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Abstract 

Based on a comprehensive sample of 170 securities traded continuously on the Brussels Stock 
Exchange from December 1966 to December 1983 this paper presents evidence which indicates that 
the stationarity of beta-coefficients is not as strong as reported in previous studies which were based on 
smaller samples. It is shown, however, that beta forecast can be generally improved using an 
adjustment method and that the improvement is highest for portfolios of increasing size. 

 

 

1. Introduction 

The systematic risk of a security known as its beta coefficient is a central concept in capital market 
theory. Practical applications of this theory require that historical betas be estimated with the least 
amount of measurement errors and that their future values be predicted as accurately as possible. It is 
the stationarity and forecast aspects of beta coefficient that are the concern of this paper. 

The simplest forecast of next period beta is the most recent historical estimate of beta. The purpose of 
this paper is to find out if the accuracy of the forecast of next period beta, for a comprehensive sample 
of Belgian common stocks, can be improved by adjusting the historical estimates of beta according to 
three alternative adjustment techniques: the Bayesian method developed by Vasicek (1973), the method 
developed by Blume (1971, 1975) and that used by the brokerage firm of Merrill, Lynch, Pierce, 
Fenner and Smith (MLPFS). These adjustment techniques are described in the third section. 

The next  section combines  a brief summary  of previous work and a presentation of the properties of 
the sample used in this study. Methodological issues are discussed in section 3. Section 4 presents the 
empirical findings. Our major result is that the stationarity of beta coefficients for Belgian common 
stocks is not as strong as previous studies have shown. Their forecast, however, can be generally 
improved using an adjustment method and the improvement is highest for portfolios of increasing size. 
The last section contains concluding remarks. 

2. Previous work and sample properties 

Klemkosky and Martin (1975) have examined the question of adjusting beta forecasts for a sample of 
U.S. common stocks and concluded that 'the accuracy of a simple no-change extrapolative beta forecast 
can be improved. A combination of the Bayesian (Vasicek) predictor and a reasonable portfolio size 
would appear to make the beta coefficient a highly predictable risk surrogate.' 

Recently, Eubank and Zumwalt (1979) confirmed Klemkosky and Martin's results over estimation 
periods of 12 to 120 months. 

To our knowledge, apart from the case of U.K. stocks [Dimson and Marsh (1983)], there is no 
published account of an evaluation of the adjustment of beta forecasts for European common stocks. 
This study will focus on stocks traded on the Brussels Stock Exchange (BSE). The stationar-ity of 
Belgian betas was investigated by Hawawini and Michel (1978, 1979), and by Fabry and Van 
Grembergen (1978). The former have concluded that Belgian betas are generally more stationary than 
French or U.S. betas but they did not examine if a simple no-change extrapolative beta forecast can be 
improved. The latter concluded that the true betas of small portfolios — as opposed to the estimated 
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betas — are generally stationary. Single security betas, however, were not found to be stationary. 
Again, no attempt is made to see if adjusting the estimated betas will improve their accuracy in 
predicting the next period betas. 

Another important aspect of this paper which differentiates it from previous work on Belgian stocks is 
the property of the sample used. Hawawini and Michel (1978, 1979) had a sample of only 30 common 
stocks and Fabry and Van Grembergen (1978) had a sample of 46 stocks. These were small samples 
that contained the most frequently traded securities with the largest market values of shares 
outstanding. The sample used in this study contains 170 securities. It consists of all the securities which 
were listed continuously on the BSE over the 17-year period starting in December 1966 and ending in 
December 1983. Empirical results drawn from this comprehensive sample show that beta stationarity is 
not as strong as reported by either Hawawini and Michel or Fabry and Van Grembergen. It is possible 
that the relatively stronger stationarity observed by these authors was due to the fact that they restricted 
their investigations to a sample of securities which were frequently traded and had large market values. 

3. Methodology 

3.1. Adjustment methods 

A security's beta coefficient can be estimated from historical price data using the well-known market 
model [Sharpe (1963), Fama (1973)]: 

 

where is the monthly total return of security i, is the corresponding 

rate of return of a market index which we take as the arithmetic average of the 170 securities in our 

sample and is a random variable assumed to be serially uncorrected with zero expected value and 
constant variance. 

Consider the following notations: 

 

If the beta forecasts are not adjusted, then next period betas are predicted by betas estimated over the 
preceding period. We have 

 

That is, our forecast of period-two beta (b2p) is beta estimated over period one (b1e). This is the simple 
no-change extrapolative beta forecast. 

Alternative forecast of period-two beta, however, can be obtained by adjusting the simple no-change 
extrapolative forecast (b1e) by one of three methods. The first is the Bayes-Vasicek adjustment which 
is given by 
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This estimator uses information on the standard error of estimation of beta (s1t), the cross-sectional 

average of the estimated betas and the cross- 

sectional standard deviation of the estimated betas (s1c) to adjust the no-change extrapolative forecast 
(b1e) estimated using (1). 

