Published in : Journal of banking and finance (1p88l. 9, iss. 4, pp. 553-560
Status : Postprint (Author’s version)

NEW EVIDENCE ON BETA STATIONARITY AND FORECAST
FOR BELGIAN COMMON STOCKS

Hawawini Gabriel A’ Michel Pierre &#Corhay Albert?

(1)European Institute of Business Administration (I8l 77305 Fontainebleau, France
(Z)University of Liege, 4000 Liege, Belgium
Abstract

Based on a comprehensive sample of 170 securiéigsd continuously on the Brussels Stock
Exchange from December 1966 to December 1983 #genpresents evidence which indicates that
the stationarity of beta-coefficients is not agsty as reported in previous studies which weredase
smaller samples. It is shown, however, that beteckst can be generally improved using an
adjustment method and that the improvement is lsigioe portfolios of increasing size.

1. Introduction

The systematic risk of a security known as its loegfficient is a central concept in capital market
theory. Practical applications of this theory requhat historical betas be estimated with thetleas
amount of measurement errors and that their futahges be predicted as accurately as possibke. It i
the stationarity and forecast aspects of beta icteft that are the concern of this paper.

The simplest forecast of next period beta is thetmecent historical estimate of beta. The purpdse

this paper is to find out if the accuracy of thesftast of next period beta, for a comprehensiveplam

of Belgian common stocks, can be improved by amtjgghe historical estimates of beta according to
three alternative adjustment techniques: the Bapasiethod developed by Vasicek (1973), the method
developed by Blume (1971, 1975) and that used &¥pthkerage firm of Merrill, Lynch, Pierce,

Fenner and Smith (MLPFS). These adjustment teclksique described in the third section.

The next section combines a brief summary ofiptes work and a presentation of the properties of
the sample used in this study. Methodological issre discussed in section 3. Section 4 preseats th
empirical findings. Our major result is that that&tnarity of beta coefficients for Belgian common
stocks is not as strong as previous studies hawershrheir forecast, however, can be generally
improved using an adjustment method and the impneve is highest for portfolios of increasing size.
The last section contains concluding remarks.

2. Previous work and sample properties

Klemkosky and Martin (1975) have examined the qaesif adjusting beta forecasts for a sample of
U.S. common stocks and concluded that 'the accurbaysimple no-change extrapolative beta forecast
can be improved. A combination of the Bayesian {&&9 predictor and a reasonable portfolio size
would appear to make the beta coefficient a higingdictable risk surrogate.'

Recently, Eubank and Zumwalt (1979) confirmed Klesky and Martin's results over estimation
periods of 12 to 120 months.

To our knowledge, apart from the case of U.K. st<d€kmson and Marsh (1983)], there is no
published account of an evaluation of the adjustroéheta forecasts for European common stocks.
This study will focus on stocks traded on the BelsStock Exchange (BSE). The stationar-ity of
Belgian betas was investigated by Hawawini and Eli¢h978, 1979), and by Fabry and Van
Grembergen (1978). The former have concluded thlgi&n betas are generally more stationary than
French or U.S. betas but they did not examinesifrgple no-change extrapolative beta forecast can be
improved. The latter concluded that the true betasnall portfolios — as opposed to the estimated



Published in : Journal of banking and finance (1p88l. 9, iss. 4, pp. 553-560
Status : Postprint (Author’s version)

betas — are generally stationary. Single secuatadfy however, were not found to be stationary.
Again, no attempt is made to see if adjusting stérated betas will improve their accuracy in
predicting the next period betas.

