserved random variable st, which
is usually called the state or regime. In this subsection, I describe his idea using
my stock market framework.
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Let rt be a (2 × 1) vector consisting of returns from two countries’ stock
markets at date t. The starting point of the Markov switching model is to assume
that stock returns are generated from

rt = μμμ(st) + ΣΣΣ
1/2
1 (st)εεεt(st),

where st is an unobserved latent variable taking a value of either 1 or 2 that reflects
the state of stock markets. That is, the model allows returns to follow one of
two different equations, depending on the state of stock markets. In my model,
μμμ(st) = (μX(st), μY(st))′ is a vector of each variable’s marginal mean in regime
st, ΣΣΣ1(st) is a diagonal matrix with each variable’s marginal variance in regime st

along the diagonal, namely

ΣΣΣ1(st) =
(

σ2
X(st) 0
0 σ2

Y(st)

)
,

and εεεt(st) follows a joint distribution with copula C(st) in regime st. Since μμμ and
ΣΣΣ1 describe the mean and variance of margins, εεεt(st) is assumed to have mean 000
and correlation matrix R(st):

R(st) =
(

1 ρXY(st)
ρXY(st) 1

)
.

Thus, μμμ and ΣΣΣ1 govern the mean and variance of each marginal distribution, re-
spectively, while C describes the dependence between each variable. I will discuss
models of the marginal distributions and a copula of εεεt, C in the next subsection.

Following Ang and Bekaert (2002), I assume μμμ, ΣΣΣ1, C are only state depen-
dent although they could depend on other economic variables such as their own
past values and interest rates in general.11

The model also requires specifying a stochastic process for st, which governs
the behavior of the state. Hamilton (1989) proposed using the Markov chain and
showed how to calculate maximum likelihood estimates. This Markov switching
model is very realistic to describe economic behavior, since the current economic
state is typically the most important factor in determining next period’s economic
state. In addition, as emphasized in Hamilton (1990), the EM algorithm, devel-
oped by Dempster, Laird, and Rubin (1977), is easy to apply to get relatively ro-
bust maximum likelihood estimates with respect to poorly chosen starting values.
After Hamilton’s pioneering work, several studies have suggested more compli-
cated specifications,12 but I use this simplest form to keep my estimation robust
and easy to interpret. More specifically, based on two asymmetries found by pre-
vious studies I assume that st follows a two-state Markov chain with transition
probability P of the form

P =
(

p11 1 − p22

1 − p11 p22

)
.

11Actually, I tried to use more complicated models with AR mean and GARCH variance. I, how-
ever, could not find important evidence for such models.

12For example, Diebold, Lee, and Weinbach (1994) and Filardo (1994) considered time-varying
transition probabilities evolving as logistic functions of some other economic exogenous variables.
Durland and McCurdy (1994) also argued that the transition probabilities should depend on the dura-
tion of the state.
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C. Models for Margins and Copulas

As emphasized in the previous subsections, copula theory enables me to
model marginal distributions and a copula separately to specify joint distributions
of εεε, which I will discuss now.

For the marginal distributions, I use three distributions: the normal distri-
bution, the t-distribution, and the generalized error distribution (GED). All three
distributions are normalized to have mean 0 and variance 1, hence the densities of
t-distribution and the GED are given as:13

ft(x) =
Γ [(1 + ν)/2ν]

√
ν

Γ (1/2ν)
√

π(1 − 2ν)

[
1 +

νx2

(1 − 2ν)

]−(1+ν)/2ν

fGED(x) =
ν

2[(ν+1)/ν]Γ (1/ν)λ
exp

(
−

∣∣∣ x
λ

∣∣∣ν)
, where λ =

√
2(−2/ν)Γ (1/ν)

Γ (3/ν)
.

These three distributions are the most widely used in modeling financial data
as well as in all econometric applications. In addition, using these distributions in
the framework of the Markov switching model enables me to consider the mixture
of these distributions. As a consequence, I can express important features of
marginal equity returns such as fat tails and stochastic persistent volatility and
conditional higher moments.14 The t-distribution and the GED distribution have
an additional parameter ν, which governs the thickness of tails. I refer to ν as
the tail parameter for the GED distribution. Note that both the t-distribution and
the GED contain the normal distribution as a special case: the t-distribution with
ν = 0 and the GED with ν = 2 correspond with the normal distribution.

To specify the form of the copula, I continue to assume that d = 2; however,
multivariate or partial multivariate extensions are straightforward.15 My bench-
mark copula is a normal copula.

Normal Copula:

Cnor(u, v ; δ) =
∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1 − δ2
exp

{
− s2 − 2δst + t2

2(1 − δ2)

}
dsdt,

−1 < δ < 1,

where Φ is a cumulative distribution function of a standard normal distribution.
Notice that δ is equivalent to the usual linear correlation parameter between two
variables. Note also that joint distributions with a normal copula and normal
margins reduce to multivariate normal distributions, which are used in almost all
Markov switching multivariate applications. One concern about normal copulas
is that they describe only symmetric dependence since their dependence param-
eter δ corresponds to linear correlation. Unconditionally this is not a problem

13Note that in this paper the degree of freedom parameter for the t-distribution ν is parameterized
as the reciprocal of the usual degree of freedom parameter for the t-distribution. This is because it
is more convenient to use the reciprocal of the usual degree of freedom to estimate models since the
degree of freedom could take on large values (=∞ in the case of the normal distribution, for example).

14See Timmermann (2000).
15See Joe (1997) section 5.3.
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because the Markov switching framework allows the unconditional joint distribu-
tion to have asymmetric dependence. It is, however, very doubtful whether the
conditional joint distribution given each regime is characterized by the distribu-
tion with symmetric dependence.

Another drawback of normal copulas is that they cannot capture dependence
in the tail part of joint distributions in the sense that their tail dependence is 0
unless δ = ρ = 1.16 In other words, if I use normal copulas, I implicitly assume
that there is no tail dependence,which is relevant to the concept of contagion natu-
rally. Again, this is problematic in describing the dependence structure given each
regime since the growing contagion literature suggests using asymmetric copulas
with lower tail dependence. Other problems associated with normal copulas can
be found in Embrechts et al. (2003).