The second estimator is given by the Blume adjustment method. We have 

 

where and are estimated using the regression b2e = S + γb1e and error. Note that the derivation of 
the Blume estimator requires two consecutive periods (period one and period two) preceding the 
forecast period (period three) in order to estimate the coefficient ∂ and γ. 

The third and last alternative estimator is the MLPFS estimator given by 

 

where ρ is the product moment correlation between b1e and b2e. Again, as in the case of the Blume 
estimator, two consecutive periods preceding the forecast period are required in order to estimate ρ. 

3.2. Evaluation techniques 

We wish to evaluate the predictive ability of the four alternative beta forecasts (bp, b'p, b''p, and bp"') 
of next period beta. To do so, we can first estimate the value of beta which has actually occurred over 
the next period and then compare this realized value of beta (br ) with each one of the four alternative 
forecasts. 

The predictive ability of each one of the four alternative beta forecasts can be measured by the product 
moment correlation coefficient between each predicted value and the realized value of beta. The higher 
the correlation the more accurate is the forecast. This method suffers from known deficiencies. 

An alternative and more general method of evaluating the predictive ability of beta forecasts is to 
compute the mean square forecasting error (MSE) between predicted (bp) and realized (br ) beta 
coefficients and to examine its components [Mincer and Zarnowitz (1969)]. We have 

 

where srp is the slope coefficient of the regression of br on bp, (sc2)p and (sc2)r are the cross-sectional 
sample variances of bp and br, respectively; and krp is the correlation coefficient between br and bp. 

The first term in eq. (6) is the bias component which indicates the portion of the MSE due to over- or 

underestimation of the mean of realized betas  over the mean of predicted betas . The second 
term is the inefficiency component which captures the tendency of the forecast errors to be positive for 
low values of bp and negative for high values of bp. The last term represents the random component of 
the MSE. Note that a perfect correlation between br and bp(krp=l) will reduce the random component 
to zero but will not produce a zero MSE. The MSE will be zero only if the predicted values of betas 
(bp) are identical to their realized values (br ). 
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4. Empirical findings 

4.1. Securities 

The sample consists of all the securities which traded continuously from December 1966 to December 
1983 on the Brussels Stock Exchange. There were 170 securities meeting this criterion. The total 17-
year estimation period was divided into subperiods. The subperiods produced estimates of correlation 
coefficients and MSEs. These were then averaged over common sub-periods (either two or three) to 
yield a single value of the correlation coefficient and the MSE for each type of forecasting method 
analyzed. The method was repeated for varying portfolio size. The monthly total returns on the market 
index were generated by assuming an equal investment in each one of the 170 securities in the sample. 

Using the market model expressed in eq. (1) we first obtained estimates of each security's beta 
coefficient over two consecutive subperiods of equal length (90 months each). Betas estimated over the 
first subperiod were either unadjusted (these betas are referred to as 'classical' estimators) or adjusted 
according to the Bayes — Vasicek method. Average correlation coefficients and MSEs for predicted 
vs. realized betas are summarized in the upper part of table 1. 

The total 17-year estimation period was also broken down into three consecutive subperiods of equal 
length (36 months each). Classical and Bayes estimators were computed over the first and second 
subperiods and compared to realized betas over the subsequent subperiods. We also compared the 
classical and the Bayes estimators obtained over the first subperiod to the realized betas over the third 
subperiod. Finally, using the first two subperiods we calculated the MLPFS and the Blume estimators 
which we compared to realized betas over the third subperiod. All the results are summarized in table 
1. The following observations can be made: 

(1)   The correlation coefficients are weaker than those reported by either Hawawini  and  Michel 

(1978,1979),  or  Fabry  and  Van  Grembergen(1978).1  

Thus, earlier evidence of stronger stationarity may be due to the small and biased sample used by these 
authors. 

(2)   The value of the correlation for the Bayes-adjusted forecasts is higher than that of the unadjusted 
(classical) forecast. The Blume-adjusted betas and the MLPFS-adjusted betas do not yield higher 
correlations than unadjusted betas. 

(3)   MSEs can be significantly reduced by adjusting beta forecasts. The reduction in the MSEs comes 
primarily from the inefficiency component of total MSE. Referring to the lower part of table 1, we can 
see that no particular adjustment technique provides a better reduction of MSE. The total MSE of 
adjusted betas is, for all three techniques, about 30% smaller than that of the unadjusted beta. 

The latter report a correlation coefficient of 0.402 based on monthly returns for individual securities 
over a total estimation period starting in 1964 and ending in 1975. This total period was broken down 
into 2 subperiods of equal length (see their table 1). 
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Table 1 Average correlation coefficients and mean square errors for 170 securities (December 1966 to 
December 1983). 

