NEW EXAMPLES OF SASAKI-EINSTEIN MANIFOLDS

Dedicated to the memory of Professor Shoshichi Kobayashi

TOSHIKI MABUCHI AND YASUHIRO NAKAGAWA

(Received April 5, 2011, revised July 25, 2012)

Abstract. In this note, stimulated by the existence result by Futaki, Ono and Wang for toric Sasaki-Einstein metrics, we obtain new examples of Sasaki-Einstein metrics on S^1 -bundles associated to canonical line bundles of $P^1(C)$ -bundles over Kähler-Einstein Fano manifolds, even though the Futaki's obstruction does not vanish. Here our examples include non-toric Sasaki-Einstein manifolds.

1. Introduction. Sasaki-Einstein manifolds were studied not only by mathematicians but also by physicists, as Sasaki-Einstein manifolds have various interesting phenomena such as "AdS/CFT correspondence" in theoretical physics (cf. [1], [2], [3], [4], [5], [12], [19], [20], [21], [22]). Recently in [6] and [10], classification of toric Sasaki-Einstein manifolds was given.

A Sasaki manifold is a (2m + 1)-dimensional Riemannian manifold (S, g) whose cone manifold $(C(S), \overline{g})$ is a Kähler manifold with

$$C(S) := S \times \mathbf{R}_{>0}$$
 and $\overline{g} := (dr)^2 + r^2 g$,

where r is the standard coordinate on the set $\mathbf{R}_{>0} = \{r > 0\}$ of positive real numbers. Then S is a contact manifold with the contact form

$$\eta := \left(\sqrt{-1}(\overline{\partial} - \partial)\log r\right)|_{r=1}.$$

Here S is viewed as the submanifold of C(S) defined by the equation r=1. We further consider the Reeb field ξ characterized by

$$i(\xi)\eta = 1$$
 and $i(\xi)d\eta = 0$,

where $i(\xi)$ is the interior product by ξ . The Reeb field ξ is a Killing vector field on (S, g) with a lift to a holomorphic Killing vector field on $(C(S), \overline{g})$. This generates a 1-dimensional foliation on S, called the *Reeb foliation*. The Sasaki metric g naturally induces a transverse Kähler metric g^T for the Reeb foliation on S. A Sasaki manifold (S, g) is *toric*, if C(S) is a toric manifold.

²⁰¹⁰ Mathematics Subject Classification. Primary 53C25; Secondary 32Q20, 53C55.

Key words and phrases. Sasaki manifolds, Sasaki-Einstein metrics, the Reeb field, Kähler-Ricci solitons, transverse holomorphic structures, Koiso-Sakane's examples, non-toric Sasaki-Einstein manifolds.

The first author is supported by JSPS Grant-in-Aid for Scientific Research (A) No. 20244005. The second author is supported by JSPS Grant-in-Aid for Scientific Research (C) No. 20540069.

The following well-known fact allows us to reduce the existence of Sasaki-Einstein metrics to that of transverse Kähler-Einstein metrics:

FACT 1.1 (cf. [3, Chapter 11]). A Sasaki manifold (S, g) is Einstein with positive scalar curvature 2m if and only if the transverse Kähler metric g^T is Einstein with positive scalar curvature 2(m+1).

We now pose the following conjecture:

CONJECTURE 1.2. Let M be a Fano manifold. If there exists a Kähler-Ricci soliton (see for instance [28] for Kähler-Ricci solitons) on M, then the S^1 -bundle associated to the canonical line bundle K_M of M admits a Sasaki-Einstein metric with a suitable choice of the Reeb field.

By the results of Wang and Zhu [28], the existence of Kähler-Ricci solitons is known for toric Fano manifolds. Hence, the results in [10] shows that Conjecture 1.2 is affirmative for toric Fano manifolds.

We now consider Koiso-Sakane's examples (cf. [23], [16], [17]) of $P^1(C)$ -bundles over Kähler-Einstein Fano manifolds. To fix our notation, recall the paper [18]. Under the assumption below, we fix once for all a compact connected n-dimensional complex manifold W with $c_1(W) > 0$ and an Hermitian holomorphic line bundle (L, h) over W.