To mitigate these concerns, I also use copulas with both lower and upper tail
dependence. However my preliminary empirical results showed that the evidence
of upper tail dependence is very weak or nonexistent as can be imagined easily.
Therefore, I choose to use a family of asymmetric copulas with only lower tail de-
pendence: the Kimeldorf and Sampson (KS) copula,17 the Joe copula, the Gumbel
copula, the Galambos copula, and the Hüsler and Reiss (HR) copula. Their forms
are given as follows.18

KS Copula:

Cks(u, v ; δ) = (u−δ + v−δ − 1)−1/δ, 0 ≤ δ < ∞.

Joe Copula:

Cjoe(u, v ; δ) = u + v − (uδ + vδ − uδvδ)1/δ, 1 ≤ δ < ∞.

Gumbel Copula:

Cgum(u, v ; δ) = u + v − 1

+ exp
{
− [{− log(1 − u)}δ + {− log(1 − v)}δ

]1/δ
}

, 1 ≤ δ < ∞.

Galambos Copula:

Cgal(u, v ; δ) = u + v − 1 + (1 − u)(1 − v)

× exp
{
− [{− log(1 − u)}−δ + {− log(1 − v)}−δ

]−1/δ
}

, 0 ≤ δ < ∞.

16For a proof of this statement, see Embrechts et al. (2002).
17The KS copula is also called the Clayton copula in Nelsen (1999).
18They are adapted from Joe (1997). See their B4–B8 copulas. Note, however, that I transformed

copulas with upper tail dependence using the formula,

C′(u, v) = u + v − 1 + C(1 − u, 1 − v),

so that they have lower tail dependence if necessary.
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HR Copula:

Chr(u, v ; δ) = u + v − 1

+ exp

{
log(1 − u)Φ

(
δ−1 +

1
2
δ log

[
log(1 − u)
log(1 − v)

])

+ log(1 − v)Φ
(

δ−1 − 1
2
δ log

[
log(1 − u)
log(1 − v)

])}
,

δ ≥ 0.

Note that each of these copulas has one parameter δ, which governs the degree
of dependence in the sense that the degree of dependence is strictly increasing in
δ. Also all copulas have the property that they imply independence at the lower
bound of δ and comonotonicity at the upper bound of δ. Hence, they can provide a
parsimonious way of describing positive dependence, which includes the special
cases of independence and comonotonicity.

D. Deriving the Likelihood Function and Simulating Data

To calculate the likelihood function, I need the density h of the joint distribu-
tion. I can derive an expression for h by differentiating equation (1) with respect
to x and y:

h(x, y ; θθθ) =
H(x, y ; θθθ)

∂x∂y
= c (FX(x ; θθθX), FY(y ; θθθY) ; δ) · fX(x ; θθθX) · fY(y ; θθθY),

where fX and fY are marginal densities of X and Y, respectively, and c is the density
of the copula. c can also be derived easily by differentiating the copula C(u, v)
with respect to variables u and v:

c(u, v) =
C(u, v)
∂u∂v

.

With the use of these two equations, it is straightforward to construct the likeli-
hood function and maximize it to derive the MLEs of θθθ for each regime, and p11

and p22, which represent the probabilities of staying in the same regime in the
next period.

Lastly, I discuss how to simulate (X, Y)′ based on decomposition (1) (for
a more general case where dimensions are greater than two, see Embrechts et
al. (2003)). For this purpose, I have to generate a random vector (U, V)′ from C.
Once I obtain (U, V)′ ∼ C, (X, Y)′ can be produced by transformingU and V with
F−1

X and F−1
Y , respectively. Thus, if (U, V)′ ∼ C, (X, Y)′ ≡ (F−1

X (U), F−1
Y (V))′ ∼

H. The main difficulty in simulating (X, Y)′ is, therefore, to generate (U, V)′ from
C. This is achieved by using a conditional distribution C2|1 of a copula, which can
be calculated as a partial derivative of C with respect to the first variable:

C2|1(v|u) =
C(u, v)

∂u
.
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This can be seen easily from

c(u, v) = c2|1(v|u) · fU(u) = c2|1(v|u),

since fU(u) = 1. By definition, if U ∼ U(0, 1) and V ∼ C2|1(·|U), then (U, V) ∼
C. Hence, if U and Q are independent U(0, 1) random variables and define
V ≡ C−1

2|1 (Q|U), then (U, V) ∼ C. In sum, I can use the following algorithm
to simulate data: i) simulate U and Q from U(0, 1) independently; ii) define
V ≡ C−1

2|1(Q|U) so that (U, V)′ ∼ C; iii) define (X, Y)′ by (X, Y)′ ≡ (F−1
X (U),

F−1
Y (V))′; and iv) then (X, Y)′ ∼ H. As for C−1

2|1 , the analytical expression can
be found in Joe (1997) for the KS copula. For other copulas, I use a root-finding
routine to find C−1

2|1 numerically.

III. Empirical Results

My study is based on monthly total market index data of the U.S. and U.K.
markets obtained from Datastream with the sample period lasting from 1973:2 to
2003:8. I follow Longin and Solnik (2001) and Ang and Bekaert (2002) on the
decision of choosing to use monthly data. Also, the use of monthly data is relevant
in capturing directional dependence, which is the main purpose of my paper. I
define stock returns for each country simply as 100 times the change in the natural
logarithm of each country’s stock index. In addition, I focus on the U.S. and
the U.K. in order to investigate the dependence structures in international equity
markets. To achieve this goal, the investigated markets should be representative of
total markets and should be reasonably integrated during my sample period, which
is definitely the case for the U.S. and U.K. markets. Moreover, for comparison
purposes results from other G7 countries will be provided in a later section.

Using the copula theory enables me to select the best marginal model before
estimating the joint distribution. By doing so, I can reduce the number of joint
models to estimate and the possibility of misspecification of the models. There-
fore, I estimate the marginal models of each country first. After choosing the best
marginal model for each country, I then estimate several joint models to investi-
gate the dependence structure between the U.S. and U.K. returns.

A. Results for Marginal Models

I estimate five Markov switching models for each country: each of three dif-
ferent distributions for both regimes, or the normal distribution for one regime
and one of the other two distributions for the other regime.19 As a result, I can
consider 25 different possible combinations for the marginal models of two coun-
tries.