Another important aspect of this paper which déferates it from previous work on Belgian stocks is
the property of the sample used. Hawawini and Mi¢h@78, 1979) had a sample of only 30 common
stocks and Fabry and Van Grembergen (1978) hathpleaf 46 stocks. These were small samples
that contained the most frequently traded secaritigh the largest market values of shares
outstanding. The sample used in this study contaf@ssecurities. It consists of all the securitidsich
were listed continuously on the BSE over the 17ypeaiod starting in December 1966 and ending in
December 1983. Empirical results drawn from thisipeehensive sample show that beta stationarity is
not as strong as reported by either Hawawini anch®lior Fabry and Van Grembergen. It is possible
that the relatively stronger stationarity obserlgdhese authors was due to the fact that theyictest
their investigations to a sample of securities Whiere frequently traded and had large market galue

3. Methodology
3.1. Adjustment methods

A security's beta coefficient can be estimated frostorical price data using the well-known market
model [Sharpe (1963), Fama (1973)]:

ﬁ.’.:T:If |'|||r':|'R-m.J+ 'I‘;f.r‘ [H

where R, ,is the monthly total return of securit K., is the corresponding

rate of return of a market index which we takehesarithmetic average of the 170 securities in our

sample an ¢.tis a random variable assumed to be serially unctadewith zero expected value and
constant variance.

Consider the following notations:

b, =C¢ov(R,,, R, )var(R, }=beta estimated using eq. (1),
b,  =predicted beta,
s, =standard error of estimation of beta from time-seri¢cs analysis based

on eq. (1),
b,  =cross-sectional average of the estimated betas,
8, =cross-sectional standard deviation of the estimated betas,
1,2,3 =three consecutive estimation periods.

If the beta forecasts are not adjusted, then nexog betas are predicted by betas estimated beer t
preceding period. We have

bzp=b.. (2)

That is, our forecast of period-two beta@pis beta estimated over period dbge). This is the simple
no-change extrapolative beta forecast.

Alternative forecast of period-two beta, howevem e obtained by adjusting the simple no-change
extrapolative forecagb g by one of three methods. The first is the Bayesidéksadjustment which

is given by

_(by/si)+(by/510)

(1/s3)4-(1/s1)

b

ap
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This estimator uses information on the standaror @frestimation of betésyt), the cross-sectional

average of the estimated be{b1c)and the cross-

sectional standard deviation of the estimated hsig} to adjust the no-change extrapolative forecast
(b1e) estimated using (1)

The second estimator is given by the Blume adjustmethod. We have

by =0C+7bse, (4)

where & anc 7 are estimated using the regresdipg = S +yb1eand error. Note that the derivation of

the Blume estimator requires two consecutive psriperiod one and period two) preceding the
forecast period (period three) in order to estinthiéecoefficien® andy.

The third and last alternative estimator is the MBRestimator given by
;’p=1+p(b2c_l): (5)

wherep is the product moment correlation betwdga andb2e Again, as in the case of the Blume
estimator, two consecutive periods preceding thectst period are required in order to estimpate

3.2. Evaluation techniques

We wish to evaluate the predictive ability of toe:f alternative beta forecagtsp, blp, b"p, andbp™)

of next period beta. To do so, we can first estinthé value of beta which has actually occurred ove
the next period and then compare this realizedevafibetalby ) with each one of the four alternative

forecasts.

The predictive ability of each one of the four alttive beta forecasts can be measured by the girodu
moment correlation coefficient between each predistalue and the realized value of beta. The higher
the correlation the more accurate is the foreddst method suffers from known deficiencies.

An alternative and more general method of evalgatie predictive ability of beta forecasts is to
compute the mean square forecasting €iVtBE)between predictetbp) and realizedby ) beta

coefficients and to examine its components [Miraoedt Zarnowitz (1969)]. We have

1 " 3
MSE_Y\TEI (b= by,

MSE= {Er - Ep}z + ( 1~ Srp) 2{Ss}p + ( I— krzp)[sf}n (6)

where gy is the slope coefficient of the regressiorbpbn by, (Scz)p and (gz)r are the cross-sectional
sample variances tify andby, respectively; andtrp is the correlation coefficient betweepdndbp.

