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Abstract – This paper presents a new optimization model 
– EPSO, Evolutionary Particle Swarm Optimization, 
inspired in both Evolutionary Algorithms and in Particle 
Swarm Optimization algorithms. The fundamentals of the 
method are described, and an application to the problem of 
Loss minimization and Voltage control is presented, with 
very good results. 
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1. INTRODUCTION 
This paper has the main objective of introducing to the 

Power System community a new and powerful meta-
heuristic hybrid variant called EPSO – Evolutionary 
Particle Swarm Optimization.  

EPSO is a general-purpose algorithm and it can thus be 
applied to a diversity of problems in any scientific area. 
However, in order to illustrate the technique, we have 
selected a problem in the Power Systems environment and 
will therefore present in the paper, in the application 
sections, a solution for the Voltage/Var control problem 
obtained by EPSO and the comparison of its performance 
with existing methods 

The Particle Swarm Optimization is an optimization 
algorithm that was introduced in 1995 by Kennedy [1]. 
We will refer to it as: Classic PSO. Imagine that we have 
a population of particles looking around in a given search 
space for the global optimum. This particle movement 
mimics, in a way, the coordinated movement of flocks of 
birds, schools of fish or swarms of insects: this is a good 
image of a PSO optimization algorithm. 

In Evolutionary Algorithms, there is no coordination in 
the movement of individuals within the search space. 
However, the powerful selection procedure allows 
solutions with superior characteristics to pass these from 
generation to generation, while the mutation (and 
recombination) schemes produce diversity in the solution 
pool. 

EPSO joins together the “best of two worlds”. It is a 
Particle Swarm algorithm, because there is exchange of 
information among solutions, when they are successively 
moved around in the search space; and it is an 
Evolutionary Computation method, because solution 
characteristics are mutated and passed to the following 
generations by the action of a selection mechanism. 

In a classical PSO model, particle movement is 
conditioned by three strategic parameters: inertia, memory 
and coordination (information exchange).  

In previous applications of the Classic PSO and other 
variants like CPSO (Cooperative PSO) [2], the strategic 
parameters of the algorithms were set to certain values 
that had already been used with god results.  But there is 
no valid explanation to sustain that we should use a 
particular value for those parameters if we have a different 
problem.  

Also, we can’t say that a certain value is the best during 
all the process of optimization. That had already been 
realized for the inertia factor. This parameter is usually 
decreased as the number of iteration increases [3]. 

EPSO [4] defines these parameters as the genotype of a 
moving solution. Therefore, they are subject to mutation 
and the particles holding them as phenotypes are subject 
to selection. This scheme turns out to be a successful self-
tuning mechanism, a self-adaptive evolutionary process 
acting on “strategic parameters”, to use the language of 
the Evolution Strategy community. 

As we will show, EPSO has a better behavior than 
Classical PSO (namely, it is robust, insensitive in a large 
degree to initial values of parameters) and it also has a 
better behavior than other meta-heuristics (in this paper, a 
comparison will be made with simulated annealing).  

The hybrid characteristics of Evolutionary and of 
Particle Swarm model give it guaranteed convergence 
properties. In terms of efficiency, therefore, lower bounds 
are guaranteed, but experience demonstrates that there is 
an effective acceleration and a better search for the 
optimum than classical approaches. 



 

2. EPSO DESCRIPTION 
In EPSO, each particle (solution at a given stage) is 

defined by the following characteristics:  

• position in the search space ( k
ix ; value of the 

coordinate position i, for the k particle) 

• velocity ( k
iv ; value of the coordinate velocity i for 

the k particle).  

At a given moment, there is at least one particle that 
holds the best position in the search space. The population 
of particles is aware of such position, represented as 
( best

ix , value of the coordinate position i, for the best 
particle).  

Each particle also keeps track of its previous best 
position ( memk

ix , , value of coordinate position i, 
memorized as its previous best, for the k particle).  

The particles will reproduce and evolve along a 
number of generations, according to the following steps:  

- Replication: each particle is replicated a number r of 
times, giving place to identical particles (in this paper 
we take r = 1). 

- Mutation: the strategic parameters of the replicated 
particles undergo mutation according to: 

),0(* 2
,, στNww k

ji
k

ji +=   (1) 

where τ is a learning dispersion parameter and 
N(0,1) is a random number following a the 
normalized Gaussian distribution with zero mean 
and variance σ2. 