Estimation results of the marginal models for each country are shown in
Tables 1 and 2, respectively. For the U.S., the normal-normal combination model
is supported from several aspects. The estimates of the degree of freedom for the
t-distribution and the tail parameter for the GED distribution indicate that they are

19The idea of mixtures of different distributions can also be found in Perez-Quiros and Timmer-
mann (2001).
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not significantly different from those of the normal distribution. In addition, the
negligible improvement to the log-likelihoods from adding one extra parameter
provides a strong evidence in favor of the normal distribution, according to the
standard information criteria, such as SIC.

TABLE 1

Estimates of Marginal Models for the U.S.

Regime Distribution p ν μ σ Log-Likelihood

1 t-Dist Estimate 0.900 0.080 −0.698 6.689 −1045.95
Std Error 0.120 0.101 1.015 1.006

2 t-Dist Estimate 0.968 0.000 1.053 3.377
Std Error 0.029 0.074 0.232 0.271

1 Normal Estimate 0.849 −1.170 7.135 −1046.26
Std Error 0.104 0.942 0.904

2 Normal Estimate 0.963 1.039 3.409
Std Error 0.021 0.224 0.202

1 GED Estimate 0.866 1.660 −0.870 6.827 −1045.81
Std Error 0.091 0.558 0.895 0.853

2 GED Estimate 0.959 2.283 1.058 3.330
Std Error 0.022 0.436 0.228 0.204

1 t-Dist Estimate 0.898 0.080 −0.717 6.691 −1045.95
Std Error 0.117 0.115 1.184 1.173

2 Normal Estimate 0.967 1.054 3.379
Std Error 0.024 0.223 0.218

1 GED Estimate 0.886 1.624 −0.905 6.790 −1046.04
Std Error 0.093 0.460 1.120 0.926

2 Normal Estimate 0.966 1.064 3.396
Std Error 0.025 0.242 0.228

TABLE 2

Estimates of Marginal Models for the U.K.

Regime Distribution p ν μ σ Log-Likelihood

1 t-Dist Estimate 0.861 0.279 −3.922 13.531 −1112.51
Std Error 0.074 0.173 1.758 3.104

2 t-Dist Estimate 0.986 0.081 1.087 4.416
Std Error 0.011 0.068 0.260 0.259

1 Normal Estimate 0.821 −2.268 12.715 −1115.11
Std Error 0.085 1.207 1.618

2 Normal Estimate 0.980 1.040 4.266
Std Error 0.012 0.256 0.223

1 GED Estimate 0.844 1.176 −4.556 12.753 −1113.41
Std Error 0.079 0.345 0.753 2.426

2 GED Estimate 0.984 1.693 1.138 4.368
Std Error 0.014 0.252 0.263 0.275

1 t-Dist Estimate 0.821 0.241 −3.505 12.174 −1113.18
Std Error 0.072 0.117 1.806 2.395

2 Normal Estimate 0.976 1.109 4.219
Std Error 0.013 0.250 0.228

1 GED Estimate 0.819 1.228 −4.208 12.201 −1113.94
Std Error 0.073 0.445 1.864 2.159

2 Normal Estimate 0.978 1.101 4.241
Std Error 0.013 0.275 0.201
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For the U.K. data, the evidence for a normal distribution is somewhat weaker.
The estimate of the degree of freedom for the t-distribution from the t-normal
model is significantly different from 0. The tail parameter estimate for the GED
distribution in regime 1 from the GED-GED model is also significantly different
from 2. The small magnitude of the improvement of log-likelihoods, however,
still supports the normal distribution model by reason of parsimony. In fact, the
SIC select the normal-normal model as the best model for the U.K. as well.

Table 3 reports the hypothesis testing results of the equality of expected re-
turns and volatilities across regimes. My best model, the normal-normal model
indicates that there are significant differences in both expected returns and volatil-
ities across the regimes for each country. All differences are statistically signif-
icant at the 5% level. Thus, the best model provides the favorable evidence of
two distinct regimes for both countries: a bear regime (regime 1) with negative
expected returns and high volatility and a normal regime (regime 2) with high
and stable expected returns. Most of the other models also confirm two distinct
regimes with at least a 10% significance level. This provides further motivation
to use the normal-normal model for both countries. Therefore, I will use the nor-
mal distribution as margins for both regimes and both countries throughout the
following bivariate analysis.

TABLE 3

Hypotheses Testing Results of the Equality of Expected Returns and Volatilities
across Regimes

Expected Return Expected Return Volatility Volatility
Distribution of U.S. of U.K. of U.S. of U.K.

t-Dist Wald Stat 0.979 4.879 4.135 9.924
p-Value 0.323 0.027 0.042 0.002

Normal Wald Stat 4.522 5.227 19.665 29.948
p-Value 0.033 0.022 0.000 0.000

GED Wald Stat 4.477 53.420 16.284 25.193
p-Value 0.034 0.000 0.000 0.000

t-Dist and Normal Wald Stat 1.566 5.655 9.495 10.978
p-Value 0.211 0.017 0.002 0.001

GED and Normal Wald Stat 2.760 3.291 14.232 22.458
p-Value 0.097 0.070 0.000 0.000

B. The Common Regime Classification Assumption and the Markov
Switching Test

To estimate joint models, I assume that the regime classification in the U.S.
and U.K. markets is identical. To check the plausibility of this assumption, Figure
1 shows smoothed probabilities of a normal regime under normal-normal models
for both countries. As can be seen, most of the time regimes are identified as a
normal regime and both markets experienced several common turmoil periods.
As a result, their regime classifications appear to be very similar to each other,
indicating the acceptability of my common regime classification assumption. The
validity of this assumption is further provided by my inability to find evidence
to support the use of four-state models assuming unsynchronized regimes for the
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U.S. and U.K. markets. For the background of this assumption, see Ang and
Bekaert (2002).