ASSUMPTION 1.3. (1) There exists a Kähler-Einstein form ω_0 on W, i.e., $\text{Ric}(\omega_0) = \omega_0$, where $\text{Ric}(\omega_0)$ is the Ricci form for ω_0 .

 $(2) 2\pi c_1(L; h) := \sqrt{-1} \, \overline{\partial} \partial \log h$ has constant eigenvalues

$$\mu_1 \leq \mu_2 \leq \cdots \leq \mu_n$$

with respect to ω_0 satisfying $-1 < \mu_k < 1$ for k = 1, 2, ..., n.

By this assumption, the compactification $M_W^L := P(L \oplus \mathcal{O}_W)$ of L is a $P^1(C)$ -bundle over W with $c_1(M_W^L) > 0$. Then M_W^L admits a Kähler-Einstein metric if and only if its Futaki's obstruction (cf. [8]) vanishes:

(1.4)
$$\int_{-1}^{1} x \prod_{k=1}^{n} (1 + \mu_k x) dx = 0.$$

Let S_W^L be the S^1 -bundle over M_W^L associated to the canonical line bundle $K_{M_W^L}$ of M_W^L . In [15], Koiso showed that a Kähler-Ricci soliton exists on M_W^L , whether or not equality (1.4) holds. Hence by Conjecture 1.2, a Sasaki-Einstein metric is expected to exist on S_W^L . The purpose of this note is to give the following affirmative result:

Theorem 1.5. Under the Assumption 1.3, whether or not the equality (1.4) holds, S_W^L always admits a Sasaki-Einstein metric for a suitable choice of the Reeb field. Furthermore, $K_{M_W^L}$ admits a complete Ricci-flat Kähler metric in every Kähler class.

REMARK 1.6. Kobayashi [14] (see also Jensen [13], Wang and Ziller [27]) constructed Einstein metrics on S^1 -bundles over Einstein manifolds. Our theorem above shows that S^L_W always admits an Einstein metric, even though M^L_W admits no Kähler-Einstein metrics.

2. Transverse holomorphic structures on S_W^L . For an open cover $\{U_\alpha : \alpha \in A\}$ of W, we choose a system of holomorphic local coordinates $(w_\alpha^1, w_\alpha^2, \ldots, w_\alpha^n)$ on each U_α , and by taking a holomorphic local frame e_α for L, we have the fiber coordinate ζ_α^+ for L over U_α with respect to e_α . Then $(w_\alpha^1, w_\alpha^2, \ldots, w_\alpha^n; \zeta_\alpha^+)$ forms a system of holomorphic local coordinates for $U_\alpha^+ := L|_{U_\alpha}$. Let f_α be the frame for L^{-1} dual to e_α , and let ζ_α^- be the fiber coordinate for L^{-1} over U_α with respect to f_α . Then $(w_\alpha^1, w_\alpha^2, \ldots, w_\alpha^n; \zeta_\alpha^-)$ form a system of holomorphic local coordinates on $U_\alpha^- := L^{-1}|_{U_\alpha}$. Then U_α^+ and U_α^- are glued together by the relation

$$\zeta_{\alpha}^{+} = (\zeta_{\alpha}^{-})^{-1}$$
 to form $M_{W}^{L} = P(L \oplus \mathcal{O}_{W}) = \bigcup_{\alpha \in A} (U_{\alpha}^{+} \cup U_{\alpha}^{-})$. Here,
$$\pm dw_{\alpha}^{1} \wedge dw_{\alpha}^{2} \wedge \cdots \wedge dw_{\alpha}^{n} \wedge d\zeta_{\alpha}^{\pm}$$

is a holomorphic local frame for $K_{M_W^L}$ over U_α^\pm , and with respect to this local frame, we have the fiber coordinate τ_α^\pm for $K_{M_W^L}$, respectively, i.e., all (+)-signs and all (-)-signs should be chosen respectively. Note that

$$\tau_{\alpha}^{+}dw_{\alpha}^{1} \wedge dw_{\alpha}^{2} \wedge \dots \wedge dw_{\alpha}^{n} \wedge d\zeta_{\alpha}^{+}$$

