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Abstract
We study harmonic maps from a subset of the complex plane to a subset of the
hyperbolic plane. In Fotiadis and Daskaloyannis (Nonlinear Anal 214, 112546, 2022),
harmonicmaps are related to the sinh-Gordon equation and a Bäcklund transformation
is introduced, which connects solutions of the sinh-Gordon and sine-Gordon equation.
We develop this machinery in order to construct new harmonic maps to the hyperbolic
plane.
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1 Introduction and statement of the results

This article has been motivated by the following open problem: how can we construct
a harmonic map explicitly?

The construction of harmonic maps from a Riemann surface to the hyperbolic plane
is a classical problem. Many beautiful results have been achieved in this direction,
for example, Wolf’s parametrization of Teichmüller space via harmonic maps [33],
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the study of Au-Tam-Wan [3] and others of harmonic maps to ideal polygons with
polynomial Hopf differential, the construction of a harmonic diffeomorphism from
the complex plane which solved a conjecture of Schoen [8], and so on.

In this paper, our aim is to construct harmonic maps between Riemann surfaces
when the curvature in the target is a negative constant, say −1. We should emphasize
that our construction is local, thus we consider an open simply connected set that
contains the origin and we consider the target to be a subset of the hyperbolic plane
H

2. For that, we develop some of the machinery introduced in [11], which connects
the harmonic map problem with elliptic versions of the sinh-Gordon and sine-Gordon
equation.

Let w = w(x, y) be a solution of the sinh-Gordon equation

�w = 2 sinh(2w) (1)

where � = ∂2xx + ∂2yy is the Laplacian with the flat metric and let u = u(z, z̄) be a
solution of the Beltrami equation

∂z̄u

∂zu
= e−2w, (2)

and z = x + iy lie in an open simply connected subset � of C where the map u
is a well defined C2 map. Without loss of generality we assume that � contains the
origin. Then, u is a harmonic map, if the curvature of the target is −1 [11, Theorem
1, Corollary 2].

Definition 1 Forw and u as above, we say that u is the harmonic map that corresponds
to the solution w of the sinh-Gordon (1).

From now on, consider the target surface fixed and realized as the hyperbolic half plane
H

2. Using a specific coordinate system on the domain (see Sect. 2 for more details),
the harmonic map equation under study becomes

∂zu∂z ū

S2 = 1. (3)

This is possible because the Hopf differential is assumed to be non vanishing.
In [11], it is proved that the system

∂xw − ∂yθ = −2 sinhw sin θ (4)

∂yw + ∂xθ = −2 coshw cos θ, (5)

is aBäcklund transformation that connects a solutionw = w(x, y) of the sinh-Gordon
equation (1) and a solution θ = θ(x, y) of the sine-Gordon equation

�θ = −2 sin(2θ). (6)

This motivates us to define the following class of functions.
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Definition 2 We say that the pair of functions (w, θ) is in the class (BT ), if the
functions w and θ satisfy (4)–(5). Consequently, w is a solution of the sinh-Gordon
equation (1) and θ is a solution of the sine-Gordon equation (6).

From now on we assume that (w, θ) ∈ (BT ). Set

I1 = I1(x) =
∫ x

0
coshw(t, 0) sin θ(t, 0)dt,

I2 = I2(x, y) =
∫ y

0
sinhw(x, s) cos θ(x, s)ds

I3 = I3(x) =
∫ x

0
e2I1(t) coshw(t, 0) cos θ(t, 0)dt,

I4 = I4(x, y) = e2I1(x)

∫ y

0
e2I2(x,s) sinhw(x, s) sin θ(x, s)ds.

We first prove the following result.

Proposition 3 Define the function S by

S(x, y) = S(0, 0)e2(I1+I2),

and the function R by

R(x, y) = R(0, 0) + 2S(0, 0)(I3 − I4).

Then,

u(x, y) = R(x, y) + i S(x, y)

is the harmonic map that corresponds to w. The domain of R and S is the largest
possible open simply connected subset of C containing the origin so that the above
expressions make sense.

Remark Observe that the function S, by its definition preserves the sign of the initial
data S(0, 0). Also, the image of u is a subset of H2. However, these maps are not
necessarily injective on their domain, as can be easily seen by Example 11.

Therefore, given a pair of functions (w, θ) that satisfies the Bäcklund transforma-
tion, there is an implicit formula for a harmonic map to the hyperbolic plane that
involves the integrals I1, I2, I3, I4. We provide an example of a harmonic map, first
studied in [11, Section 7], that we recover by the algorithm of Proposition 3.

We next characterize the solutions w of the sinh-Gordon equation that are of the
form

w(x, y) = 2 arctanh(F(x)G(y)), (7)

for some non-constant functions F and G. These functions, in general, turn out to be
elliptic (only in certain cases they reduce to elementary functions). We also prove that
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the initial value problem �w = 2 sinh(2w), ∂yw(x, 0) = 0, admits a solution of the
form (7), see Proposition 13 for a class of such solutions. In this case, we determine
θ by considering a subclass of (BT ).

Definition 4 We say that the pair of functions (w, θ) is in the class (BT0), when the
pair is in (BT ) and ∂yw(x, 0) = 0, θ(0, 0) = π

2 .

For this selection of (w, θ), andw a solution of the form (7), we apply Proposition 3
in order to prove our firstmain result,which provides an explicit formula for a harmonic
map that corresponds tow. This is a special case of themore general problemof finding
all solutions of the sinh-Gordon equation, and the corresponding harmonicmaps. Thus,
it is a step (although small) towards the solution of the harmonic map problem.

Next, we state our first main result.