FIGURE 1

Smoothed Probabilities of a Bear Regime for U.S. and U.K. Markets
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There is, however, one concern associated with Figure 1. Figure 1 reveals
that there are only a few bear regime periods over my sample period. By the
nature of a bear regime, it is very natural but doubtful whether I really need a
Markov switching regime framework to distinguish such rare events. To explore
this possibility, I conduct a test of the null hypothesis being there is no Markov
switching as recently proposed by Carrasco, Hu, and Ploberger (2004). They have
found the asymptotic optimal test against the alternative of Markov switching
based on the second Bartlett identity. The test statistics turn out to be 5.889 for
the U.S. and 6.077 for the U.K, whereas the 5% critical values are 4.153 and
4.150, respectively. These results indicate bear regimes have considerable impact
on both countries’ markets, as well as the importance of modeling bear markets
correctly.

To summarize, my empirical results of marginal models suggest the plau-
sibility of estimating two-state Markov switching models with normal marginal
distributions as joint models, and I will pursue this topic in the subsections that
follow.

C. Results for the Benchmark Model

Following Ang and Bekaert (2002), I estimate the MSMVN model (normal
copula model) as my benchmark model. The parameter estimates are shown in
Table 4, which also gives estimates and standard errors of Kendall’s tau and Spear-
man’s rho implied by the parameter estimates and formulas (2) and (3). Note that
as discussed in the previous section, tail dependence of multivariate normal dis-
tributions is 0 by nature so there is no need to estimate tail dependence. Note also
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that all standard errors of the dependence measures are calculated using the delta
method. This is achieved by viewing each measure of dependence as a monotonic
continuous transformation of a copula parameter δ. I can construct those trans-
formations explicitly based on formulas (2), (3), and (4) and use them to evaluate
gradients numerically.

TABLE 4

Estimation Results for the MSMVN Model

Regime p δ μUS μUK σUS σUK Log-Likelihood

1 Estimates 0.770 0.743 −2.379 −1.745 7.451 12.393 −2063.57
Std Error 0.092 0.070 1.261 1.945 0.818 1.116

2 Estimates 0.970 0.608 0.992 1.020 3.780 4.155
Std Error 0.017 0.042 0.238 0.247 0.213 0.214

Regime Kendall’s Tau Spearman’s Rho

1 Estimates 0.534 0.727
Std Error 0.067 0.072

2 Estimates 0.416 0.590
Std Error 0.033 0.042

Table 5 also reports hypothesis testing results for equality of expected re-
turns, volatilities, and two dependence measures across regimes. Not surprisingly
these results are essentially the same as those documented by Ang and Bekaert
(2002). I find a bear regime characterized by negative expected returns, high
volatility, and high dependence, and a normal regime associated with high ex-
pected returns, low volatility, and low dependence. This evidence, however, is not
strong in the sense that I fail to reject the null hypotheses of the equality of the
U.K. expected return and both measures of dependence across regimes at the 10%
significance level.

TABLE 5

Hypothesis Testing Results of the Equality of Expected Returns, Volatilities, and
Dependence Measures across Regimes for the MSMVN Model

Expected Return Expected Return Volatility Volatility
of U.S. of U.K. of U.S. of U.K. Kendall’s Tau Spearman’s Rho

Wald Stat 6.789 1.981 17.615 40.554 2.258 2.460
p-Value 0.009 0.159 0.000 0.000 0.133 0.117

In Figure 2, I repeat the exceedance correlation analysis of Longin and Sol-
nik (2001). I plot the exceedance correlations defined by the correlations between
the subset of observations {(xi, yi)′}, where values of xi and yi are greater (or less)
than the positive (or negative) exceedance level. The solid line in Figure 2 shows
the exceedance correlations of the U.S. and U.K. returns observed in real data,
while the dashed line represents the exceedance correlations of simulated data
with size 100,000 using the estimated MSMVN model. As shown by Ang and
Chen (2001) and Ang and Bekaert (2002), the MSMVN model can replicate fairly
successfully the observed asymmetric pattern with negative exceedance correla-
tions being higher than positive exceedance correlations. It is, however, clear that
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the negative exceedance correlations from the MSMVN model are consistently
lower than those observed from actual data. In addition, the discrepancy tends to
be more striking as the exceedance level becomes more extreme. This observation
suggests that there might be further asymmetry in the U.S.-U.K. equity markets,
which the MSMVN model may not capture.

FIGURE 2

U.S.-U.K. Exceedance Correlations from the MSMVN Models
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D. Results of the MSSAC Models

One concern associated with the normal copula (or the multivariate normal
model) is that it describes only symmetric dependence. In addition, by its very na-
ture, the normal copula cannot capture tail dependence. These concerns provide
possible explanations of the poor performance of the MSMVN model in reproduc-
ing the extreme negative exceedance correlations observed in the data. Therefore,
I explore this possibility by using a family of asymmetric copulas with lower tail
dependence, introduced in the previous section, to mitigate these concerns.

The crucial difference between normal and these asymmetric copulas is the
existence of lower tail dependence, which captures the co-movements of extreme
negative values. One motivation for introducing lower tail dependence is con-
tagion effects discovered in previous studies. The nature of contagion effects,
however, also suggests that lower tail dependence might be weaker or nonexis-
tent in a normal regime. Also, the relatively good performance of the MSMVN
model in reproducing positive exceedance correlations supports this possibility.
I therefore decide to estimate the MSSAC models, which use a multivariate nor-
mal model for describing one regime and a family of asymmetric copula models
with lower tail dependence for another regime, presuming that asymmetric cop-
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ula models are suitable only for bear markets. Then I check this presumption by
estimating the MSAC models, which use asymmetric copula for both regimes, in
the next subsection.

Table 6 reports estimation results of five MSSAC models. The implied esti-
mates and standard errors of three dependence measures are also given in Table
7. As expected, the asymmetric copulas are associated with a bear regime for all
models. In addition, the parameter estimates of marginal distributions and tran-
sition probabilities are quite close to the results of the MSMVN model. More
remarkably, the log-likelihood values increase uniformly for all copula models,
even though they have the same number of parameters as the MSMVN model. In
other words, these results indicate that bear markets are better characterized by
any of the proposed asymmetric copula models when compared with the multi-
variate normal model.

