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Abstract

Background: Autism spectrum disorders (ASDs) are neurodevelopmental conditions characterized by social and

behavioural impairments. In addition to neurological symptoms, ASD subjects frequently suffer from gastrointestinal

abnormalities, thus implying a role of the gut microbiota in ASD gastrointestinal pathophysiology.

Results: Here, we characterized the bacterial and fungal gut microbiota in a cohort of autistic individuals demonstrating

the presence of an altered microbial community structure. A fraction of 90% of the autistic subjects were classified as

severe ASDs. We found a significant increase in the Firmicutes/Bacteroidetes ratio in autistic subjects due to a reduction of

the Bacteroidetes relative abundance. At the genus level, we observed a decrease in the relative abundance of Alistipes,

Bilophila, Dialister, Parabacteroides, and Veillonella in the ASD cohort, while Collinsella, Corynebacterium, Dorea, and

Lactobacillus were significantly increased. Constipation has been then associated with different bacterial patterns in

autistic and neurotypical subjects, with constipated autistic individuals characterized by high levels of bacterial taxa

belonging to Escherichia/Shigella and Clostridium cluster XVIII. We also observed that the relative abundance of the fungal

genus Candida was more than double in the autistic than neurotypical subjects, yet due to a larger dispersion of values,

this difference was only partially significant.

Conclusions: The finding that, besides the bacterial gut microbiota, also the gut mycobiota contributes to the alteration

of the intestinal microbial community structure in ASDs opens the possibility for new potential intervention strategies

aimed at the relief of gastrointestinal symptoms in ASDs.
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Background

The term “autism spectrum disorders” (ASDs) refers to

a group of neurodevelopmental disorders with an early

life stage onset characterized by alterations in social

interactions and communication and by restricted and

repetitive behaviour [1]. It is now well accepted the

contribution of both genetic and environmental factors in

the aetiology of ASDs [2, 3]. Among the non-neurological

symptoms associated with ASDs, several studies indicate

gastrointestinal (GI) symptoms as common comorbidities

[4–7]. Alterations in the composition of the gut micro-

biota have been implicated in a wide variety of human dis-

eases, including ASDs [8]. Since the gut microbiota makes

critical contributions to metabolism and maintenance of

immune homeostasis and may control the central nervous

system (CNS) activities through neural, endocrine, and

immune pathways [9], it has been hypothesized the active

role of the gut microbiota in ASD pathophysiology. There

is more than a subtle link between the gut microbiota and

the CNS, through the so-called “microbiome-gut-brain

axis”. Indeed, it has been demonstrated a direct inter-

action between the gut microbiota and enteric neurons

[10, 11], its role in the regulation of the HPA axis [12],

and the production of many chemicals important in

brain functioning (e.g., serotonin, dopamine, kynure-

nine, γ-aminobutyric acid, SCFAs, p-cresol) [13, 14]. A

dysbiotic microbial community could lead to systemic

inflammation due to hyper-activation of T-helper 1 and

T-helper 17 cell responses [15] affecting also the re-

activity of peripheral immune cells to the CNS [16] and

the integrity of blood-brain barrier [17] which is known

to be altered in ASDs [18]. Several evidences suggested
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an early immune activation with chronic inflammation

and cytokine dysregulation in ASDs [19, 20], and it has

been shown that systemic inflammation induced by

LPS provokes behavioural changes and impairs the

blood-brain barrier in animal models [17, 21]. Further-

more, fungal infections that may originate from alter-

ations in commensal bacteria population [22] could

shift the indoleamine 2,3-dioxygenase’s activity [23, 24]

reducing the levels of kynurenine [25], a neuroprotec-

tive agent. Despite several reports disclosed an aberrant

gut microbiota in ASDs, consensus across studies has

not yet been established [8]. Here, we characterized the

bacterial gut microbiota and the less studied gut myco-

biota of subjects affected by autism through amplicon-

based metataxonomic analysis of the V3–V5 regions of

the prokaryotic 16S ribosomal DNA and of the internal

transcribed spacer 1 (ITS1) region of the fungal rDNA in

order to better understand the microbial community struc-

ture associated with ASDs and its involvement on GI

abnormalities.