Theorem 5 Assume that w(x, y) = 2 arctanh(F(x)G(y)), b(x) = F ′(x)
2F(x)

and (w, θ) ∈
(BT0). Define the functions S and R on the largest possible open simply connected
subset of C containing the origin so that

S(x, y) = S(0, 0)
e2X(x)(sin θ(x, y) + b(x))

1 + b(x)
,

and

R(x, y) = R(0, 0) + S(0, 0)
e2X(x) cos θ(x, y)

1 + b(x)
,

make sense, where X = X(x) = ∫ x
0 coshw(t, 0)dt. Then u(x, y) = R(x, y) +

i S(x, y) is the harmonic map that corresponds to w.

Using the machinery of Theorem 5, we construct an entirely new harmonic map
to the hyperbolic plane. At this point, it is worth mentioning that the initial condition
θ(0, 0) = π

2 was chosen just to facilitate computations; any other initial condition for
θ at the origin would provide a corresponding harmonic map.

In [11], the approach pursued by the authors on the construction of harmonic maps,
is to first consider a one-soliton (i.e.,w = w(x)) solution of the sinh-Gordon equation
and then solve the Beltrami equation (2) to find a harmonic map that corresponds to
w. However, ifw(x, y) = 2 arctanh(F(x)G(y)), and both F, G are elliptic functions,
then this Beltrami equation turns out to be equivalent to a Riccati equation. Therefore,
explicit construction of harmonic maps by this approach is rather implausible. Instead,
in place of the Beltrami equation, we use the Bäcklund transformation combined with
Theorem 5, to provide an explicit formula for a harmonic map in terms of the functions
w and θ .

Next, instead of considering solutions to the sinh-Gordon equation first, we investi-
gate the case of solutions to the sine-Gordon equation as a starting point. In particular,
we prove that if θ = θ(x) is a solution to the sine-Gordon equation (6), then the
function w determined by the Bäcklund transformation is of the form (7). We then
provide an explicit formula for the corresponding harmonic map.

Our second main result is the following.
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Theorem 6 Let θ = θ(x) be a solution to the sine-Gordon equation and let w be
the associated solution to the Bäcklund transformation. Set a = 2 cos θ(0) + θ ′(0),
b = 2 cos θ(0) − θ ′(0), and k ∈ C such that tanh w(0,0)

2 = −
√

a
b tan(k). Then, the

harmonic map u = R + i S that corresponds to w is given by

R(x, y) = R(0, 0) + S(0, 0) cosh2
w(0, 0)

2
J

(
2 cos θ(x) − θ ′(x)

b

)

+ 2S(0, 0)
sin θ(x)(cos(

√
aby + 2k) − cos(2k))

2 cos θ(0) cos(2k) − θ ′(0)
,

S(x, y) = S(0, 0)
2 cos θ(x) cos(

√
aby + 2k) − θ ′(x)

2 cos θ(0) cos(2k) − θ ′(x)
,

where

J (t) =
∫ t

1

u2 + tanh2 w(0,0)
2

u2

bu2 + a√
2(8 − ab)u2 − a2 − b2u4

du.

The domain of R and S is the largest possible open simply connected subset of C
containing the origin so that the above expressions make sense.

As an application ofTheorem6,we construct an entirely newexample of a harmonic
map from an open simply connected set to a subset of the hyperbolic plane, when the
Hopf differential is non vanishing.

Apart from the constructions [3, 8, 33] alreadymentioned, there are many examples
of harmonic diffeomorphisms, see for example [7, 21, 30, 33, 34, 36]. For instance, a
minimal surface in H2 ×R projects to a harmonic map to H2. The study of harmonic
diffeomorphisms between Riemannian surfaces is central to the theory of harmonic
maps (see for example [16, 29] and observe that a twisted harmonic map, is a har-
monic map in a local sense and that each harmonic map induces a solution of Hitchin
self-duality equations). The most interesting case is when the surfaces are of constant
curvature (see for example [2, 18, 21, 23, 26, 28, 30, 33–35] and the references therein).
In [14, 26, 33–35], the geometry of harmonic maps between hyperbolic surfaces is
studied, while in [24] the author proves a conjecture of R. Schoen on harmonic dif-
feomorphisms between hyperbolic spaces. For further results about the harmonic map
equations see also [14, 15, 26, 29, 33–35]. There is a similar analysis of the Wang
equation, which is applied in the study of affine spheres in [9, 22, 27] and [20] explains
the relation between the harmonic map and Wang equations with CMC surfaces and
hyperbolic affine spheres inR3, while for connections with the anti-de Sitter geometry,
see for instance [31] and [5].

Harmonic maps to surfaces of constant curvature are closely related to the elliptic
sinh-Gordon equation. The sinh-Gordon and sine-Gordon equations have many appli-
cations and they have both been the subject of extensive study, [10, 17]. Furthermore,
the sinh-Gordon equation was crucial to the breakthrough work [32] on the Wente
torus. There is a close relation to the theory of constant mean curvature surfaces as
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well, [12, 19]. For some striking relations of the sinh-Gordon equation with the CMC
surfaces in Minkowski geometry we refer the reader to the papers [4, 6].

The outline of this paper is as follows. In Sect. 2 we recall some basic notations
and review certain known results. In Sect. 3 we prove Proposition 3 and in Sect. 4 we
construct new solutions of the sinh-Gordon equation that are of the form w(x, y) =
2 arctanh(F(x)G(y)). In Sect. 5, for this class of w, we find the explicit formula of a
harmonic map that corresponds to (w, θ) ∈ (BT0). Finally, in Sect. 6, we discuss one-
soliton solutions of the sine-Gordon equation and the construction of the corresponding
harmonic map.

2 Preliminaries

In this section we discuss some necessary preliminaries.
Let u : M → N be a map between Riemann surfaces (M, g), (N , h). The map u

is locally represented by u = u(z, z̄) = R + i S, where z = x + iy. From now on, we
use the standard notation:

∂z = 1

2
(∂x − i∂y), ∂z̄ = 1

2
(∂x + i∂y).