The first term in eq. (6) is the bias componentolihindicates the portion of tidSEdue to over- or

underestimation of the mean of realized b (P} over the mean of predicted be'’:) . The second

term is the inefficiency component which captutestendency of the forecast errors to be positive f
low values obp and negative for high values lop. The last term represents the random component of
the MSE.Note that a perfect correlation betwegrand y(krp=I) will reduce the random component

to zero but will not produce a zeMSE.The MSEwill be zero only if the predicted values of betas

(bp) are identical to their realized valugs ).
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4. Empirical findings
4.1. Securities

The sample consists of all the securities whictiedacontinuously from December 1966 to December
1983 on the Brussels Stock Exchange. There wereddifrities meeting this criterion. The total 17-
year estimation period was divided into subperidde subperiods produced estimates of correlation
coefficients andMSEs.These were then averaged over common sub-peridhsr(evo or three) to

yield a single value of the correlation coefficiamd theMSEfor each type of forecasting method
analyzed. The method was repeated for varying @artéize. The monthly total returns on the market
index were generated by assuming an equal invesimeach one of the 170 securities in the sample.

Using the market model expressed in eq. (1) wedintained estimates of each security's beta
coefficient over two consecutive subperiods of étpragth (90 months each). Betas estimated over the
first subperiod were either unadjusted (these kmtaseferred to as 'classical' estimators) orsaelgl
according to the Bayes — Vasicek method. Averageetation coefficients and MSEs for predicted

vs. realized betas are summarized in the uppeiopéable 1.

The total 17-year estimation period was also brad@nn into three consecutive subperiods of equal
length (36 months each). Classical and Bayes ettisyavere computed over the first and second
subperiods and compared to realized betas ovesutbeequent subperiods. We also compared the
classical and the Bayes estimators obtained oesfir$t subperiod to the realized betas over tivd th
subperiod. Finally, using the first two subperiegscalculated the MLPFS and the Blume estimators
which we compared to realized betas over the shfzperiod. All the results are summarized in table
1. The following observations can be made:

(1) The correlation coefficients are weaker tttarse reported by either Hawawini and Michel
(1978,1979), or Fabry and Van Grembergen(1§78)

Thus, earlier evidence of stronger stationarity imaylue to the small and biased sample used by thes
authors.

(2) The value of the correlation for the Bayefsatkd forecasts is higher than that of the unael§us
(classical) forecast. The Blume-adjusted betaslamd/LPFS-adjusted betas do not yield higher
correlations than unadjusted betas.

(3) MSEscan be significantly reduced by adjusting betadasts. The reduction in tidSEscomes
primarily from the inefficiency component of totdISE.Referring to the lower part of table 1, we can
see that no particular adjustment technique prevideetter reduction MSE.The totalMSE of
adjusted betas is, for all three techniques, aBo%i smaller than that of the unadjusted beta.

The latter report a correlation coefficient of ®@4fased on monthly returns for individual secusitie
over a total estimation period starting in 1964 anding in 1975. This total period was broken down
into 2 subperiods of equal length (see their taple
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Table 1 Average correlation coefficients and megunase errors for 170 securities (December 1966 to
December 1983).

Forecasting Correlation L Bias Inefficiency Random  Total [Total
method coefficient error MSE M SE] 1/2
2 periods (68 months each)

Classica? 021502 0.00000 0.20183 0.20619 0.40802 0.63876
Baye? 023548 0.00133 0.09270 0.20416 0.29819 0.54607
3 periods (36 months each)

Classica$ 0291982  0.00000 0.12550 0.29501 0.42051 0.64847
Baye§ 03106% 0.00074 0.02942 0.29213 0.32229 0.56771
Classicaf 0.2074R  0.00000 0.16577 0.33991 0.50568 0.71111
Bayeéj 020664 0.00074 0.04979 0.34178 0.39231 0.62635
Classicaf 0.3289®  0.00000 0.14615 0.31623 0.46238 0.68000
Baye§ 0.3394@  0.00077 0.02951 0.31375 0.34403 0.58654
MLPE<E 0.3289®  0.00000 0.01125 0.31623 0.32748 0.57226
Blume® 032898  0.00000 0.01153 0.31623 0.32776 0.57250

asignificant correlation at the 5% level.
bAverage over: (1-67/8-72) and (9-72/4-78); (9-7ZB)-and (5-78/12-83).
cAverage over: (1-69/12-71) and (1-72/12-74); (112274) and (1-75/12-77); (1-75/ 12-77) and (1-7BR0).
dAverage over: (1-69/12-71) and (1-75/12-77); (1122IF4) and (1-78/12-80); (1-75/ 12-77) and (1-8183).
€Average over: (1-72/12-74) and (1-75/12-77); (1425177) and (1-78/12-80); (1-78/12-80) and (1-8183)-