$$= \tau_{\beta}^{+}dw_{\beta}^{1} \wedge dw_{\beta}^{2} \wedge \dots \wedge dw_{\beta}^{n} \wedge d\zeta_{\beta}^{+}$$

$$= \tau_{\beta}^{+}\phi_{\beta\alpha}(w)\psi_{\beta\alpha}(w)^{-1}dw_{\alpha}^{1} \wedge dw_{\alpha}^{2} \wedge \dots \wedge dw_{\alpha}^{n} \wedge d\zeta_{\alpha}^{+}$$

for $w \in U_{\alpha} \cap U_{\beta}$. Here $\{\psi_{\beta\alpha} ; \alpha, \beta \in A\}$ are the transition functions for L with respect to the local frames $\{e_{\alpha} ; \alpha \in A\}$ for L, while $\{\phi_{\beta\alpha} ; \alpha, \beta \in A\}$ are the transition functions for K_W with respect to the local frames $\{dw_{\alpha}^1 \wedge \cdots \wedge dw_{\alpha}^n ; \alpha \in A\}$ for K_W , i.e.,

$$e_{\beta} = \psi_{\beta\alpha}(w)e_{\alpha}, \quad f_{\beta} = \psi_{\beta\alpha}(w)^{-1} f_{\alpha},$$

 $dw_{\beta}^{1} \wedge dw_{\beta}^{2} \wedge \cdots \wedge dw_{\beta}^{n} = \phi_{\beta\alpha}(w)dw_{\alpha}^{1} \wedge dw_{\alpha}^{2} \wedge \cdots \wedge dw_{\alpha}^{n}$

for $w \in U_{\alpha} \cap U_{\beta}$. Hence τ_{α}^+ can be viewed as the fiber coordinate for $K_W \otimes L^{-1}$ over U_{α} with respect to the local frame $(dw_{\alpha}^1 \wedge \cdots \wedge dw_{\alpha}^n) \otimes f_{\alpha}$. Similarly, τ_{α}^- is also viewed as the fiber coordinate for $K_W \otimes L$ over U_{α} with respect to the local frame $(dw_{\alpha}^1 \wedge \cdots \wedge dw_{\alpha}^n) \otimes e_{\alpha}$. Moreover, since $\tau_{\alpha}^+ \zeta_{\alpha}^+ = \tau_{\alpha}^- \zeta_{\alpha}^-$ on $U_{\alpha}^+ \cap U_{\alpha}^-$, it follows that

$$\tau_{\alpha}^+(\zeta_{\alpha}^+)^2 = \tau_{\alpha}^-.$$

Now, for $-1/2 < a \in \mathbf{R}$, we consider holomorphic vector fields

$$a\sqrt{-1}\zeta_{\alpha}^{+}\frac{\partial}{\partial\zeta_{\alpha}^{+}} + \sqrt{-1}\tau_{\alpha}^{+}\frac{\partial}{\partial\tau_{\alpha}^{+}} \quad \text{on } \tilde{p}^{-1}(U_{\alpha}^{+}),$$

$$-a\sqrt{-1}\zeta_{\alpha}^{-}\frac{\partial}{\partial\zeta_{\alpha}^{-}} + (1+2a)\sqrt{-1}\tau_{\alpha}^{-}\frac{\partial}{\partial\tau_{\alpha}^{-}} \quad \text{on } \tilde{p}^{-1}(U_{\alpha}^{-}),$$

where $\tilde{p}: K_{M_W^L} \to M_W^L$ is the natural projection. Then these are glued together to define a well-defined global holomorphic vector field ξ_a on $K_{M_W^L}$. We choose $\xi_a + \bar{\xi}_a$ as the Reeb field on S_W^L . However, we call ξ_a also as the Reeb field by abuse of terminology. Put

$$z_{\alpha}^{+} := (\tau_{\alpha}^{+})^{-a} \zeta_{\alpha}^{+} \text{ and } z_{\alpha}^{-} := (\tau_{\alpha}^{-})^{a/(1+2a)} \zeta_{\alpha}^{-}.$$