Recall that isothermal coordinates on a Riemannian manifold are local coordinates
where the metric is conformal to the Euclidean metric. The existence of isothermal
coordinates on an arbitrary surface with a real analytic metric is a well-known fact,
first proved by Gauss (see for instance [13, Section 8, p.396]). Consider an isothermal
coordinate system (x, y) on M such that

g = e f (z,z̄)|dz|2,

where z = x + iy, and an isothermal coordinate system (R, S) on N such that

h = eF(u,ū)|du|2,

where u = R + i S. The Gauss curvature on the target is given by the formula

KN (u, ū) = −1

2
�F(u, ū)e−F(u,ū).

In isothermal coordinates, a map between two surfaces is harmonic if and only if
it satisfies

∂zz̄u + ∂u F(u, ū)∂zu∂z̄u = 0, (8)

see [13, Section 8, p.397]. Note that this equation only depends on the conformal
structure of N .
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The Hopf differential of u is given by

�(z)dz2 =
(

eF(u,ū)∂zu∂z ū
)

dz2.

It is well-known that if u is holomoprhic or antiholomorphic then the zeros of ∂zu and
∂z̄u are isolated of finite order, [29, Proposition 2.1]. Due to the local nature of our
study, we may assume from now on that � does not vanish locally.

We will make use of the following proposition.

Proposition 7 A necessary and sufficient condition for a C2 map u with non vanishing
Hopf differential, and an almost everywhere non vanishing Jacobian, to be a harmonic
map, is that

eF(u,ū)∂zu∂z ū = e−μ(z), (9)

where μ(z) is a holomorphic function.

Proof We sketch the proof for the reader’s convenience. Assume first that u is a
harmonic map. Then the harmonic map equation (8) is equivalent to

∂z̄(e
F(u,ū)∂zu ∂z ū) = 0.

Then, the claim follows under the assumption that u has non vanishing Hopf
differential.

For the converse direction, let e−μ(z) be holomorphic. Then, observe that

if eF(u,ū)∂zu ∂z ū = e−μ(z) then eF(u,ū)∂z̄u ∂z̄ ū = e−μ(z).

Thus, differentiating these equations in terms of z̄, z respectively, we find

∂z ū (∂2zz̄u + ∂u F ∂zu ∂z̄u) + ∂zu (∂2zz̄ ū + ∂ū F ∂z ū ∂z̄ ū) = 0,

and

∂z̄ ū (∂2zz̄u + ∂u F ∂zu ∂z̄u) + ∂z̄u (∂2zz̄ ū + ∂ū F ∂z ū ∂z̄ ū) = 0.

Taking into account that the Jacobian

‖uz‖2 − ‖uz̄‖2 = ∂x R∂y S − ∂x S∂y R

is non vanishing almost everywhere, we deduce that the harmonic map equation holds
true almost everywhere. Then, under the C2 assumption on u we deduce that u is
harmonic everywhere. ��

A fundamental result in the theory of harmonic maps, which connects the harmonic
map problem with the sinh-Gordon equation, is the following.
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Proposition 8 ([26], [33]) Let u : M → N be a harmonic map. Then, it satisfies the
Beltrami equation

∂z̄u

∂zu
= e−2w+iφ,

and φ is a harmonic function, i.e. ∂2zz̄φ = 0. Furthermore, if ψ is the conjugate
harmonic function to φ, then

KN = − 2∂2zz̄w

sinh 2w
eψ,

where KN is the curvature of the target manifold N.

On the domain, we can choose a specific coordinate system in order to consid-
erably facilitate the calculations. This specific system is defined by the conformal
transformation

Z =
∫

e−μ(z)/2 dz.

This transformation is well defined since we work on a simply connected subset and
we can assume that the Hopf differential is not vanishing since its zeroes are isolated.
In this specific system the above equations simplify by considering μ(z) = 0. In
other words, under the assumption that the Hopf differential does not vanish, we may
assume that μ = 0. In particular, the harmonic map condition (9) becomes

eF(u,ū)∂zu∂z ū = 1. (10)

It follows from Proposition 8 that the harmonic map u determined by (10) satisfies
the Beltrami equation (2), where in turn the functionw(z, z̄) occurring in the Beltrami
coefficient satisfies the sinh-Gordon equation (1). Conversely, as we have already
mentioned, if w is a solution of the sinh-Gordon equation (1) and u is a solution of
the Beltrami equation (2), then, u is a harmonic map, [11]. As a result, there is a
classification of harmonic diffeomorphisms via the classification of the solutions of
the sinh-Gordon equation. For further details about the association of the harmonic
map problem to the sinh-Gordon equation, we refer to [11, Section 3]. From now on,
we use the aforementioned specific coordinate system.

We assume that the target is the upper half hyperbolic plane

H
2 = {R + i S : R ∈ R, S > 0},

equipped with the hyperbolic metric

h = d R2 + d S2

S2
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of curvature −1. As mentioned earlier, in the specific coordinate system, the map
u = R + i S is harmonic if (3) holds true, or equivalently if the following system is
satisfied:

∂x R ∂y R + ∂x S ∂y S = 0 (11)

(∂x R)2 + (∂x S)2 − (∂y R)2 − (∂y S)2

S2 = 4. (12)

Finally, as we have described, our approach has as its starting point the Bäcklund
transformation (4)–(5). For computational reasons, let us point out that it is more
convenient to verify that a pair (w, θ) is a solution if the following system holds:

∂x W (1 + 
2) − ∂y
 (1 − W 2) = −4W
,

∂y W (1 + 
2) + ∂x
 (1 − W 2) = −(1 + W 2)(1 − 
2),

where W = tanh w
2 and 
 = tan θ

2 .