Table 2 Average correlation coefficients and megunase errors for portfolios [3 periods (36 months

each)]@

Portfolio Forecasting Correlatio

size method n
coefficient
2 Classical (4005
Bayes 0.40758
MLPFS  (.4005%
Blume 0.4005%9
5 Classical 4757
Bayes 0.4704P
MLPFS  4757P
Blume 0.4757®
10 Classical  (5733P
Bayes 0.5676P
MLPFS  5733P
Blume 0.5733P
17 Classical g 7150é
Bayes 0.72229
MLPFS  (.71508
Blume 0.71508

I
Bias
0.00000
0.00029
0.00000
0.00000
0.00000
0.00008
0.00000
0.03591
0.00000
0.00004
0.00000
0.02474
0.00000
0.00002
0.00000
0.03378

Inefficien
cy

0.06219
0.01455
0.01316
0.01218
0.03227
0.01100
0.01265
0.01575
0.02107
0.01027
0.01130
0.01177
0.01285
0.00691
0.01248
0.01176

Random
error

0.16066
0.15990
0.16066
0.16066
0.06828
0.06887
0.06828
0.06828
0.03457
0.03529
0.03457
0.03457
0.01704
0.01684
0.01704
0.01704

Total
MSE

0.22285
0.17474
0.17382
0.17284
0.10055
0.07995
0.08093
0.11994
0.05564
0.04560
0.04587
0.07108
0.02989
0.02377
0.02952
0.06258

[Total
MSE]L/2

0.47207
0.41802
0.41692
0.41574
0.31710
0.28275
0.28448
0.34632
0.23588
0.21354
0.21417
0.26661
0.17289
0.15417
0.17181
0.25016

aAverage over: (1-72/12-74) and (1—75/12-77); (132577) and (1-78/12-80); (1-78/ 12-80) and (1—818[2.b5ignificant
correlation at the 5% level.
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4.2. Portfolios

Correlation coefficients anflSEswere also obtained for portfolios of varying siZéese portfolios
were constructed by ranking individual securitietas in decreasing order of value and assigniag th
first n-securities to the first portfolio of sireand so on until every security in the sample haehbe
assigned to a portfolio. Empirical results are swarired in table 2. We observe the following:

(1) As portfolio size increases, the correlatioefficients rise and totMSEsfall. This is consistent
with what has been observed on the New York Stoah&nge.

(2) Most of the reduction in tHdSEscomes from the random error component of tMSEs.

(3) Bayes-adjusted betas tend to provide thefbestast. With a portfolio size of 17 securititse
total MSE of the Bayes-adjusted beta is reduced to 89% ofdhes of the totaMSEof unadjusted
betas.

5. Conclusion

In this paper, we presented evidence that theosatity of beta coefficients for Belgian common
stocks is not as strong as previous studies hamershr heir forecast, however, can be generally
improved using an adjustment method. We have shbatover a 17-year sample period the forecast
error of adjusted betas is about 30% smaller tharidrecast error of a simple no-change extrap@ati
beta forecast for individual securities. The fostearor can be further reduced if one uses patalf
securities.

Notes

Iwe should point out that our estimation periodsidbexactly correspond to those used by Hawawini
and Michel (1978, 1979), or Fabry and Van Gremhe(d®78). The former report a correlation
coefficient of 0.699 based on monthly returns falividual securities over a total estimation period
starting in 1963 and ending in 1976. The totalgevas broken down into 2 subperiods of equal
length (see their table 1).
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