Results
Autistic subjects harbour an altered bacterial gut microbiota

For the characterization of the gut microbiota associated

with autism, we recruited 40 autistic subjects (36 out of

40 autistic subjects were classified as severe ASDs,

Childhood Autism Rating Scale (CARS) value >37) and 40

neurotypical controls (Table 1, Additional file 1: Table S1).

Analysis of alpha diversity revealed no significant differ-

ences between autistic and neurotypical subjects (herein-

after termed AD and NT, respectively). However, the

analysis of the beta diversity calculated on the unweighted

and weighted UniFrac distances and the Bray-Curtis

dissimilarity revealed that the bacterial microbiota of AD

clusters apart from that of NT (p < 0.05, permutational

multivariate analysis of variance (PERMANOVA); Fig. 1,

Additional file 2: Table S2). Since we enrolled subjects

suffering from constipation among NT and AD subjects,

the impact of constipation on the beta diversity of the two

groups of study was also analysed. We observed that

constipation has a significant effect on the microbial

community structure within NT subjects (p < 0.05,

PERMANOVA), as expected [26, 27], but not within AD

subjects (Additional file 2: Table S2). Furthermore, we

observed that the severity of the autistic phenotype, as

measured by CARS scores, does not affect the bacterial

community structure among AD individuals (p > 0.05,

PERMANOVA; Additional file 3: Table S3).

Phylum level analysis showed a clear alteration of the

bacterial gut community in AD characterized by a higher

Firmicutes/Bacteroidetes ratio (p < 0.005, Wilcoxon rank-

sum test; Fig. 2a) in AD than that in NT due to a signifi-

cant reduction of the relative abundance of Bacteroidetes

(9.2% AD, 19.4% NT) (FDR-corrected p < 0.05, Welch t

test; Fig. 2b). Genus level analysis showed that the top ten

most abundant genera in both AD and NT subjects were

Bifidobacterium, Bacteroides, Faecalibacterium, Unknown

Lachnospiraceae, Blautia, Ruminococcus, Clostridium XI,

Streptococcus, Gemmiger, and Lachnospiraceae incertae

sedis (Additional file 4: Figure S1, Additional file 5:

Table S4). Interestingly, the genus Prevotella was only

barely represented in AD with respect to NT (0.05%

AD, 1.5% NT), in agreement with a previous study on

the gut microbiota in ASD children [28] although this

difference of relative abundance was not supported by the

statistical analysis. We further analysed the bacterial com-

munity structure associated with AD and NT by using

linear discriminant effect size (LEfSe), an algorithm for

high-dimensional biomarker discovery which uses linear

discriminant analysis (LDA) to estimate the effect size of

each taxon which is differentially represented in cases and

controls [29]. LEfSe analysis revealed a significant increase

of the relative abundance of different bacterial taxa in AD

than in NT among which Collinsella, Corynebacterium,

Dorea, and Lactobacillus and a significant reduction of

the taxa Alistipes, Bilophila, Dialister, Parabacteroides,

Table 1 Characteristics of study participants

Autistic Neurotypical

Subjects (n) 40 40

Age (1st–3rd quartile) 10 (5–17) 7 (3.6–12)

Gender (n)

Female 22.5% (9) 30% (12)

Male 77.5% (31) 70% (28)

Constipation (n)

Constipated 12.5% (5) 27.5% (11)

Non-constipated 72.5% (29) 72.5% (29)

NA 15% (6) 0% (0)

Calprotectin
(1st–3rd quartile)

36.9 (17.6–76.0) μg/g 40.9 (17–74.7) μg/g

Constipated 39.1 (22.9–70.0) μg/g 27.9 (20.3–97.6) μg/g

Non-constipated 35.9 (15.0–57.8) μg/g 50.5 (15.0–73.8) μg/g

CARS (1st–3rd quartile) 47 (40–50.5) NA

Constipated 50 (36–52.0) NA

Non-constipated 48 (42–50.0) NA

ESR (1st–3rd quartile) 7.5 (3.25–17.7) mm/h NA

Constipated 22.0 (12.0–25.0) mm/h NA

Non-constipated 7.0 (2.7–11.2) mm/h NA

Serum IgA
(1st–3rd quartile)

131.0 (70.0–172.2) mg/ml NA

Constipated 97.0 (82.0–153.0) mg/ml NA

Non-constipated 133.0 (67.0–181.0) mg/ml NA

Data expressed as medians with interquartile ranges when applicable.