3 Proof of Proposition 3

In this section we consider (w, θ) ∈ (BT ). In other words, w and θ are related by the
Bäcklund transformation. Our aim is to construct a harmonic map that corresponds
to w. As usual, the target is assumed to be the upper half-plane equipped with the
hyperbolic metric. We first observe that the following result holds true.

Lemma 9 Assume that (w, θ) ∈ (BT ). Then, there exist functions R and S such that

∂x S = 2S coshw sin θ (13)

∂y S = 2S sinhw cos θ (14)

∂x R = 2S coshw cos θ (15)

∂y R = −2S sinhw sin θ. (16)

Proof The existence of the functions R and S is ensured by the Bäcklund transforma-
tion of w and θ . Indeed, the compatibility conditions

∂2xy S = ∂2yx S, ∂2xy R = ∂2yx R

follow by the Bäcklund transformation equations (4)–(5). ��

Remark The Jacobian of the map u is J (u) = 2S2 sinh 2w.

Our next goal is to prove the following result, which plays a key role for the proof of
Proposition 3.
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Lemma 10 Assume that (w, θ) ∈ (BT ) and let (R, S) satisfy the system of Eqs. (13)–
(16). Then,

u(x, y) = R(x, y) + i S(x, y)

is the harmonic map to the hyperbolic plane that corresponds to w.

Proof Consider

u = R + i S,

and observe that

∂zu = 1

2
((∂x R + ∂y S) + i(∂x S − ∂y R)).

Then (13)–(16), imply that

∂zu = S(coshw + sinhw)(cos θ + i sin θ) = Seweiθ . (17)

Similarly, we compute

∂z̄u = Se−weiθ . (18)

By (17) and (18), it follows that

∂z̄u

∂zu
= e−2w.

Furthermore, by (10), the conformal factor in the target metric is equal to

eF(R,S) = 1

∂zu∂z ū
= 1

S2 .

Thus, u is a harmonic map to the hyperbolic upper half hyperbolic plane that
corresponds to w. ��

Given now w and θ , we find the associated harmonic map u = R + i S. More
precisely, we provide the implicit formulas for R and S that involve the integrals
I1, I2, I3, I4.

End of the proof of Proposition 3 Our task is now to solve the system (13)–(16). We
begin with (13) for y = 0, which yields

∂x S

S
(x, 0) = 2 coshw(x, 0) sin θ(x, 0).
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Integrating, we obtain

S(x, 0) = S(0, 0)e2
∫ x
0 coshw(t,0) sin θ(t,0)dt .

So, (14) implies that

S(x, y) = S(0, 0)e2
∫ x
0 coshw(t,0) sin θ(t,0)dt+2

∫ y
0 sinhw(x,s) cos θ(x,s)ds .

Thus

S(x, y) = S(0, 0)e2(I1+I2).

In order now to compute R(x, y), we consider (15) for y = 0, which yields

R(x, 0) = R(0, 0) + 2
∫ x

0
S(t, 0) coshw(t, 0) cos θ(t, 0)dt .

So, (16) implies that

R(x, y) = R(0, 0) + 2
∫ x

0
S(t, 0) coshw(t, 0) cos θ(t, 0)dt

− 2
∫ y

0
S(x, s) sinhw(x, s) sin θ(x, s)ds,

thus

R(x, y) = R(0, 0) + 2S(0, 0)(I3 − I4).

��
We now provide a concrete example of a harmonic map to show how the algorithm

in Proposition 3 can be implemented. In particular, we recover the harmonic map
obtained in [11, Section 7].

Example 11 Suppose that tanh w(x,y)
2 = 2y

cosh 2x and consider the case R(0, 0) = 0,
S(0, 0) = − 1

4 as in [11, p.22]. Using the Bäcklund transformation we find that

tan
θ(x, y)

2
= coth x .

Then, a lengthy calculation yields

I1 = 1

2
log cosh 2x,

I2 = 1

2
log

(
1 − 4y2

cosh2 2x

)
,
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I3 = −x,

I4 = 2y2 tanh 2x,

and therefore,

R = x

2
+ y2 tanh 2x

S = y2

cosh 2x
− cosh 2x

4
.

One can verify by (11)–(12) that u = R + i S is a harmonic map to the hyperbolic
plane that corresponds to w.

The domain of definition of u is the set

� =
{
(x, y) : |y| <

1

2
cosh 2x

}

where the map is a well defined C2 map whose Jacobian is almost everywhere non
vanishing.

4 The sinh-Gordon equation

In this section we provide a new family of solutions of the sinh-Gordon equation.
The motivation for obtaining solutions of the sinh-Gordon equation is their corre-

spondence to harmonic maps between surfaces, as described in Sect. 2. In addition,
it is exactly the form of the special solutions to the sinh-Gordon equation considered
in this section, that will allow explicit expressions of harmonic maps to hyperbolic
plane. We therefore postpone our main goal, the construction of harmonic maps, to
the next section.

In [11, Section 5], the authors construct harmonic maps when w is a one-soliton
solution to (1). In some sense, they obtain solutions to this sinh-Gordon equation that
are of the form

w(x, y) = 2 arctanh(F(x)).

In what follows, we focus on solutions to the sinh-Gordon equation (1) that are of the
form (7), i.e. w(x, y) = 2 arctanh(F(x)G(y)). Without loss of generality, we assume
that F and G are non-constant functions.

Notice that condition (7) is equivalent to b = ∂x w(x,y)
2 sinhw(x,y)

= b(x), where b(x) =
F ′(x)
2F(x)

. One can prove that (7) is also equivalent to the differential equation

∂2xyw(x, y) = ∂xw(x, y)∂yw(x, y) cothw(x, y). (19)
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Indeed, for the one direction, starting from tanh w
2 = FG we get ∂xw = F ′

F sinhw and

∂yw = G ′
G sinhw. Thus, differentiatingwx in y and usingwy , we get (19). Conversely,

integrating
∂2xyw

∂x w
= ∂yw cothw in y yields ∂x w

sinhw
= b(x). Integrating in x , we get for

some c(y) that log
∣∣tanh w

2

∣∣ = ∫
b(x)dx + c(y), whence the claim follows. In [1], the

authors were lead to this equation for geometric reasons related to CMC surfaces. It
is an open problem to relate this equation with the geometry of harmonic maps.