Forecasting 
method 

Correlation 
coefficient 

L Bias Inefficiency Random 
error 

Total 
MSE 

[Total 

MSE]1/2 

2 periods (68 months each) 

Classicalb 0.21507a 0.00000 0.20183 0.20619 0.40802 0.63876 

Bayesb 0.23543a 0.00133 0.09270 0.20416 0.29819 0.54607 

3 periods (36 months each) 

Classicalc 0.29195a 0.00000 0.12550 0.29501 0.42051 0.64847 

Bayesc 0.31069a 0.00074 0.02942 0.29213 0.32229 0.56771 

Classicald 0.20741a 0.00000 0.16577 0.33991 0.50568 0.71111 

Bayesd 0.20666a 0.00074 0.04979 0.34178 0.39231 0.62635 

Classicale 0.32893a 0.00000 0.14615 0.31623 0.46238 0.68000 

Bayese 0.33945a 0.00077 0.02951 0.31375 0.34403 0.58654 

MLPFSe 0.32893a 0.00000 0.01125 0.31623 0.32748 0.57226 

Blumee 0.32893a 0.00000 0.01153 0.31623 0.32776 0.57250 
aSignificant correlation at the 5% level. 
bAverage over: (1-67/8-72) and (9-72/4-78); (9-72/4-78) and (5-78/12-83). 
cAverage over: (1-69/12-71) and (1-72/12-74); (1-72/12-74) and (1-75/12-77); (1-75/ 12-77) and (1-78/12-80). 
dAverage over: (1-69/12-71) and (1-75/12-77); (1-72/12-74) and (1-78/12-80); (1-75/ 12-77) and (1-81/12-83). 
eAverage over: (1-72/12-74) and (1-75/12-77); (1-75/12-77) and (1-78/12-80); (1-78/12-80) and (1-81/12-83). 

 

Table 2 Average correlation coefficients and mean square errors for portfolios [3 periods (36 months 

each)].a 

Portfolio 
size 

Forecasting 
method 

Correlatio
n 

coefficient 

l 
Bias 

Inefficien
cy 

Random 
error 

Total 
MSE 

[Total 

MSE]1/2 

2 Classical 0.40055b 0.00000 0.06219 0.16066 0.22285 0.47207 

 Bayes 0.40758b 0.00029 0.01455 0.15990 0.17474 0.41802 

 MLPFS 0.40055b 0.00000 0.01316 0.16066 0.17382 0.41692 

 Blume 0.40055b 0.00000 0.01218 0.16066 0.17284 0.41574 

5 Classical 0.47572b 0.00000 0.03227 0.06828 0.10055 0.31710 

 Bayes 0.47047b 0.00008 0.01100 0.06887 0.07995 0.28275 

 MLPFS 0.47572b 0.00000 0.01265 0.06828 0.08093 0.28448 

 Blume 0.47572b 0.03591 0.01575 0.06828 0.11994 0.34632 

10 Classical 0.57337b 0.00000 0.02107 0.03457 0.05564 0.23588 

 Bayes 0.56762b 0.00004 0.01027 0.03529 0.04560 0.21354 

 MLPFS 0.57337b 0.00000 0.01130 0.03457 0.04587 0.21417 

 Blume 0.57337b 0.02474 0.01177 0.03457 0.07108 0.26661 

17 Classical 0.71506b 0.00000 0.01285 0.01704 0.02989 0.17289 

 Bayes 0.72225b 0.00002 0.00691 0.01684 0.02377 0.15417 

 MLPFS 0.71506b 0.00000 0.01248 0.01704 0.02952 0.17181 

 Blume 0.71506b 0.03378 0.01176 0.01704 0.06258 0.25016 
aAverage over: (1-72/12-74) and (1—75/12-77); (1-75/12-77) and (1-78/12-80); (1-78/ 12-80) and (1-81/12-83). bSignificant 
correlation at the 5% level. 
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4.2. Portfolios 

Correlation coefficients and MSEs were also obtained for portfolios of varying size. These portfolios 
were constructed by ranking individual securities' betas in decreasing order of value and assigning the 
first n-securities to the first portfolio of size n and so on until every security in the sample had been 
assigned to a portfolio. Empirical results are summarized in table 2. We observe the following: 

(1)   As portfolio size increases, the correlation coefficients rise and total MSEs fall. This is consistent 
with what has been observed on the New York Stock Exchange. 

(2)   Most of the reduction in the MSEs comes from the random error component of total MSEs. 

(3)   Bayes-adjusted betas tend to provide the best forecast. With a portfolio size of 17 securities, the 
total MSE of the Bayes-adjusted beta is reduced to 89% of the value of the total MSE of unadjusted 
betas. 

5. Conclusion 

In this paper, we presented evidence that the stationarity of beta coefficients for Belgian common 
stocks is not as strong as previous studies have shown. Their forecast, however, can be generally 
improved using an adjustment method. We have shown that over a 17-year sample period the forecast 
error of adjusted betas is about 30% smaller than the forecast error of a simple no-change extrapolative 
beta forecast for individual securities. The forecast error can be further reduced if one uses portfolios of 
securities. 

Notes 

1We should point out that our estimation periods do not exactly correspond to those used by Hawawini 
and Michel (1978, 1979), or Fabry and Van Grembergen (1978). The former report a correlation 
coefficient of 0.699 based on monthly returns for individual securities over a total estimation period 
starting in 1963 and ending in 1976. The total period was broken down into 2 subperiods of equal 
length (see their table 1).  
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