AD autistic subjects, NT neurotypical subjects, NA not applicable,

CARS Childhood Autism Rating Scale, ESR erythrocyte sedimentation rate
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and Veillonella in AD than in NT (p < 0.01, Wilcoxon

rank-sum test; LDA >2.0; Fig. 3).

Constipation selects different bacterial taxa in autistic

subjects and neurotypical healthy controls

Autistic subjects frequently suffer of GI comorbidities

[4–7], and constipation is a GI symptom often reported in

these subjects, known to alter the physiology of the hu-

man GI tract and the gut microbiota itself [27, 30, 31].

Correlation analysis of the bacterial relative abundances

between constipated and non-constipated subjects, both

autistic and neurotypical, revealed that among the most

abundant bacterial genera (with relative abundance >0.5%

and detectable in at least the 70% of the investigated

subjects), the taxa Gemmiger and Ruminococcus anticorre-

lates with the constipation status (Spearman’s correlation

r = −0.39 and −0.36, respectively; FDR-corrected p < 0.05;

Additional file 6: Table S5) while Escherichia/Shigella and

Clostridium cluster XVIII positively correlates with this GI

symptom (Spearman’s correlation r = 0.31 and 0.38,

respectively; FDR-corrected p < 0.05; Additional file 6:

Table S5). We further compared the relative abundance of

these taxa among constipated and non-constipated sub-

jects within and between groups. We observed that

Escherichia/Shigella and Clostridium cluster XVIII were

significantly more abundant in constipated AD compared

to the non-constipated ones (FDR-corrected p < 0.05,

Wilcoxon rank-sum test; Fig. 4a, b) while no differences

have been detected between constipated and non-

constipated NT for these taxa. On the other hand, the

genus Gemmiger was significantly less abundant in consti-

pated compared to non-constipated NT (FDR-corrected

p < 0.05, Wilcoxon rank-sum test; Fig. 4c). Remarkably, no

significant differences have been observed in the levels of

faecal calprotectin between AD and NTas well as between

constipated and non-constipated subjects in both groups

(Table 1 and Additional file 1: Table S1). Furthermore, we

analysed the levels of other two biomarkers of inflam-

mations, i.e., serum IgA and ESR in the autistic sub-

jects, and we did not observe significant differences

among constipated and non-constipated AD (Table 1

and Additional file 1: Table S1). Therefore, while con-

stipation resulted in a significant increase of Escherichia/

Shigella and Clostridium cluster XVIII, no differences have

A B C

Fig. 1 PCoA of bacterial beta diversity based on the a unweighted and b weighted UniFrac distances and c Bray-Curtis dissimilarity. Autistic and

neurotypical subjects are coloured in orange and blue, respectively. The constipation status of the subjects is indicated according to different shapes,

circles for non-constipated and triangles for constipated individuals

A B

Fig. 2 a Mean relative abundances (%) of Firmicutes and Bacteroidetes in autistic (AD) and neurotypical (NT) subjects; *p < 0.005, Wilcoxon rank-sum test

on the Firmicutes/Bacteroidetes ratio. b Welch’s t test statistics of the relative abundances of bacterial phyla in autistic and neurotypical subjects. Orange

bars indicate significant FDR-corrected p values adjusted for multiple comparison controlling the family-wise type I error rate

Strati et al. Microbiome  (2017) 5:24 Page 3 of 11



been observed in the levels of inflammation between con-

stipated and non-constipated autistic subjects suggesting

that constipation and the related alterations of the gut

microbiota in autistic subjects as well as in neurotypical

individuals are not associated with an increase of intestinal

inflammation. It should be noted that the number of

enrolled constipated subjects was quite low and therefore

these analyses could be underpowered.

Autistic subjects harbour an altered gut mycobiota

We then investigated the gut mycobiota of our study

cohort through amplicon-based sequencing of fungal

ITS1 region. High-quality fungal sequences were

detected respectively in 35 out of 40 autistic subjects

and 38 out of 40 NT. As occurred for the bacterial gut

microbiota, we did not observe significant differences in

fungal alpha diversity between AD and NT. The analysis

of beta diversity revealed that the gut mycobiota of AD

was different compared to NT as calculated by principal

coordinates analysis (PCoA) and PERMANOVA on the

weighted UniFrac distance and Bray-Curtis dissimilarity

(p < 0.05; Fig. 5). As for the bacterial beta diversity, con-

stipation showed a significant effect within NT subjects

(p = 0.046, PERMANOVA on Bray-Curtis dissimilarities)

but not within AD subjects (Additional file 7: Table S6).