Then $(w_{\alpha}^1, w_{\alpha}^2, \ldots, w_{\alpha}^n; z_{\alpha}^+)$ and $(w_{\alpha}^1, w_{\alpha}^2, \ldots, w_{\alpha}^n; z_{\alpha}^-)$ are transverse holomorphic local coordinates on $\widetilde{U}_{\alpha}^+ := p^{-1}(U_{\alpha}^+)$ and $\widetilde{U}_{\alpha}^- := p^{-1}(U_{\alpha}^-)$, respectively, with respect to the Reeb field ξ_a , in view of the identities

$$dz_{\alpha}^{+}(\xi_{a}) = 0$$
 and $dz_{\alpha}^{-}(\xi_{a}) = 0$,

where $p: S_W^L \to M_W^L$ is the natural projection. Note that z_α^+ and z_α^- satisfy the relation

$$z_{\alpha}^{+} = (\tau_{\alpha}^{+})^{-a} \zeta_{\alpha}^{+} = (\tau_{\alpha}^{-})^{-a} (\zeta_{\alpha}^{-})^{-(1+2a)} = (z_{\alpha}^{-})^{-(1+2a)}$$
.

For the natural projection $q: S_W^L \to W$, the fiber $q^{-1}(w)$ over each $w \in U_\alpha$ has a transverse holomorphic structure defined by the transverse holomorphic coordinate z_α^\pm . Then on $q^{-1}(w)$,

$$G := \begin{cases} \left(\frac{1}{|z_{\alpha}^{+}|^{-2} + 1 + |z_{\alpha}^{+}|^{2/(1+2a)}}\right) \frac{|dz_{\alpha}^{+}|^{2}}{|z_{\alpha}^{+}|^{2}} & \text{on } q^{-1}(w) \cap \widetilde{U}_{\alpha}^{+}, \\ \left(\frac{(1+2a)^{2}}{|z_{\alpha}^{-}|^{2(1+2a)} + 1 + |z_{\alpha}^{-}|^{-2}}\right) \frac{|dz_{\alpha}^{-}|^{2}}{|z_{\alpha}^{-}|^{2}} & \text{on } q^{-1}(w) \cap \widetilde{U}_{\alpha}^{-} \end{cases}$$

defines an Hermitian metric for the transverse anti-canonical line bundle of the fiber $q^{-1}(w)$, which is invariant under the standard S^1 -action $z_{\alpha}^+ \stackrel{t}{\longmapsto} t z_{\alpha}^+$, $t \in S^1$, for each $w \in U_{\alpha}$, where $S^1 := \{z \in C : |z| = 1\}$. By setting $x := -2 \log |z_{\alpha}^+|$, we define

$$v(x) := \log \left\{ \exp(x) + 1 + \exp\left(-\frac{x}{1+2a}\right) \right\}.$$

Then its derivative v'(x) defines a moment map whose image is the closed interval [-1/(1+2a), 1].

3. Sasaki-Einstein metrics on S_W^L . In this section, by an argument as in [18], we construct a Sasaki-Einstein metric on S_W^L by reducing the Sasaki-Einstein equation to the transverse Einstein equation (3.1) below. For a > -1/2, define a polynomial $A_a(x)$ in x by

$$A_a(x) := -\int_{-1/(1+2a)}^x s \prod_{k=1}^n (1 + \mu_{k,a} s) ds$$

where $\mu_{k,a} := \mu_k + a(1 + \mu_k)$ for k = 1, 2, ..., n. Now, we assume that $A_a(1) = 0$. Since a > -1/2, it follows from Assumption 1.3 that

$$0 < A_a(x) \le A_a(0)$$
 and $\frac{A'_a(x)}{x} < 0$

for -1/(1+2a) < x < 1. In particular, the rational function

$$\frac{A_a'(x)}{x A_a(x)}$$

is free from poles and zeros over the open interval (-1/(1+2a), 1) and has a pole of order 1 at both x = -1/(1+2a) and x = 1. Hence,

$$B_a(x) := -\int_0^x \frac{A'_a(s)}{sA_a(s)} ds$$

is monotone increasing over the interval (-1/(1+2a), 1) and moreover, B_a maps (-1/(1+2a), 1) diffeomorphically onto R. Let

$$B_a^{-1} \colon \mathbf{R} \to \left(-\frac{1}{1+2a}, 1 \right)$$

be the inverse function of B_a : $(-1/(1+2a), 1) \to \mathbf{R}$, and define C^{∞} functions $x_a(\rho)$ and $u_a(\rho)$ in $\rho \in \mathbf{R}$ by $x_a(\rho) := B_a^{-1}(\rho)$ and $u_a(\rho) := -\log(A_a(x_a(\rho)))$, respectively. Then $u'_a(\rho) = x_a(\rho)$ and hence