The basic idea is that under condition (7), we can solve this sinh-Gordon equation
by a separation of variables argument. Then, the problem is reduced to solving certain
non-linear ODEs, which in turn can be solved by the use of elliptic functions.

We now prove the following result.

Proposition 12 If w is a solution of the sinh-Gordon equation (1) of the form

w(x, y) = 2 arctanh(F(x)G(y)),

then the functions F, G satisfy the differential equations

(F ′(x))2 = AF4(x) + B F2(x) + C (20)

(G ′(y))2 = −CG4(y) − (B − 4)G2(y) − A, (21)

where A, B, C are arbitrary constants.

Proof Set G(y) = 1
H(y)

. Writing w = 2 arctanh F(x)
H(y)

, we find from (1) that

F ′′(x)

F(x)

(
H2(y) − F2(x)

)
+ 2F ′(x)2 − H ′′(y)H(y) − 2H ′(y)2

H(y)2
×

×
(

H2(y) − F2(x)
)

+ 2F2(x)
H ′(y)2

H2(y)

= 4
(

F2(x) + H2(y)
)

. (22)

Differentiating with respect to x and y, we obtain

2H(y)H ′(y)

(
F ′′(x)

F(x)

)′
+ 2F(x)F ′(x)

(
H ′′(y)

H(y)

)′
= 0,

or

1

F(x)F ′(x)

(
F ′′(x)

F(x)

)′
= − 1

H(y)H ′(y)

(
H ′′(y)

H(y)

)′
= 4A = constant.

Therefore,

(
F ′′(x)

F(x)

)′
= 4AF(x)F ′(x),

(
H ′′(y)

H(x)

)′
= 4AH(y)H ′(y).
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Integrating twice and taking into account (22), we obtain

F ′(x)2 = AF4(x) + B F2(x) + C,

and

H ′(y)2 = −AH4(y) − (B − 4)H2(y) − C .

Finally, we find

G ′(y)2 = −CG4(y) − (B − 4)G2(y) − A.

��
An argument similar to the one used in [19], reveals that the following result, which

is a special case of Proposition 12, holds true.

Proposition 13 Let w0 > 0, and α, β > 0, such that

α + β = coshw0 > 1.

Consider f (x), g(y) such that

( f ′)2 = f 4 − 4
(
1 + α2 − β2

)
f 2 + 42α2

(g′)2 = g4 − 4
(
1 + β2 − α2

)
g2 + 42β2,

with f (0) = 0, f ′(0) = −4α, g(0) = 0, g′(0) = −4β. Then the function w(x, y)

given by

tanh
w(x, y)

2
= tanh

w0

2
e− ∫ x

0 f (t)dt e− ∫ y
0 g(s)ds,

is such that �w = 2 sinh(2w) and w(0, 0) = w0.

Finally, note that in general, F and G in Proposition 12, and f and g in Proposi-
tion 13 respectively, are given in terms of elliptic functions, but reduce to elementary
functions for certain choices of the coefficients of the ODEs. In particular, we observe
that the only case where one of the functions f , g is elementary is when |α − β| = 1.
In this case actually both functions f , g end up to be elementary.

5 A new family of harmonic maps

In this section we assume that (w, θ) ∈ (BT0) and w is of the form (7). In other
words, the functions w = 2 arctanh(F(x)G(y)) and θ are related by the Bäcklund
transformation and ∂yw(x, 0) = 0, θ(0, 0) = π

2 .We startwith a given solutionw of the
sinh-Gordon equation and we find a formula for θ using the Bäcklund transformation.
We finally find a formula for the harmonic map u that corresponds to w.
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5.1 Bäcklund transformation

Our first task is to solve the system (4)–(5). Suppose that w is a solution of the
sinh-Gordon equation, of the form

tanh
w

2
= F(x)G(y). (23)

Define

X = X(x) =
∫ x

0
coshw(t, 0)dt =

∫ x

0

1 + F2(t)G2(0)

1 − F2(t)G2(0)
dt, (24)

Y = Y (x, y) =
∫ y

0
sinhw(x, s)ds =

∫ y

0

2F(x)G(s)

1 − F2(x)G2(s)
ds. (25)

The newvariableY appears in the following lemma,which serves as an intermediate
step for the formula of the harmonic map in Theorem 5, where the other variable X
appears. We claim that we can find explicit expressions of X and Y in terms of x and
y. Assuming for the moment that this claim is true, we complete the construction of
θ as follows, in the special case when ∂yw(x, 0) = 0, θ(0, 0) = π

2 .

Lemma 14 If w(x, y) = 2 arctanh(F(x)G(y)), b(x) = F ′(x)
2F(x)

and (w, θ) ∈ (BT0),
then

tan
θ(x, y)

2
= 1

b(x)

(√
b2(x) − 1 tan(J1(x) + J2(x, y)) − 1

)
,

where

J1 = J1(x) = arctan

(
b(x) + 1√
b2(x) − 1

)
,

and

J2 = J2(x, y) =
√

b2(x) − 1 Y (x, y).

Proof By assumption, we have

∂yw(x, 0) = 0. (26)

Taking (5) for y = 0 and applying (26), gives

∂xθ(x, 0) = −2 coshw(x, 0) cos θ(x, 0).