Furthermore, the severity of the autistic phenotype

does not affect the gut mycobiota community struc-

ture among AD individuals (p > 0.05, PERMANOVA;

Additional file 3: Table S3). An in-depth analysis of

the gut mycobiota leads to the identification of 50

fungal taxa fully classified to the genus level and 30

only partially classified. Genus level analysis showed

A

B

Fig. 3 a Cladograms generated by LEfSe indicating differences in the bacterial taxa between autistic (AD) and neurotypical (NT) subjects. Nodes

in orange indicate taxa that were enriched in AD compared to those in NT, while nodes in blue indicate taxa that were enriched in NT compared

to those in AD. b LDA scores for the bacterial taxa differentially abundant between autistic (AD) and neurotypical (NT) subjects. Positive and

negative LDA scores indicate the bacterial taxa enriched in NT and AD subjects, respectively. Only the taxa having a p < 0.01 (Wilcoxon rank-sum

test) and LDA >2.0 are shown in the figure legend
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Aspergillus (24.2% AD; 28% NT), Candida (37.7% AD;

14.1% NT), Penicillium (13.2% AD; 23.5% NT) and

Malassezia (3.05% AD; 3.3% NT) as the most abundant

and widely distributed genera in our study cohort in terms

of relative abundance (Additional file 8: Figure S2,

Additional file 9: Table S7). The relative abundance of the

genus Candida was more than twice as much in AD than

NT, yet due to a large dispersion of values (p < 0.001;

Levene’s test), this difference was only partially significant

(Welch t test, FDR-corrected p value = 0.09, uncorrected

p value = 0.006; Additional file 10: Figure S3). The super-

imposition of the most abundant genera over the PCoA

A B C

Fig. 4 Box plot representation of the relative abundances of bacterial genera correlating with the constipation status of the subjects enrolled in

this study. Comparisons between a and b constipated (C) and non-constipated (NC) autistic subjects and (c) constipated (C) and non-constipated

(NC) neurotypical subjects; Asterisk indicates FDR-corrected p < 0.05, Wilcoxon rank-sum test

A

B

Fig. 5 PCoAs of fungal beta diversity based on a weighted UniFrac distance and b Bray-Curtis dissimilarity. The right panel of the graphs a and b

shows the same PCoA coordinates with the most abundant OTUs superimposed as coloured squares, with the size being proportional to the mean

relative abundance of the taxon across all samples (grey dots). Autistic and neurotypical subjects are colored in orange and blue, respectively. The

constipation status of the subjects is indicated according to different shapes, circles for non-constipated and triangles for constipated individuals
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plots revealed that high levels of Candida abundance was

associated with a group of subjects mainly affected by aut-

ism (Fig. 5) suggesting that Candida indeed could

play a role in the altered microbial community associ-

ated with the autistic subjects. Correlation analyses

among the most abundant fungi and bacteria (with

relative abundance >0.5% and detectable in at least the

70% of the investigated subjects) revealed no significant

correlations among autistic subjects while a significant

positive correlation between the genera Aspergillus and

Bifidobacterium was found within neurotypical individuals

(Spearman’s r = 0.6, FDR-corrected p = 0.004) (Additional

file 11: Table S8).

Discussion

The gut microbiota is a crucial factor for the mainten-

ance of the GI tract functions and immune homeostasis.

It is well known that dysbiosis of the GI tract could lead

to inflammation and immune activation in several path-

ologies [15]. The frequent occurrence of GI symptoms

in autistic subjects imply the possible involvement of the

gut microbiota in ASD gastrointestinal pathophysiology,

further supported by the speculations on the increased

incidence of ASD cases due to “Western” habits (i.e.,

diet, medications, and excessive overall hygiene) that can

affect the composition of the gut microbiota [32].