The strategic parameters are randomly set between 0 
and 1 at the beginning of the algorithm. In each 
iteration, the strategic parameters of the replicated 
particles are mutated according to equation (1). In 
this equation, j can be the inertia, memory or the 
coordination factor. 

- Reproduction (movement): each particle generates as 
offspring a new particle according to the 
transformation process, similar to the Classic PSO 
basic equation:  
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The offspring is held separately for the original 
particles and for the mutated particles. 

Furthermore, instead of defining a crisp best-so-far 
point as a target, the particles are attracted to a sort 
of “foggy best-so-far region” (another change 
relative to Classic PSO).  

This is done by introducing random noise in the 
definition of the best-so-far point: 
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τ’ is a noise dispersion parameter, usually small, and 
N(0,1) is a random number following a the 
normalized Gaussian distribution with zero mean 
and variance 1. 

- Evaluation: each offspring particle plus the originals 
are evaluated according to their current position. 

- Selection: among the offspring of a particle, with and 
without mutated parameters, a stochastic tournament 
is played to select the particle that will survive to the 
next generation.  

As in many other meta-heuristics, EPSO deals with 
inequality constraints through a penalty strategy. In the 
case of EPSO, the selective pressure applied helps in 
eliminating the individuals or particles with excursions 
outside the feasible domain, which receive a penalized 
fitness value. 

3. TESTING EPSO 

In this section we illustrate the superiority of EPSO 
regarding the Classic PSO algorithm, in solving classical 
difficult test problems. 

3.1 Test functions 

Schaffer’s function: 
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Rosenbrock function: 
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Sphere function: 
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Alpine function: 
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The parameters used in these functions are presented in 
Table 1. The threshold used as the stopping criterion is 
listed in the “Stop” column. 

Function n Domain Stop 
f1 2 [-50 , 50]n 1.0E-10 
f2  30 [0 , 30]n 100 
f3 30 [-50 , 50]n 0.01 
f4 2 [0 , 100]n 98.9627 
Table 1:  Parameters used in the test functions. 



 

3.2 Results in the test functions  

The following pictures illustrate the typical 
convergence in the test functions, for the EPSO and PSO.  

Figure 1 - Typical convergence in the Schaffer’s function.  

 

 

Figure 2 - Typical convergence in the Rosenbrock function. 

 

 

Figure 3 - Typical convergence in the Sphere function. 

 

Figure 4 - Typical convergence in the Alpine function. 

The results presented in Figures 1, 2, 3 and 4 show a 
clear superiority of the EPSO algorithm.  The PSO results 
could be optimized if we’ve tuned by hand the strategic 
parameters. EPSO was able to provide better results 
independently of the strategic parameter initialization.  

If we are trying to optimize a different problem (ex: 
Optimal Power Flow), where we don’t now which are the 
better strategic parameters, then EPSO is certainly better 
because of the self-tuning mechanism.  

To demonstrate the superiority of EPSO over the 
Classic PSO we compare the average number of 
evaluations that both algorithms need to reach the 
stopping criterion. The maximum number of evaluations 
was fixed in 200000. Table 2 presents the results of this 
test. 

 

Function EPSO PSO 

f1 11862.2 59547.0 

f2  27005.3 180310.8 

f3 16421.4 161625.0 

f4 78539.8 199190.1 

Table 2:  Comparison of EPSO with the Classical PSO: average 
number of evaluations. 

 

We also compare the average results of both algorithms 
for a fixed number of evaluations. So, considering a 
number of evaluations of 200000 (20 particles over 5000 
iterations in the EPSO algorithm and 20 particles over 
10000 iterations in the Classical PSO) we obtained the 
following results:    

 

Function EPSO PSO 

f1 2.15E-13 5.45E-11 

f2  33.8828 114.443 

f3 7.81E-04 1.91E-02 

f4 98.9627 86.1071 

Table 3:  Comparison of EPSO with the Classical PSO: average 
results. 

The results presented in Table 2 and Table 3 were 
obtained with a population of 20 particles, over 500 
simulations.  

Notice that the position and the strategic parameters 
(inertia, coordination factor and memory) were always 
initialized randomly for each particle. The results of the 
PSO would have perhaps a margin for improvement if the 
strategic parameters were even better tuned by hand, but 
this would involve a tedious work of experimentation case 
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by case. The EPSO algorithm was able to provide 
immediately good results independently of such 
initialization.  