Given the initial condition θ(0, 0) = π
2 , we can take

θ(x, 0) = π

2
.
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Next, observe that since w(x, y) = 2 arctanh(F(x)G(y)), we have

∂xw(x, y) = F ′(x)

F(x)
sinhw(x, y),

hence (4) implies

∂yθ(x, y) = 2 sinhw(x, y)

(
sin θ(x, y) + F ′(x)

2F(x)

)
. (27)

An integration yields

tan
θ(x, y)

2
= 1

b(x)

(√
b2(x) − 1 tan(J1 + J2) − 1

)
,

where

J1 = J1(x) = arctan

(
1 + b(x)√
b2(x) − 1

)
,

and

J2 = J2(x, y) =
√

b2(x) − 1 Y (x, y).

��
Note that the only, but crucial use of the condition (23) is that ∂x w(x,y)

2 sinhw(x,y)
= F ′(x)

2F(x)
=

b(x) is a function of x , which facilitates the integration in (27).
It remains to find explicit formulas of X and Y in terms of x and y. Recall that by

(24) and (25), these expressions are given by

X =
∫ x

0

1 + F2(t)G2(0)

1 − F2(t)G2(0)
dt,

and

Y = 2F(x)

∫ y

0

G(s)

1 − F2(x)G2(s)
ds,

where F and G are determined by (20) and (21), respectively. Therefore, F and
G are elliptic functions in general, making the integrals in the computation of X
and Y nontrivial. In order to compute these integrals, we make use of (20) and (21)
respectively.

Write

X =
∫ x

0

1 + F2(t)G2(0)

1 − F2(t)G2(0)
dt
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=
∫ x

0

(
1 + F2(t)G2(0)

)
F ′(t)(

1 − F2(t)G2(0)
)√

AF4(t) + B F2(t) + C
dt .

Hence,

X =
∫ F(x)

F(0)

1 + v2G2(0)(
1 − v2G2(0)

)√
Av4 + Bv2 + C

dv.

This integral can be computed explicitly and it involves first and third kind elliptic
functions.

Similarly, we write

Y = F(x)

∫ y

0

2G(s)G ′(s)(
1 − F2(x)G2(s)

)√−CG4(s) − (B − 4)G2(s) − A
ds.

Hence,

Y = F(x)

∫ G2(y)

G2(0)

du(
1 − F2(x)u

) √−Cu2 − (B − 4)u − A
.

This integral can be computed explicitly and it is an elementary function of G2(y).

5.2 The corresponding harmonic maps.

Given Lemma 14 we now complete the proof of our main result.

End of the proof of Theorem 5 Note that from Lemma 14 we know the formula of θ .
Thus, it is left to express the harmonic map in terms of θ and b = ∂x w(x,y)

2 sinhw(x,y)
= b(x).

The proof relies on the formulas given by Proposition 3. The trick of the proof is to
use (27) in order to substitute

sinhw(x, s) = ∂sθ(x, s)

2(sin θ(x, s) + b(x))
,

in the integrals I2 and I4. For I1 and I3, we use the initial condition θ(x, 0) = π
2 . A

direct calculation now yields

I1 = X ,

I2 = 1

2
log

sin θ(x, y) + b

1 + b
,

I3 = 0,

I4 = −1

2

e2X cos θ(x, y)

1 + b
.
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Then the result follows by Prosopition 3 and a straightforward computation of R and
S.

We elaborate on this result by an examplemotivated by Proposition 13.We consider

the case α = 1, β = 2, tanh w(0,0)
2 =

√
2
2 in Proposition 13, which implies that both

f , g are elementary functions. Next, using Theorem 5 we provide an entirely new
harmonic map to the hyperbolic plane.

Example 15 Consider S(0, 0) = 1, R(0, 0) = 0 and tanh w(x,y)
2 =

√
2
2

cosh (2
√
2y)

cos (2x)
. We

find

X = x + arctanh (tan (2x)), b = b(x) = tan (2x),

Y = 1√
1 − tan2(2x)

arctanh
sinh (2

√
2y)√

1 − 2 sin2 (2x)
,

and

tan
θ(x, y)

2
= sinh (2

√
2y) + cos (2x) − sin (2x)

cos (2x) − sin (2x) − sinh (2
√
2y)

.

After a lengthy computation we obtain

S(x, y) = e2x 1 + 2 cos (4x) − cosh (4
√
2y)

1 + cosh (4
√
2y) − 2 sin (4x)

and

R(x, y) = −4e2x cos (2x) sinh (2
√
2y)

1 + cosh (4
√
2y) − 2 sin (4x)

.

Therefore, u = R + i S is the harmonic map that corresponds to w.
The domain of definition of u is the set

� =
{

(x, y) :
∣∣∣∣∣
√
2

2

cosh (2
√
2y)

cos (2x)

∣∣∣∣∣ < 1

}

where the map is a well defined C2 map whose Jacobian is almost everywhere non
vanishing.

6 One-soliton solutions of the Sine-Gordon equation

In the previous section,we startedwith a special solutionw to the sinh-Gordon equation
and then determined θ by the Bäcklund transformation, in order to construct harmonic
maps by the algorithm proposed in Proposition 3.We now follow the reverse direction,
and start with a special solution θ to the sine-Gordon equation.
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More precisely, we are motivated by an example in [11, p.18], where a special
solution θ = θ(x) = arcsin tanh(2x) of the sine-Gordon equation is considered.
Notice that in the aforementioned example, θ(x) is an elementary function. However,
we prove in this section that in general θ(x) is an elliptic function. In addition, we
prove that if θ = θ(x) is a solution to the sine-Gordon equation (6), then the function
w determined by the Bäcklund transformation is in the family of solutions that we
have studied in Sect. 4, i.e. w = arctanh(F(x)G(y)). Next, we provide an explicit
formula for the corresponding harmonic map.

For clarity reasons, we first present the definitions and properties of the elliptic
Jacobi functions. The formulation used in this paper is taken from [25].