(3.1)
$$u_a''(\rho) \prod_{k=1}^n \left(1 + \mu_{k,a} u_a'(\rho) \right) = e^{-u_a(\rho)}.$$

On $\widetilde{U}_{\alpha} := \widetilde{U}_{\alpha}^+ \cup \widetilde{U}_{\alpha}^-$, we define

(3.2)
$$\rho_{\alpha} := \begin{cases} -\log|z_{\alpha}^{+}|^{2} - \log\left(\kappa_{\alpha}^{-a}h_{\alpha}^{1+a}\right) & \text{on } \widetilde{U}_{\alpha}^{+}, \\ (1+2a)\log|z_{\alpha}^{-}|^{2} - \log\left(\kappa_{\alpha}^{-a}h_{\alpha}^{1+a}\right) & \text{on } \widetilde{U}_{\alpha}^{-}, \end{cases}$$

by setting $\kappa_{\alpha} := h_{K_W}(dw_{\alpha}^1 \wedge \cdots \wedge dw_{\alpha}^n, dw_{\alpha}^1 \wedge \cdots \wedge dw_{\alpha}^n)$ and $h_{\alpha} := h(e_{\alpha}, e_{\alpha})$, that is, on \widetilde{U}_{α}^+ , exp $(-\rho_{\alpha}/2)$ can be formally viewed as the norm of

$$z_{\alpha}^{+}\left(\left(\frac{\partial}{\partial w_{\alpha}^{1}}\wedge\cdots\wedge\frac{\partial}{\partial w_{\alpha}^{n}}\right)^{a}\otimes e_{\alpha}^{1+a}\right)$$

with respect to the Hermitian metric $h_{K_W}^{-a} \otimes h^{1+a}$ for $K_W^{-a} \otimes L^{1+a}$. Here h_{K_W} denotes the Hermitian metric for K_W induced by ω_0 . Then we have $\rho_\alpha = \rho_\beta$ on $\widetilde{U}_\alpha \cap \widetilde{U}_\beta$. Now we consider the following transverse (n+1,n+1)-form Φ_α , with respect to ξ_a , on \widetilde{U}_α :

$$\Phi_{\alpha} := \begin{cases}
\sqrt{-1} (n+1) e^{-u_{a}(\rho_{\alpha})} (q^{*}\omega_{0})^{n} \wedge \frac{dz_{\alpha}^{+} \wedge d\overline{z_{\alpha}^{+}}}{|z_{\alpha}^{+}|^{2}} & \text{on } \widetilde{U}_{\alpha}^{+}, \\
\sqrt{-1} (n+1) e^{-u_{a}(\rho_{\alpha})} (q^{*}\omega_{0})^{n} \wedge (1+2a)^{2} \frac{dz_{\alpha}^{-} \wedge d\overline{z_{\alpha}^{-}}}{|z_{\alpha}^{-}|^{2}} & \text{on } \widetilde{U}_{\alpha}^{-}.
\end{cases}$$

Then $\{\Phi_{\alpha}: \alpha \in A\}$ define the transverse (n+1,n+1)-form Φ on S_W^L . Note that $\mathrm{Ric}(\omega_0) = \sqrt{-1}\,\overline{\partial}\partial\log\omega_0^n = \omega_0$ and that, for each fixed $w_0 \in U_{\alpha}$, we can choose a local frame e_{α} for L and a system $(w_{\alpha}^1,w_{\alpha}^2,\ldots,w_{\alpha}^n)$ of holomorphic local coordinates on U_{α} satisfying

$$d(\kappa_{\alpha}^{-a}h_{\alpha}^{1+a})(w_0) = 0, \quad \omega_0(w_0) = \sqrt{-1}\sum_{k=1}^n dw_{\alpha}^k \wedge d\overline{w_{\alpha}^k},$$

$$(\sqrt{-1}\,\overline{\partial}\partial\log h_{\alpha})(w_0) = \sqrt{-1}\sum_{k=1}^n \mu_k dw_{\alpha}^k \wedge d\overline{w_{\alpha}^k}.$$