TABLE 6

Estimation Results of the MSSAC Models

Regime Copula p δ μUS μUK σUS σUK Log-Likelihood

1 KS Estimate 0.754 2.473 −2.252 −1.654 8.483 12.010 −2061.75
Std Error 0.089 0.562 1.327 1.876 0.744 0.975

2 Normal Estimate 0.965 0.592 1.017 1.054 3.689 4.102
Std Error 0.018 0.039 0.223 0.241 0.204 0.195

1 Joe Estimate 0.753 3.296 −2.330 −1.704 8.566 12.082 −2062.08
Std Error 0.099 0.537 0.910 1.027 0.698 0.942

2 Normal Estimate 0.966 0.592 1.016 1.053 3.694 4.106
Std Error 0.019 0.042 0.235 0.260 0.222 0.213

1 Gumbel Estimate 0.753 2.263 −2.514 −1.490 7.769 11.459 −2061.33
Std Error 0.090 0.340 1.250 1.702 0.800 1.195

2 Normal Estimate 0.963 0.592 1.056 1.068 3.670 4.079
Std Error 0.016 0.044 0.241 0.256 0.213 0.204

1 Galambos Estimate 0.754 1.554 −2.445 −1.526 7.737 11.461 −2061.13
Std Error 0.092 0.321 0.875 0.957 0.762 0.997

2 Normal Estimate 0.963 0.592 1.052 1.066 3.671 4.078
Std Error 0.019 0.040 0.235 0.258 0.196 0.200

1 HR Estimate 0.755 2.150 −2.320 −1.613 7.710 11.483 −2060.79
Std Error 0.085 0.378 1.156 1.463 0.845 1.298

2 Normal Estimate 0.963 0.593 1.047 1.067 3.672 4.077
Std Error 0.014 0.043 0.239 0.247 0.202 0.192

The results of hypothesis tests based on the MSSAC models are shown in
Tables 7 and 8. As before, I test the equality of three dependence measures and
each country’s expected return and volatility across regimes. The KS and Gumbel
copula models fail to reject the equality of the U.K. expected return across regimes
at a 10% significance level. However, all other hypothesis testing results indicate
that there are two distinct regimes. Thus, the MSSAC models provide strong
evidence in favor of two distinct regimes.

Interestingly, the implied estimates of Kendall’s tau and Spearman’s rho
are very similar for each regime regardless of copula forms for a bear regime.
Thus, both the MSMVN and MSSAC models capture almost the same amount
of global dependence suggesting the stability of my models. There are, however,
large differences between the magnitude of lower tail dependence captured by the
MSMVN model and the MSSAC models for a bear regime. For the MSMVN



Okimoto 805

TABLE 7

Implied Estimates and Hypothesis Testing Results
for Three Dependence Measures from the MSSAC Models

Copula for Regime 1 Kendall’s Tau Spearman’s Rho Lower Tail Dependence

KS Regime 1 Estimate 0.553 0.739 0.756
Std Error 0.056 0.058 0.048

Regime 2 Estimate 0.403 0.574 0
Std Error 0.031 0.039 N/A

Testing of Equality Wald Stat 5.003 5.053 246.4
p-Value 0.025 0.025 0.000

Joe Regime 1 Estimate 0.551 0.736 0.766
Std Error 0.056 0.058 0.042

Regime 2 Estimate 0.403 0.574 0
Std Error 0.033 0.042 N/A

Testing of Equality Wald Stat 4.843 4.690 329.1
p-Value 0.028 0.030 0.000

Gumbel Regime 1 Estimate 0.558 0.745 0.642
Std Error 0.066 0.069 0.063

Regime 2 Estimate 0.403 0.574 0
Std Error 0.034 0.044 N/A

Testing of Equality Wald Stat 3.908 3.971 105.1
p-Value 0.048 0.046 0.000

Galambos Regime 1 Estimate 0.559 0.748 0.640
Std Error 0.062 0.065 0.059

Regime 2 Estimate 0.403 0.574 0
Std Error 0.032 0.040 N/A

Testing of Equality Wald Stat 4.607 4.817 117.8
p-Value 0.032 0.028 0.000

HR Regime 1 Estimate 0.564 0.757 0.642
Std Error 0.062 0.064 0.059

Regime 2 Estimate 0.404 0.575 0
Std Error 0.034 0.043 N/A

Testing of Equality Wald Stat 5.007 5.426 119.9
p-Value 0.025 0.020 0.000

model, the lower tail dependence is 0 by nature, but for the MSSAC models it is
at least 0.64. In addition, all estimates of lower tail dependence from the MSSAC
models are highly significant. To see the effect of these lower tail dependences, I
repeat the exceedance correlation analysis again. Figure 3 shows the exceedance
correlations of simulated data with size 100,000 using the five estimated MSSAC
models along with those of the actual and the simulated MSMVN data. As can
be seen, the simulated MSSAC data yield higher negative exceedance correla-
tions and replicate extreme negative exceedance correlations better than the sim-
ulated MSMVN data. Also, the simulated MSSAC data reproduce positive ex-
ceedance correlation equally as well as the simulated MSMVN data. Therefore,
the MSSAC models are again preferred to the MSMVN model in terms of de-
scribing exceedance correlations observed in the data.

In sum, the results of the MSSAC models show MSSAC models perform
significantly better than the MSMVN model and provide strong evidence in favor
of two distinct regimes. However, it is too early to conclude that I have obtained a
clear indication of the appropriateness of the MSSAC models since I cannot rule
out the possibility of further improvement by introducing asymmetry into normal
markets. More importantly, it is not clear that the magnitude of the improve-
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TABLE 8

Hypothesis Testing Results of the Equality of Expected Returns and Volatilities
across Regimes for the MSSAC Models

Copula for Expected Return Expected Return Volatility Volatility
Regime 1 of U.S. of U.K. of U.S. of U.K.

KS Wald Stat 5.713 2.009 40.113 33.441
p-Value 0.017 0.156 0.000 0.000

Joe Wald Stat 12.041 6.297 44.975 68.435
p-Value 0.001 0.012 0.000 0.000

Gumbel Wald Stat 7.656 2.187 25.745 32.732
p-Value 0.006 0.139 0.000 0.000

Galambos Wald Stat 14.142 6.372 27.669 63.038
p-Value 0.000 0.012 0.000 0.000

HR Wald Stat 8.051 3.253 22.908 38.940
p-Value 0.005 0.071 0.000 0.000

FIGURE 3

U.S.-U.K. Exceedance Correlations from the MSSAC Models
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ment of log-likelihoods is large enough to reject the MSMVN model based on the
MSSAC model. These are the main themes in the following subsections.