The elliptic integral of the first kind F(φ|n) and the Jacobi elliptic function sn(v|n)

are defined by the formula

F(φ|n) = v =
∫ x

0

dt√(
1 − t2

) (
1 − nt2

) = sn−1(x |n),

where

sn(v|n) = x = sin φ.

Define

cn(v|n) = cosφ, dn(v|n) =
√
1 − n sin2 φ.

We first prove the following result, which provides the characterization for w.

Proposition 16 If θ = θ(x) is a solution of the sine-Gordon equation

�θ = −2 sin(2θ),

then the associated solution w of the sinh-Gordon equation is

tanh
w(x, y)

2
= F(x)G(y) =

√
ab tan(

√
ab
2 y + k)

θ ′(x) − 2 cos θ(x)
,

where a = 2 cos θ(0) + θ ′(0), b = 2 cos θ(0) − θ ′(0), and k ∈ C is such that

tanh w(0,0)
2 = −

√
a
b tan(k).

Remark The above formula holds true also for the case ab < 0.

Proof Our first task is to determine the function θ . Consider θ = θ(x) to be a solution
of the sine-Gordon equation

�θ = −2 sin(2θ).
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Then,

θ ′′ = −2 sin(2θ)

and therefore

θ ′(x)2 = −4 sin2 θ(x) + c2,

where c2 = θ ′(0)2 + 4 sin2 θ(0). A simple calculation reveals that

∫ θ(x)

0

dψ√
1 − 4

c2
sin2(ψ)

= c1 + cx,

which implies

sin θ(x) = sn(cx + c1| 4
c2

), where c1 =
∫ θ(0)

0

dψ√
1 − 4

c2
sin2(ψ)

. (28)

Moreover, we have

cos θ(x) = cn(cx + c1| 4
c2

), θ ′(x) = c dn(cx + c1| 4
c2

), (29)

from which we derive the following differential equation

θ ′2 − 4 cos2 θ = c2 − 4. (30)

Note that this implies

ab = 4 − c2.

We next prove that the function w is of the form w = 2 arctanh(F(x)G(y)). For
that, we turn to the Bäcklund transformation, which rewrites as

∂xw = −2 sinhw sin θ, (31)

∂yw + θ ′(x) = −2 coshw cos θ. (32)

Integrating (31), we get

∫ w(x,y)

w(0,y)

dφ

sinh(φ)
+ 2

∫ x

0
sin θ(s)ds = 0.

It follows that

tanh

(
w(x, y)

2

)
= tanh

(
w(0, y)

2

)
e−2I (x),
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where I (x) = ∫ x
0 sin θ(s)ds.

We now apply Theorem 12 to find an explicit formula for G(y). Set

F(x) = exp(−2I (x)) and G(y) = tanh

(
w(0, y)

2

)
.

By Theorem 12, the function F satisfies

(F ′(x))2

F2(x)
= AF2(x) + B + C

F2(x)
, (33)

for some constants A, B, C . We next determine these constants.
Observe first that I (x) can be computed explicitly:

I (x) =
∫ x

0
sin θ(s)ds =

∫ x

0
sn

(
cs + c1| 4

c2

)
ds

= 1

2
log

c dn(c1| 4
c2

) + 2cn(c1| 4
c2

)

cdn(cx + c1|4/c2) + 2cn(cx + c1|4/c2)
. (34)

This implies that

F(x) = e−2I (x) = cdn(cx + c1|4/c2) + 2cn(cx + c1|4/c2)

a
, (35)

1

F(x)
= e2I (x) = −cdn(cx + c1|4/c2) − 2cn(cx + c1|4/c2)

b
. (36)

Differentiating F(x) = e−2I (x) and using (28), we obtain F ′(x)/F(x) = −2sn(cs +
c1| 4

c2
). Plugging this quotient into the left hand side of (33) and using the elliptic

expressions (35) and (36) for the right hand side, we obtain A = − a2
4 , B = c2+4

2 =
8−ab
2 and C = − b2

4 .
Finally, by Theorem 12, the function G(y) satisfies the equation

(G ′(y))2 = b2

4
G4(y) + ab

2
G2(y) + a2

4
= 1

4
(bG2(y) + a)2. (37)

Choose

G(y) = −
√

a

b
tan

(√
ab

2
y + k

)
, (38)

where tanh w(0,0)
2 = −

√
a
b tan(k). Then, one can verify that w(x, y) satisfies the

second equation (32) of the Bäcklund transformation, so we have found the associated
w(x, y) to θ(x). ��
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Having calculated θ(x) and w(x, y), we are now ready to compute the correspond-
ing harmonic map by calculating the integrals I1, I2, I3 and I4 in Proposition 3.

Proof of Theorem 6 First, observe that (29) with (35) and (36) imply that

F(x) = θ ′(x) + 2 cos θ(x)

a
, (39)

1

F(x)
= −θ ′(x) − 2 cos θ(x)

b
. (40)

Let us start from I1. Since I ′(x) = (∫ x
0 sin θ(s)ds

)′ = sin θ(x) and tanh w(x,y)
2 =

e−2I (x)G(y), applying an elementary trigonometric equality we obtain

I1(x) =
∫ x

0
coshw(t, 0) sin θ(t)dt =

∫ x

0

exp(4I (t)) + G2(0)

exp(4I (t)) − G2(0)
d I (t)

= 1

2

∫ exp(2I (x))

1

(
2u

u2 − G2(0)
− 1

u

)
du,

or

exp(2I1(x)) = 1 − G2(0)F2(x)

F(x)(1 − G2(0))
=

1
F(x)

− G2(0)F(x)

1 − G2(0)
. (41)

Using (40), (39) and (38), we conclude

exp(2I1(x)) = 2 cos θ(x) cos(2k) − θ ′(x)

2 cos θ(0) cos(2k) − θ ′(0)
. (42)

Next, we compute I2. Once again, using that tanh w(x,y)
2 = F(x)G(y) as well as

an elementary trigonometric equality, we obtain

I2(x, y) = cos θ(x)

∫ y

0
sinh(w(x, s))ds

= 2 cos θ(x)F(x)

∫ y

0

G(s)

1 − F2(x)G2(s)
ds.