This is a very important improvement in the algorithm, 
because the results of Classic PSO are reported to be very 
dependent of the strategic parameter initialization [3], and 
this has been confirmed by our experience. This statement 
does not mean that one could not find solutions with “less 
good” initial PSO parameters – but the performance of the 
PSO algorithm, in our experiments, never reached the 
quality of EPSO, did not display on average the same 
quality of results and, most important, did not display the 
same robustness, which is vital for a practical application 
– the users must trust the algorithm, must believe it gives 
reliable and consistent results, must be confident that, if 
they run it a number of times, they will get the same kind 
of answer. 

4. APPLICATION OF EPSO TO VOLTAGE/VAR 
CONTROL 

4.1 Loss reduction in distribution systems 

The application of PSO-like algorithms to the 
Voltage/Var control problem was pioneered by authors in 
Japan and reported in [6][7][8]. Their models included a 
form of blending evolutionary concepts with the PSO 
algorithm, with positive results. However, their valuable 
work remained one step away from a true self-adaptive 
approach, which is what this paper now presents. 

We illustrate EPSO in a loss reduction-Voltage/Var 
control problem for a didactic example with the IEEE 24 
nodes/36 branches network defined in [9]. This network 
also includes 31 transmission lines, 5 transformers, 11 
capacitor banks and 9 synchronous generators. The size of 
a problem of this nature, however, is not related really 
with the size of the network but with the number of 
controllers available. 

For the sake of a comparison with a competing 
algorithm, based on Simulated Annealing, we took as 
control variables only the set point of transformers and 
capacitor banks.  

This Simulated Annealing [10] [11], algorithm is a well 
tested application developed by INESC Porto and 
included in a commercial DMS, used by a number of 
utilities. The problem of Voltage/Var control can be 
formulated as follows: 
Minimize         ),( xuℑ    (9) 

Subject           0),,( =pxuϕ                    (10) 

                       0),,( ≤pxuφ                 (11) 

 Equation (9) is the objective function of this problem 
and, in general, represents the active losses. The 
constraints of this problem, (10) and (11), are respectively 
the power flow equations and operation limits, namely 
bands of admissible voltage values at nodes.  

All these equations, written in a general form, must be 
understood as representing a full AC model, with losses 
evaluated, for instance, with a Newton-Raphson 
algorithm. Because these are well known equations, we 
felt we could take the liberty of adopting the above 
representation. 

We may have also other objectives, such as the 
preference for keeping control margins, i.e., searching for 
solutions that do not require the set points of controllers to 
be at their maxima or minima. This means that one is 
facing a multicriteria problem, with two objectives: 

• Minimize losses 

• Minimize distance of control variables from 
nominal set points (usually, the center on the 
intervals defining their range of variation). 

In fact, this is achieved in practice by applying a 
penalty factor to the fitness function, such as depicted in 
Figure 5. 

 

 Penalty 

min Max Control 
variable

Nominal 
setpoint 

 
Figure 5 – Example of penalty function to be added to the loss 
function (per control variable, scaled by a weighting factor) to 
favor solutions that do not push controls to their limits 

 

The Voltage/Var control problem in distribution 
systems is usually a problem of minimizing losses and 
controlling voltage levels, by acting on transformer taps 
and on capacitor bank taps. It is rare to find synchronous 
generators directly connected to the network where one 
could act on their excitation. However, EPSO can deal 
with these variables as well, with excellent results. 

4.2 Results of the loss reduction problem  

In order to compare EPSO results with those obtained 
with the Simulated Annealing (SA) application we needed 
to establish the same stopping criterion. As the Simulated 
Annealing already had this criterion fixed as a certain 
number of iterations without improvement in the best-so-
far solution, we used the same criterion. For this particular 
exercise, the maximum number of iterations allowed 
without improvement in the solution was fixed in 270. 

In this particular application, all the variables of 
control are discrete (set point of transformers and 
capacitor banks). There is a version of Discrete PSO [12], 
but as for now, the EPSO only deals with continuous 
variables.  



 

We’ve used “probabilistic rounding” to solve this 
problem. Instead of using simple rounding, i.e., consider 
the nearest value, we’ve considered that the probability of 
rounding to the nearest discrete value increases as the 
distance decreases. On average, the value of the variable 
is probabilistically rounded to the nearest discrete value, 
but there is always the possibility that it is not, at any 
given point. 

This scheme avoids trapping in local discrete values, 
and has all the flavor of the techniques used in 
evolutionary computing. 

In terms of convergence comparison between both 
algorithms, we can immediately reveal that: 

- EPSO finds its best solution in less iterations. 