Then, along $q^{-1}(w_0) \cap \widetilde{U}_{\alpha}$, we write $\omega_{\alpha}^{\mathrm{T}} := \{\sqrt{-1}/(2n+4)\}\overline{\partial} \partial \log \Phi_{\alpha}$ as a sum

$$\frac{1}{2n+4} \sum_{k=1}^{n} \left\{ \left(1 + \mu_{k,a} u_a'(\rho_\alpha) \right) \sqrt{-1} dw_\alpha^k \wedge d\overline{w_\alpha^k} \right\}$$

$$+ \frac{1}{2n+4} u_a''(\rho_\alpha) \frac{\sqrt{-1} dz_\alpha^+ \wedge d\overline{z_\alpha^+}}{|z_\alpha^+|^2}$$

on $\widetilde{U}_{\alpha}^{+}$, and

$$\begin{split} \frac{1}{2n+4} \sum_{k=1}^{n} \left\{ \left(1 + \mu_{k,a} u_a'(\rho_\alpha)\right) \sqrt{-1} dw_\alpha^k \wedge d\overline{w_\alpha^k} \right\} \\ + \frac{1}{2n+4} (1+2a)^2 u_a''(\rho_\alpha) \frac{\sqrt{-1} dz_\alpha^- \wedge d\overline{z_\alpha^-}}{|z_\alpha^-|^2} \end{split}$$

on \widetilde{U}_{α}^- . Since a>-1/2 and $-1<\mu_k<1$ $(k=1,2,\ldots,n),\ \omega_{\alpha}^{\rm T}$ is a transverse Kähler form, with respect to ξ_a , on $\widetilde{U}_{\alpha}^+\setminus\{z_{\alpha}^+=0\}=\widetilde{U}_{\alpha}^-\setminus\{z_{\alpha}^-=0\}$. Furthermore, by (3.1), we have $\left\{(2n+4)\omega_{\alpha}^{\rm T}\right\}^{n+1}=\Phi_{\alpha}$. Therefore, $\omega_{\alpha}^{\rm T}$ defines a transverse Kähler-Einstein metric, with respect to ξ_a , on $\widetilde{U}_{\alpha}^+\setminus\{z_{\alpha}^+=0\}=\widetilde{U}_{\alpha}^-\setminus\{z_{\alpha}^-=0\}$. Since $\rho_{\alpha}=B_a(x_a(\rho_{\alpha}))$, we have

$$\rho_{\alpha} = \begin{cases} -\log(1 - x_a(\rho_{\alpha})) \\ + \text{ real analytic function in } x_a(\rho_{\alpha}) & \text{near } x_a(\rho_{\alpha}) = 1 \text{ ,} \\ (1 + 2a) \log\left(\frac{1}{1 + 2a} + x_a(\rho_{\alpha})\right) \\ + \text{ real analytic function in } x_a(\rho_{\alpha}) & \text{near } x_a(\rho_{\alpha}) = \frac{-1}{1 + 2a} \text{ ,} \end{cases}$$

while we see from (3.2) that

$$\begin{cases} |z_{\alpha}^{+}|^{-2} = (1 - x_{a}(\rho_{\alpha}))^{-1} \exp \sigma^{+} & \text{near } x_{a}(\rho_{\alpha}) = 1, \\ |z_{\alpha}^{-}|^{-2} = \left(\frac{1}{1 + 2a} + x_{a}(\rho_{\alpha})\right)^{-1} \exp \sigma^{-} & \text{near } x_{a}(\rho_{\alpha}) = \frac{-1}{1 + 2a}. \end{cases}$$

Here σ^+ and σ^- are real analytic functions on \tilde{U}_{α}^+ and \tilde{U}_{α}^- , respectively. Hence the argument as in Step 2 in the proof of [18, Theorem 10.3] is valid for transverse Kähler cases even when the Reeb field is irregular. Therefore, the condition $A_a(1)=0$ implies that $\left\{\omega_{\alpha}^{\rm T}\,;\,\alpha\in A\right\}$ are glued together to define a well-defined global transverse Kähler-Einstein form $\omega^{\rm T}$ on S_W^L with the Reeb field ξ_a .