Several studies demonstrated alterations in the bacterial

gut microbiota of ASD individuals, even if the differ-

ences reported in these studies were in some cases

discordant, possibly due to variance in sampling strat-

egies and methodologies used [8]. In addition, our recent

findings showed an altered gut microbiota in Rett syn-

drome [33], a genetically determined neurodevelopmen-

tal disorder previously categorized in the ASD group

sharing some features of these conditions. We character-

ized the gut microbiota associated with autism, disclos-

ing an altered microbial community both at bacterial

and fungal level. We observed a significant increase in

the Firmicutes/Bacteroidetes ratio in autistic subjects

due to a significant reduction of Bacteroidetes in these

individuals. Several inflammatory conditions have been

related to an increase in the Firmicutes/Bacteroidetes

ratio such as inflammatory bowel diseases (IBDs) [34]

and obesity [35]. Consistently with these observations,

an increased Firmicutes/Bacteroidetes ratio has been

reported also in subjects with autism [36, 37]. Further-

more, we discovered that the relative abundances of the

genera Collinsella, Corynebacterium, Dorea, and Lactoba-

cillus were significantly increased in the gut microbiota of

autistic subjects with respect to that of the neurotypical

subjects while the relative abundance of the genera

Alistipes, Bilophila, Dialister, Parabacteroides, and Veillo-

nella were significantly reduced in these individuals. A re-

cent study on a mouse model of ASDs demonstrated that

treatments with a PSA+ Bacteroides fragilis strain restore

autism-related behavioural and GI abnormalities, also

reducing the reported high levels of Lachnospiraceae and

4-ethylphenyl sulfate, a metabolite produced by this

bacterial family related to p-cresol, a putative metabolic

marker for autism [38]. Overall, these data are consistent

with our findings and remark the importance of Bacteroi-

detes in ASD pathophysiology. Moreover, Lactobacillus

resulted to be enriched in the gut microbiota of autistic

individuals while Dialister and Veillonella resulted to be

depleted, in line with the results obtained in previous

studies [28, 39]. Since constipation is a common gastro-

intestinal problem in subjects with ASDs [4–7], we com-

pared our data between constipated and non-constipated

subjects in order to evaluate the contribution of constipa-

tion in shaping the gut microbiota of autistic subjects.

Indeed, it has been proposed that GI symptoms may be

related to ASDs [40]. The evidence that the taxa belonging

to the Clostridium cluster XVIII and the putative pro-

inflammatory Escherichia/Shigella [41, 42] positively

correlated with the constipation status of the subjects as

well as their enrichment in constipated autistic subjects

supports the hypothesis that GI problems and related

alterations of the gut microbiota may contribute to ASD

gastrointestinal symptoms [40]. Because of their ability to

produce exotoxins and propionate that may exacerbate

autistic symptoms [43], the role of clostridia in ASDs has

been extensively explored. The species belonging to the

Clostridium cluster XVIII have been shown to produce

exotoxins [44] and to promote conditions favouring in-

flammation [45, 46] although other studies observed their

potential ability to induce homeostatic T-reg responses

[47]. It is also interesting to underline the occurrence of a

subclinical acute phase response in ASD plasma, as

evidenced by advanced proteomic analysis [48].

Despite the importance given to the implications of

the gut microbiota in health and disease, few reports

have explored the relevance of the fungal component of

the gut microbiota in GI (patho) physiology [49]. Further-

more, none of the published studies on ASDs’ gut micro-

biota have assessed the fungal gut community structure

associated with autism. Our dataset of autistic subjects

displayed a different fungal community structure com-

pared to neurotypical subjects. In particular, the genus

Candida was one of the most abundant taxa in the gut

mycobiota of this study cohort, being two times more

abundant in AD than in NT. To the best of our know-

ledge, this is the first time that alterations of the intestinal

fungal microbiota are associated with ASDs. Although

Candida is one of the most common and abundant genus

of the human gut mycobiota [50, 51], its implication in

phenomena of fungal dysbiosis have been reported in

several GI and inflammatory conditions [52–54] as well as

in Rett syndrome [33]. It is therefore possible that
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alteration of the intestinal fungal population driven by an