- the initial solution is better for the EPSO, because it 
has a population of particles, while the Simulated 
Annealing only starts with one initial solution. 

- there is an extra computing effort in applying EPSO, 
when compared to the Simulated Annealing option 
(measured in the number of load flows run); 

- EPSO consistently discovers better solutions than the 
Simulated Annealing algorithm. 

A typical convergence pattern observed for both 
algorithms can be observed in Figure 5, where EPSO (as 
usual) found a better solution than SA. 

We tested EPSO with different population sizes. The 
objective of this test was to find out the influence of 
population size in the results. As it can be seen in Table 4, 
the quality of the solution improves if we increase the 
number of particles. Of course, there is a price to pay in 
terms of computing effort. 

As for now, we were not able to establish a secure rule 
for defining the optimal number of particles. Our 
assumption is that this will depend on the complexity of 
the problem, and with increasing complexity it will be 
necessary to increase the number of particles. 
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Figure 5 - Comparison in convergence between EPSO 

and Simulated Annealing 

 Average 
losses 
(MW) 

Std. Deviation
(kW) to the 
best solution 

EPSO 2 particles 61.7947 3.10334 

EPSO 5 particles 61.7912 2.64314 

EPSO 10 particles 61.7889 1.96607 

EPSO 20 particles 61.7880 1.48473 

Simulated Annealing 61.7921 9.81175 

Table 4:  Comparison of EPSO with Simulated Annealing 

As we can see in Table 4, the EPSO reveals superiority 
in terms of the solution found (both in the best solution 
discovered and in the average optimum obtained in 1000 
runs, as seen in the Table) and in terms of its robustness 
(evaluated as the root of the mean square error, or 
standard deviation, relative to the best solution found). 

In particular, EPSO gives consistently a near-optimum 
result, while the Simulated Annealing model failed many 
times to reach a solution as good (and that’s why the 
dispersion of results in this case is much larger than with 
EPSO). 

Therefore, EPSO is a much more reliable algorithm for 
practical applications. 

4.3 Voltage control 

For this test we’ve increase the reactive load in bus 8 of 
the same IEEE 24-bus system. The voltage at this bus 
became very low and we run the EPSO algorithm to re-
dispatch the reactive power in order to set the voltage 
back inside the limits.  

As it can be seen in Figure 6, the algorithm was able to 
find a new set point, to both transformers and capacitor 
banks, which forced the voltage into the acceptable limit 
(0.9 – 1.1 p.u.). 

The Simulated Annealing algorithm failed to obtain a 
feasible solution for this case. 
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Figure 6 - Voltage Control with EPSO – evolution of the 
controlled voltage along the iterations of an EPSO algorithm. 



 

5. CONCLUSIONS 
This paper reports two important results: 

• A new optimization technique, with roots both in 
Evolutionary Computing and in Particle Swarm 
algorithms. 

• A new model for loss minimization and voltage 
control 

First of all, there is a new successful meta-heuristic 
tool, available for optimization of complex problems with 
multiple local optima – EPSO, the Evolutionary Particle 
Swarm Optimization method. 

EPSO joins together the characteristics of Evolutionary 
Algorithms and of Particle Swarm Algorithms. 

From an Evolutionary Computing point of view, there 
is another operator introduced, side by side with 
recombination and mutation, which generates new (and 
promising) solutions in the search space – it is 
Reproduction in the form of Particle Movement. 

From a Particle Swarm point of view, there is a self-
adaptive tuning of the algorithm by evolutionary 
adjustment of the parameters controlling particle 
movement. 

Both points of view are legitimate and justify the 
remarkable convergence characteristics of the method. 

The second important result is that EPSO proves very 
successful in solving a Power System optimization 
problem – minimizing losses in a transmission system. In 
fact, EPSO performed better than a Simulated Annealing 
model that has been used by utilities, both in the quality of 
the solution discovered and in the robustness of the result 
(dispersion around the best result, found in a number of 
repeated runs).  

In the tests done, the Simulated Annealing algorithm 
demanded a somewhat smaller computer effort (measured 
in the number of load flows required) but failed 
completely to discover the best solutions, while EPSO 
was able to converge to them in all cases. 

Furthermore, EPSO was again successful in a Voltage 
Control problem, easily discovering a solution for a 
difficult problem where other techniques experiment 
difficulties in converging. 

One expects that EPSO may be applied with equal 
success to other problems in Power Systems. 
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