E. Further Investigation of the Asymmetric Dependence Structure

The MSSAC models introduced in the previous subsection are very attrac-
tive since they significantly outperform the MSMVN model and reproduce ex-
ceedance correlations observed in the data very well. However, one concern
about the MSSAC model is the assumption of symmetric dependence in a nor-
mal regime. In other words, I might improve the MSSAC model by introducing
asymmetric dependence in the normal regime. I investigate this possibility by
introducing the MSAC models.
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I estimate five MSAC models that assume five different asymmetric copu-
las for both regimes. Estimations of these MSAC models are presented in Table
9. As expected, the parameter estimates of marginal distributions and transition
probabilities are reasonably similar to the results of the MSMVN and MSSAC
models. Also, almost all hypothesis tests for equality of three dependence mea-
sures and each country’s expected return and volatility among regimes indicate
that they are significantly different across regimes.20 Thus, the MSAC models
can provide a clear evidence of distinction across regimes similar to the MSSAC
model. In addition, the implied estimates of Kendall’s tau and Spearman’s rho are
also very close for all models, but particularly for the bear regime suggesting that
the stability of the MSAC models is similar to the MSSAC models.

TABLE 9

Estimation Results of the MSAC Models

Copula Regime p δ μUS μUK σUS σUK Log-Likelihood

KS 1 Estimate 0.775 2.427 −1.984 −1.625 8.598 11.835 −2070.80
Std Error 0.096 0.572 0.904 1.048 0.835 1.108

2 Estimate 0.967 0.892 1.057 1.119 3.635 4.153
Std Error 0.014 0.134 0.257 0.286 0.196 0.209

Joe 1 Estimate 0.774 3.252 −2.036 −1.669 8.663 11.865 −2075.54
Std Error 0.082 0.691 1.356 1.681 1.038 1.214

2 Estimate 0.966 1.758 1.037 1.100 3.666 4.196
Std Error 0.013 0.131 0.228 0.251 0.196 0.200

Gumbel 1 Estimate 0.788 2.234 −2.451 −1.749 8.005 11.623 −2064.80
Std Error 0.086 0.358 1.214 1.483 0.909 1.342

2 Estimate 0.971 1.606 0.991 1.003 3.745 4.203
Std Error 0.013 0.100 0.253 0.258 0.206 0.203

Galambos 1 Estimate 0.789 1.525 −2.365 −1.688 7.952 11.613 −2063.18
Std Error 0.080 0.288 0.876 0.986 0.734 0.990

2 Estimate 0.971 0.882 1.000 1.018 3.724 4.192
Std Error 0.016 0.091 0.223 0.261 0.197 0.192

HR 1 Estimate 0.789 2.119 −2.279 −1.704 7.877 11.591 −2061.59
Std Error 0.087 0.395 1.146 1.316 0.920 1.407

2 Estimate 0.970 1.340 1.004 1.026 3.710 4.187
Std Error 0.016 0.121 0.224 0.254 0.204 0.215

There are, however, important differences between the MSAC models and
the MSSAC models. The MSAC models have uniformly lower log-likelihood
values than those of the MSSAC models. In particular, the log-likelihood val-
ues of the KS and Joe copula models decrease dramatically compared with the
MSSAC models. One possible explanation for this observation is that these cop-
ulas are too asymmetric to describe a normal regime. As a result, the copulas
with lower tail dependencies that are too large worsen the fit of the models. These
results indicate that the multivariate normal model is more desirable to describe
normal markets than any of the asymmetric copula models considered. Note that
this does not contradict with the highly significant results of implied lower tail
dependence for a normal regime. All MSAC models have only one parameter
for the copula, which governs the degree of dependence. Therefore, high global
dependence can produce apparent tail dependence in the MSAC models even if

20To save space, the results of the hypothesis tests are not reported here, but are available from the
author.



808 Journal of Financial and Quantitative Analysis

there is no lower tail dependence. Because of this fact, the rejection of no tail
dependence based on the asymmetric copula models does not necessarily imply
the rejection of the multivariate normal model.

In sum, combining the MSAC model results with the MSSAC model demon-
strates that asymmetric copula models can characterize bear markets better than
the multivariate normal model, while the multivariate normal model can describe
normal markets better than the asymmetric copula models. Thus, the MSSAC
model is the most appropriate among the three models.

F. Rejection of the MSMVN Model

To conclude the empirical section, I establish that my findings significantly
reject the use of the MSMVN model. To this end, I conduct the likelihood ratio
(LR) test of the MSMVN model based on my results. The test statistics are simply
the difference between the log-likelihood values, or log-likelihood ratios, across
the MSMVN and each MSSAC model, which are 1.5, 1.9, 2.3, 2.5, and 2.8 for the
KS, Joe, Gumbel, Galambos, and HR copula models, respectively. To find finite
sample distributions of these log-likelihood ratios, I first simulate 3,000 samples
with the same size as my sample (366) from the estimated MSMVN model. Then,
I fit the MSMVN and MSSAC models and calculate the log-likelihood ratios for
each simulated sample in order to construct the finite distributions. The p-values
of these LR tests of the MSMVN model are 0.046, 0.032, 0.021, 0.015, and 0.007,
respectively. For all of the MSSAC models, the MSMVN model is uniformly re-
jected at a 5% significance level. Thus, these results clearly indicate that the
MSMVN model is not enough to characterize the asymmetric dependence in in-
ternational equity markets; indeed, there exists a further asymmetric dependence
with lower tail dependence in bear markets.

This asymmetric dependence structure can be seen from the contour plots
presented in Figure 4. It draws the contours of the estimated copula densities
for bear markets from the MSMVN and MSSAC models with standard normal
margins. All estimated copulas from the MSSAC model are skewed to the lower
left and have fat lower left tails. Note that the HR copula, which gives the highest
likelihood value, has the mildest asymmetry among those copulas. However, note
also that the KS and Joe copula models, which are highly asymmetric, give better
descriptions for a bear regime than the multivariate normal model.