expansion of Candida in the gut mycobiota of autistic in-

dividuals may negatively impact on GI abnormalities

through cytokine dysregulation. The gut microbiota, in

particular some species of Lactobacillus, modulates the

immunological responses to Candida in the GI tract by

providing tryptophan-derived aryl hydrocarbon receptor

ligands that stimulate the immune system, principally

ILC3 cells, to produce IL-22 [55]. Together with IL-17, IL-

22 avoids the excessive proliferation of Candida and other

fungal commensals in the gut. It is therefore possible that

alterations of the gut microbiota in ASDs could lead to an

expansion of the Candida population preventing from full

restoration of the bacterial community structure. Indeed,

it has been observed that alterations of the bacterial

gut microbiota due to prolonged antibiotic usage and

the subsequent colonization with C. albicans interfere

with the reassembly of the bacterial community struc-

ture, resulting in altered abundances of Bacteriodetes,

Lactobacillaceae, Ruminococcaceae, and Lachnospira-

ceae [56]. Since the two different microbial communi-

ties (fungi and bacteria) mutually influence, we could

also speculate that the reduced early life encounters

with foodborne and environmental bacteria and fungi

in urban areas of the globalized world could be a

cause of the increased colonization with some major

commensals, such as the pathobionts Candida and

Escherichia. The alteration of the composition of the

gut microbiota could also be mediated by mechanism

of trained immunity [57] or by a reduced ability of

the immune system to control its overgrowth due to

lack of immune training, extending the hygiene hy-

pothesis [58] from bacteria to yeasts [59].

Conclusions

Here, we observed an altered intestinal microbial

community associated with ASDs, both at bacterial

and fungal level not depending by the constipation

status of autistic individuals but rather by the autistic

disorder itself. However, due to the broad phenotyp-

ical variability of ASDs, an in-depth characterization

of the genetic and phenotypical background in a

larger cohort of ASD individuals would be necessary

to comprehensively understand the role of the gut

microbiota in ASDs pathophysiology and to further

validate these findings. Our results therefore encour-

age new extensive, multicentric studies on the impact

of the bacterial and fungal components of the gut

microbiota in the gastrointestinal physiology and

neuroplastic changes in ASDs, as well as the integra-

tion of such data with genetics, immunology, and

metabolomics to further establish the relevance of the

gut microbiota in the ASDs.

Methods
Study participants and samples’ handling and collection

We recruited 40 subjects with clinical diagnosis of

autism (average age 11.1 ± 6.8; sex, male:female, 31:9)

and we compared them with 40 age and sex-matched

neurotypical healthy subjects (average age 9.2 ± 7.9; sex,

male:female, 28:12). Autistic subjects with clinically

evident inflammatory conditions were excluded. Consti-

pation and inflammation (i.e., serum IgA, erythrocyte

sedimentation rate, and faecal calprotectin levels) were

also assessed. The autistic subjects were consecutively

admitted to the Child Neuropsychiatry Unit of the

University Hospital of Siena, and ASDs were diagnosed

according with the Diagnostic and Statistical Manual of

Mental Disorders, 5th Edition [1], and evaluated using

Autism Diagnostic Observation Schedule and Autism

Behaviour Checklist. Childhood Autism Rating Scale

(CARS) scores [60] were calculated by an experienced

child neuropsychiatrist. Average CARS values were

46.2 ± 6.8 (value range 32–57); a fraction of 90% (36/40)

were classified as severe ASDs (CARS value >37), with

10% (4/40) being moderately severe ASDs (CARS values

from 30 to 36) (Additional file 12: Table S9). No specific

comorbidities in the autistic cohort were present with the

single exception of a coexisting celiac disease in two

patients (5%).

Constipation has been defined according to Rome III

criteria [61]. Stool samples from enrolled subjects were

collected, aliquoted as it is, and stored at −80 °C until

analysis. All subjects of this study were under a

Mediterranean-based diet, and no antibiotics, probiotics,

or prebiotics have been taken in the 3 months prior to

the sample collection. None of the subjects were on

anti-inflammatory or antioxidant drugs. The study was

conducted after the approval by the Institutional Review

Board of the Siena University Hospital (AOUS, Siena,

Italy) and all written informed consents were obtained

from either the parents or the legal tutors of the enrolled

subjects, in compliance with national legislation and the

Code of Ethical Principles for Medical Research Involving

Human Subjects of the World Medical Association

(Declaration of Helsinki).