An application of (37) and a change of variables, yield

I2(x, y) = 4 cos θ(x)F(x)

∫ y

0

G(s)

1 − F2(x)G2(s)

G ′(s)
bG2(s) + a

ds

= 2 cos θ(x)F(x)

aF2(x) + b
log

(
1 − F2(x)G2(0)

1 − F2(x)G2(y)

bG2(y) + a

bG2(0) + a

)

= 1

2
log

(
1 − F2(x)G2(y)

1 − F2(x)G2(0)

bG2(0) + a

bG2(y) + a

)
,

123



New examples of harmonic maps to the hyperbolic plane…

where in the last step we used (39), (30) and the fact that ab = 4−c2. A manipulation
similar to the one used to derive (42) therefore gives

exp(2I2(x, y)) = 2 cos θ(x) cos(
√

aby + 2k) − θ ′(x)

2 cos θ(x) cos(2k) − θ ′(x)
. (43)

Then, by Proposition 3, we have

S(x, y) = S(0, 0) exp(2I1(x)) exp(2I2(x, y))

= S(0, 0)
2 cos θ(x) cos(

√
aby + 2k) − θ ′(x)

2 cos θ(0) cos(2k) − θ ′(x)
.

We proceed to I3. Due to (34), it can be written as

I3(x) =
∫ x

0
exp(2I1(t)) cosh(w(t, 0)) cos θ(t)dt

=
∫ x

0
exp(2I1(t)) cosh(w(t, 0)) cot θ(t)d I (t).

On the one hand, since F(x) = e−2I (x) satisfies (33) with A = − a2
4 , B = 8−ab

2

and C = − b2
4 , we get

sin θ(x) = I ′(x) = −1

2

F ′(x)

F(x)
=

√
2(8 − ab)e4I (x) − a2 − b2e8I (x)

4e2I (x)
,

therefore

cos θ(x) =
√
1 − I ′(x)2 = be4I (x) + a

4e2I (x)
.

On the other hand, replacing e2I1(x) by (41), we can write

I3(x) =
∫ x

0

exp(4I (t)) + G2(0)

(1 − G2(0)) exp(2I (t))

be4I (x) + a√
2(8 − ab)e4I (x) − a2 − b2e8I (x)

d I (t)

= 1

2(1 − G2(0))

∫ 2 cos θ(x)−θ ′(x)
b

1

u2 + G2(0)

u2

bu2 + a√
2(8 − ab)u2 − a2 − b2u4

du,

where we used the change of variables u = e2I (x) = 1/F(x) and (40). Thus, taking
into account (38), we find

I3(x) = 1

2
cosh2

w(0, 0)

2
J

(
2 cos θ(x) − θ ′(x)

b

)
,
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where J (t) = ∫ t
1

u2+G2(0)
u2

bu2+a√
2(8−ab)u2−a2−b2u4

du. Note that J can be computed by

the use of elliptic integrals.
Finally, for the last integral I4 we have

I4(x, y) = e2I1(x) sin θ(x)

∫ y

0
exp(2I2(x, s)) sinh(w(x, s))ds

= 1

2
e2I1(x) tan θ(x)

∫ y

0
e(2 cos θ(x)

∫ s
0 sinh(w(x,ψ))dψ)2 cos θ(x) sinh(w(x, s))ds

= 1

2
e2I1(x) tan θ(x)(e2I2(x,y) − e2I2(x,0))

= 1

2
e2I1(x) tan θ(x)(e2I2(x,y) − 1)

= sin θ(x)(cos(
√

aby + 2k) − cos(2k))

2 cos θ(0) cos(2k) − θ ′(0)
,

where in the last step we used (42) and (43). The calculation of R(x, y) = R(0, 0) +
2 S(0, 0)(I3(x) − I4(x, y)) is now complete.

Next, using Theorem 6, we provide an entirely new harmonic map to the hyperbolic
plane.

Example 17 Consider the case when θ(0) = 0, θ ′(0) = 1, G(0) = 0 = tanh w(0,0)
2 ,

S(0, 0) = 1 and R(0, 0) = 0. Then, we compute

sin θ(x) = sn(x |4) = 1

2
sn

(
2x |1

4

)
,

tanh

(
w(x, y)

2

)
=

√
3 tan(

√
3
2 y)

θ ′(x) − 2 cos θ(x)
,

and

I (x) = 1

2
log(2 cos θ(x) − θ ′(x)).

Therefore,

I1(x) = I (x),

I2(x, y) = 1

2
log

(
2 cos θ(x) cos(

√
3y) − θ ′(x)

2 cos θ(x) − θ ′(x)

)
,

I3(x) = 1

2

∫ 2 cos θ(x)−θ ′(x)

1

u2 + 3√
10u2 − u4 − 9

du,

I4(x, y) = sin θ(x)(cos(
√
3y) − 1).
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Then, the corresponding harmonic map then is u(x, y) = R(x, y) + i S(x, y), where

R(x, y) = J (2 cos θ(x) − θ ′(x)) − 2 sin θ(x)(cos(
√
3y) − 1)

and

S(x, y) = 2 cos θ(x) cos(
√
3y) − θ ′(x),

where J (t) = ∫ t
1

u2+G2(0)
u2

bu2+a√
2(8−ab)u2−a2−b2u4

du.

The domain of definition of u is the set of

{
(x, y) :

∣∣∣∣∣
√
3 tan(

√
3
2 y)

θ ′(x) − 2 cos θ(x)

∣∣∣∣∣ < 1

}

where the map is a well defined C2 map whose Jacobian is almost everywhere non
vanishing.
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