IV. Economic Significance of Further Asymmetry

In the previous section, I documented further asymmetry in bear markets that
the MSMVN model cannot capture completely. In this section, I evaluate the eco-
nomic significance of ignoring this further asymmetry from a risk management
point of view. Following Ball and Torous (2000) and Guidolin and Timmermann
(2006), I assess the economic significance based on VaR and expected shortfall
ratios. This is relevant because disregarding this further asymmetry affects mostly
the evaluation of the left lower tail of the joint distribution. Therefore, it could
disturb the calculation of 100 · α% VaR, VaR(α), which is usually defined as the
100 · α percentile point of a portfolio loss distribution, and 100 · α% expected
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FIGURE 4

Contours of Densities of the Estimated Copulas for a Bear Regime
from the MSMVN and MSSAC Models with Standard Normal Margins
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shortfall, ES(α), which is defined as the expected loss conditional on the loss ex-
ceeding the VaR(α).21 Consider a risk manager required to invest 10 million dol-
lars into a portfolio consisting of the U.S. and U.K. stock indices with minimum
risk. One typical way for doing this is to minimize the VaR(α) or ES(α) exposed
by the portfolio. In what follows, I will use VaR(α) as an example. In this case,
the risk manager solves the following asset allocation problem: minw VaR(α, w),
where w is the weight of the U.S. stock index, with the constraint of the portfolio
market value at 10 million dollars. Suppose that the risk manager finds the optimal
weight w∗ using the estimated MSMVN model and evaluates the VaRnor(α, w∗),
i.e., the VaR based on w∗ and the estimated MSMVN model. Suppose further that
the true model is one of the estimated MSSAC models. I then calculate the VaR
ratio of the true VaR to the risk manager’s evaluated misspecified VaR, namely,
VaR(α, w∗)/VaRnor(α, w∗).

The results for the VaR ratio are presented in Figure 5 with each graph show-
ing the computed VaR ratios assuming each of the MSSAC models is true.22 In-
terestingly, the effect of ignoring the further asymmetry is negligible if the signif-
icance level range of the VaR is (0.9 ≤ α ≤ 0.95). The effect is relatively small
and more importantly it causes overvaluation of the VaR, which is not influential
for risk management. On the contrary, the effect is notable at the VaR signifi-
cance level range 0.95 ≤ α ≤ 0.99, which is more commonly used in practice.

21The formal definitions of VaR(α) and ES(α) are given as follows. Let X be a loss from a certain
portfolio. Then,

VaR(α) = argmax {x : Prob(X ≥ x) ≥ 1 − α}
and

ES(α) = E
�
X
�
�X ≥ VaR(α)

�
.

22An equally weighted portfolio, i.e., w= 1/2, was also examined and yielded results similar to those
presented here.
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The misspecification produces undervaluation of VaR instead of overestimation
and the magnitude of undervaluation increases rapidly as the significance level
of VaR becomes larger. As a result, all VaR ratios are about 1.1 or more at the
99% significance level implying 10% undervaluation of VaR(0.99). For example,
at the 99% significance level, the risk manager evaluates the VaR(0.99) at 1.229
million dollars, while the true VaR(0.99) is 1.410 million dollars for the worst
case of the Joe copula model and 1.336 million dollars for the best case of the HR
copula model. Similarly, Figure 6 shows the computed expected shortfall ratios
assuming each of the MSSAC model is true. In contrast to the VaR case, ex-
pected shortfall is undervalued by about 5% to 10% consistently over the whole
significance level between 90% to 99%. For example, at the 99% significance
level the risk manager evaluates the ES(0.99) at 1.345 million dollars, while the
true VaR(0.99) is 1.553 million dollars for the worst case of the Joe copula model
and 1.439 million dollars for the least worst case of the HR copula model. Ob-
viously these undervaluations of risk measures are a tremendous danger for risk
management.

FIGURE 5

VaR Ratios between the MSSAC Models and the MSMVN Models
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V. Results for Other G7 Countries

So far I have focused on the dependence structure between the U.S. and
U.K markets, where I found the asymmetric dependence that the MSMVN model
cannot capture. It would be very instructive to examine whether I can find com-
mensurate asymmetric dependence in other G7 countries.

To this end, I adapt the pairwise analysis given in Longin and Solnik (2001).
More precisely, I estimate the MSMVN, MSSAC, and MSAC models using the
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FIGURE 6

Expected Shortfall Ratios between the MSSAC Models and the MSMVN Models
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U.S. and other G7 country pairs, then conduct the same hypothesis tests of asym-
metric dependence. Table 10 summarizes those results based on the best model
for each pair.23 The second column of the table shows the best combination of
copulas for each pair, while the third column gives the log-likelihood value of the
best model. As can be seen, the best copula combinations are different across
each pair. For the U.S.-JP and U.S.-CA pairs, the normal copula gives the best
fit for both regimes. Thus, for these pairs no asymmetry is needed to describe
each regime. In other words, the mixture of normal distributions seems to be
enough to capture symmetric dependence for these pairs. On the other hand,
for the U.S.-GE pair, the Gumbel-Gumbel copula model captures dependence
structures best, while the U.S.-FR pair’s dependence is best characterized by the
Galambos-Galambos copula model. Thus, for these two pairs I find further evi-
dence of asymmetric dependence, i.e., asymmetric copulas are more suitable in
describing both regimes. This asymmetry is different from the U.S.-U.K. pairs,
where the asymmetric copulas give better descriptions only for a bear regime. To
test whether this asymmetry can result in rejection of the MSMVN model, I con-
duct the same LR test as above. The values of the LR statistic are given in the
fourth column of Table 10 with their p-values reported in the fifth column. The
essentially 0 p-values indicate a clear rejection of the MSMVN model. Hence,
these two pairs provide other important cases where the use of a MSMVN model
becomes inappropriate.