Faecal calprotectin assay

Calprotectin determination was performed by using a

polyclonal antibody in an enzyme-linked immunosorbent

assay (Calprest, Eurospital, Trieste, Italy) according to the

manufacturer’s instructions. Calprotectin values <50 μg/g

per stool sample were considered normal.

Pyrosequencing and data analysis

Total DNA extraction from faecal samples (250 mg, wet

weight) was performed using the FastDNA™ SPIN Kit

for Feces (MP Biomedicals, Santa Ana, CA, USA)
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following manufacturer’s instructions. For each DNA

sample, we amplified respectively the bacterial 16S rRNA

genes using a primer set specific for V3–V5 hypervari-

able regions (F357: 5′-TCCTACGGGAGGCAGCAG-3′

and R937: 5′-TGTGCGGGCCCCCGTCAATT-3′) and the

internal transcribed spacer (ITS) using a primer set specific

for fungal ITS1 rDNA region (18SF: 5′-GTAAAAGTCG-

TAACAAGGTTTC-3′ and 5.8S1R: 5′-GTTCAAAGAYT

CGATGATTCAC-3′) [62] containing adaptors, key

sequence, and barcode sequences as described by the 454

Sequencing System Guidelines for Amplicon Experimental

Design (Roche, Basel, Switzerland). The PCR products

obtained were then purified, quantified, and pooled in

equimolar way in a final amplicon library. The 454 pyrose-

quencing was carried out on the GS FLX+ system using

the XL+ chemistry following the manufacturer’s recom-

mendations (Roche, Basel, Switzerland). Raw 454 data were

demultiplexed using the Roche’s sff file software and

submitted to the European Nucleotide Archive (ENA) with

accession numbers PRJEB15418 and PRJEB15420. Sample

accessions IDs and metadata are available in Additional

file 12: Table S9. Reads were preprocessed using the

MICCA pipeline (v. 0.1) (http://www.micca.org/) [63].

Operational taxonomic units (OTUs) were assigned by

clustering the sequences with a threshold of 97% pairwise

identity andv their representative sequences were classi-

fied using the RDP classifier version 2.7 on 16S data and

using the RDP classifier version 2.8 [64] against the

UNITE fungal ITS database [65] on ITS1 data. Template-

guided multiple sequence alignment (MSA) was per-

formed using PyNAST [66] (v. 0.1) against the multiple

alignment of the Greengenes [67] database (release 13_05)

filtered at 97% similarity for bacterial sequences and

through de novo MSA using T-Coffee [68] for fungal

sequences. Fungal taxonomy assignments were then

manually curated using BLASTn against the GenBank’s

database for accuracy. High-quality fungal sequences have

been also manually filtered out for sequences belonging to

Agaricomycetes (unlikely to be residents of the human gut

due to their ecology [69]). The phylogenetic tree was

inferred using micca-phylogeny [70]. Sampling heterogen-

eity was reduced by rarefaction. Alpha (within-sample

richness) and beta-diversity (between-sample dissimilarity)

estimates were computed using the phyloseq R package

[71]. PERMANOVA test was performed using the adonis()

function in the R package vegan with 999 permutations.

Permutations have been constrained within age groups

(corresponding to 0–2, 3–10, 11–17, and >18 years old) or

gender to evaluate possible biases related to the unequal

age and gender distributions among subjects using the

“strata” argument within the adonis() function. Two-sided,

unpaired Welch t statistics were computed using the

function mt() in the phyloseq library and the p values were

adjusted for multiple comparisons controlling the family-

wise type I error rate (minP procedure) [72]. Spearman’s

correlation tests were computed using the psych R pack-

age [73]. Linear discriminant effect size (LEfSe) analysis

was performed to find features (taxa) differentially repre-

sented between autistic and neurotypical subjects. LEfSe

combines Kruskal-Wallis test or pairwise Wilcoxon rank-

sum test with linear discriminant analysis (LDA). It ranks

features by effect size, which put features that explain

most of the biological difference at top. LEfSe analysis

was performed under the following conditions: α

value for the statistical test equal to 0.01 and thresh-

old on the logarithmic LDA score for discriminative

features equal to 2.0 [29]. All statistical analyses were

performed using R [74], and p values were FDR cor-

rected [75].
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