23Since I cannot obtain reasonable evidence of two regimes in the U.S. and Italy pair, its associated
result is not reported. Also, to save space all estimates and test statistics are not provided, but are
available from the author.
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TABLE 10

Summary of the Results of Each Pair

p-Values of Tests for
Equalities across Regimes

Expected
Tests of MSMVN Returns Volatilities

Paired Country Copulas Log-Likelihood LR Statistic p-Value Dependence U.S. Other U.S. Other

Japan Nor-Nor −2134.36 N.A. N.A. 0.993 0.029 0.031 0.000 0.000
Germany Gum-Gum −2084.87 4.53 0.000 0.147 0.087 0.012 0.000 0.000
France Gal-Gal −2157.66 4.50 0.000 0.375 0.020 0.010 0.000 0.000
Canada Nor-Nor −1966.90 N.A. N.A. 0.080 0.030 0.044 0.000 0.000

The last five columns of Table 10 provide the p-values of hypothesis tests
for equality of dependence, expected returns, and volatilities across regimes. For
expected returns and volatilities, the first value indicates the p-value for the U.S.
market, while the second value is for the other country. The differences in volatil-
ities are highly significant with essentially 0 p-values for all pairs, while the dif-
ferences in expected returns are slightly weaker, but still significant at a 10%
level. On the contrary, dependence differences are not significant at a 10% level
for three pairs. In particular, for the U.S.-JP pair, the degrees of dependence are
virtually identical in both regimes. The only exception is in the U.S.-CA pair for
which the dependence difference is significant at a 10% level. Those results indi-
cate that there are indeed two distinct regimes for all pairs. However, evidence of
asymmetric dependence across regimes is not uniform.

In sum, there are two distinct regimes and many types of asymmetric depen-
dence structures in international markets. My analysis demonstrates the useful-
ness of my framework, which combines the MS model and copula theory, to de-
scribe these two distinct regimes and asymmetric dependence structures together.

VI. Conclusions

This paper examines asymmetric dependence structures in international eq-
uity markets. I argue that by combining the Markov switching model with copula
theory, I can model asymmetric dependence structures with sufficient flexibil-
ity. Then, after observing two asymmetries in previous studies I estimated three
two-state Markov switching models: the MS multivariate normal (MSMVN), the
MS semi-asymmetric copula (MSSAC), and the MS asymmetric copula (MSAC)
models. Both the MSSAC and MSAC models indicate that there are two distinct
regimes in U.S.-U.K. markets: a bear regime characterized by high asymmetric
dependence with lower tail dependence, and low and volatile expected returns,
and a normal regime identified by low symmetric dependence with no tail depen-
dence, and high and stable expected returns. The MSSAC models also provide
the best replication of Longin and Solnik’s (2001) asymmetric exceedance cor-
relations. More importantly, the MSSAC models uniformly reject the MSMVN
model with a highly significant statistical level. Thus, I conclude that there ex-
ist two types of asymmetric dependence in the U.S.-U.K. markets: asymmetric
dependence between bear markets and normal markets, and further asymmetric
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dependence with lower tail dependence in bear markets that the MSMVN model
cannot capture well. My conclusion is consistent with recent studies about asym-
metric movements in international equity markets, but is distinct from other stud-
ies in recognizing two types of asymmetries. Moreover, my conclusion can be
considered as part of the evidence for contagion effects that are documented by
the growing contagion literature as well.

This paper also evaluates the economic significance of ignoring the second
type of asymmetric dependence found in the U.S.-U.K. markets from a risk man-
agement point of view. The VaR and expected shortfall ratio analysis indicate
that ignoring the second type of asymmetric dependence causes about 10% un-
dervaluation of VaR at a 99% significance level and expected shortfall over the
whole significance level between 90% to 99%, which is crucial for risk man-
agement. Therefore, I conclude that recognizing the second type of asymmetric
dependence is extremely important, particularly for risk management.

As a final contribution of the paper, I investigate dependence structures in
the other G7 countries except Italy. My analysis shows the existence of normal
and bear regimes in other markets as well. I, however, find different asymmetric
dependence structures. For the U.S.-J.P. pair, no asymmetry is observed, while
there is evidence of asymmetric dependence across regimes in the U.S.-CA mar-
kets. Although I did not find any strong evidence of asymmetric dependence
across regimes in the U.S.-GE and U.S.-FR markets, my results indicate that both
markets are characterized by the MSAC models but clearly not by the MSMVN
model. In other words, asymmetric dependence exists within each regime in these
markets. Hence, I conclude that there are two distinct regimes and many types
of asymmetric dependence structures in international equity markets, and my
framework provides sufficient flexibility to describe these two distinct regimes
and asymmetric dependence structures.

These conclusions also raise several questions for future investigation. One
of these is to pursue the economic factors behind asymmetric dependence in in-
ternational equity markets. This paper assumes that unobserved state st follows
a first-order Markov chain with constant transition probabilities. As a result, my
models do not have much forecastability of st, which is essential for forecasting
future co-movements of stock returns and, hence, portfolio choice. Also, this pa-
per treats conditional means and volatilities as if they were only state dependent.
Therefore, modeling time-varying transition probabilities, conditional means, and
volatilities in some other economic exogenous explanatory variables would be in-
teresting future work.

Another future topic is to evaluate the economic significance of ignoring
asymmetric dependence structures more generally. I evaluate this only from a risk
management point of view, which is probably most affected by the second type
of asymmetric dependence found in the U.S.-U.K. markets. But evaluating the
economic significance from a more general view point is an attractive topic. For
example, the method of international asset allocation with regime shifts developed
by Ang and Bekaert (2002) can be adapted for this purpose.

The final topic is to examine dependence structures across more countries.
This paper focuses on the dependence structures in G7 countries because these
countries are considered to be representative of total markets and reasonably inte-
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grated during my sample period. However, recent developments of emerging mar-
kets cannot be unheeded. Therefore, investigating dependence structures among
those countries is an important topic. For emerging markets, I might need a more
complicated model for describing the dynamics of dependence structures. This
is relevant because, for instance, the dependence between the U.S. and emerging
markets should become stronger and stronger as emerging markets become more
developed. In addition, since emerging markets’ economies tend to be unstable, it
is suspected that their dependence structures are unsteady as well. Thus, there is
a need for a more sophisticated model to consider these possibilities. To this end,
I can model the dependence parameters for copulas with other economic exoge-
nous explanatory variables. I also model the dynamics of dependence parameters
for copulas as in Patton (2006) in which the DCC framework performed in Engle
(2002) and Tse and Tsui (2002) is utilized.
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