REMARK 3.3. Let $a \in \mathbf{R}$ be such that $A_a(1) = 0$. On \widetilde{U}_{α}^+ (resp. \widetilde{U}_{α}^-), Φ_{α} is formally viewed as a Hermitian metric for

$$K_W^{-1} \otimes (K_W^a \otimes L^{-(1+a)})^{-1} = (K_W \otimes L^{-1})^{-(1+a)}$$

(resp.
$$(K_W \otimes L)^{-(1+a)/(1+2a)}$$
).

Then, on $\widetilde{U}_{\alpha}^{+}$ (resp. $\widetilde{U}_{\alpha}^{-}$), we put

$$\begin{split} r := \left\{ \left(|\tau_{\alpha}^{+}| \right)^{2(1+a)} \frac{\exp(u_{a}(\rho_{\alpha})) \, \kappa_{\alpha} |z_{\alpha}^{+}|^{2}}{n+1} \right\}^{1/(2n+4)} \\ \left(\text{resp. } r := \left\{ \left(|\tau_{\alpha}^{-}| \right)^{(2(1+a))/(1+2a)} \frac{\exp(u_{a}(\rho_{\alpha})) \, \kappa_{\alpha} |z_{\alpha}^{-}|^{2}}{n+1} \right\}^{1/(2n+4)} \right), \end{split}$$

and $\eta:=\left(\sqrt{-1}(\overline{\partial}-\partial)\log r\right)|_{r=1}$. On \widetilde{U}_{α}^+ (resp. \widetilde{U}_{α}^-), r^{n+2} is regarded as the norm of

$$(\tau_{\alpha}^{+})^{1+a} ((dw_{\alpha}^{1} \wedge \cdots \wedge dw_{\alpha}^{n}) \otimes dz_{\alpha}^{+})$$

$$(\text{resp. } -(1+2a)(\tau_{\alpha}^{-})^{(1+a)/(1+2a)} ((dw_{\alpha}^{1} \wedge \cdots \wedge dw_{\alpha}^{n}) \otimes dz_{\alpha}^{-})),$$

with respect to the Hermitian metric $(\Phi_{\alpha})^{-1}$ for

$$(K_W \otimes L^{-1})^{1+a}$$
 (resp. $(K_W \otimes L)^{(1+a)/(1+2a)}$).

Hence r defines a well-defined C^{∞} function on $K_{M_W^L} \setminus \{\text{zero section}\}$, and in particular S_W^L is identified with the submanifold of $K_{M_W^L}$ defined by the equation r=1. Here, we note that, on $\widetilde{U}_{\alpha}^+ \cap \widetilde{U}_{\alpha}^-$,

$$(\tau_{\alpha}^{+})^{1+a} ((dw_{\alpha}^{1} \wedge \cdots \wedge dw_{\alpha}^{n}) \otimes dz_{\alpha}^{+})$$

$$= -(1+2a)(\tau_{\alpha}^{-})^{(1+a)/(1+2a)} ((dw_{\alpha}^{1} \wedge \cdots \wedge dw_{\alpha}^{n}) \otimes dz_{\alpha}^{-}).$$

Moreover, $g:=(\eta)^2+g^{\rm T}$ is a Riemannian metric on S_W^L and η is a contact form on S_W^L , where $g^{\rm T}$ is the transverse Kähler metric associated to $\omega^{\rm T}$. Furthermore, the fundamental form $\overline{\omega}$ of the cone metric \overline{g} associated to g is given by

$$\overline{\omega} := rdr \wedge \eta + r^2 \omega^{\mathrm{T}}.$$

In view of $d\eta = 2\omega^{T}$, we obtain $d\overline{\omega} = 0$, and hence (S_{W}^{L}, g) is a Sasaki manifold with the Reeb field ξ_{a} .

Now by Fact 1.1, we obtain the following criterion on the existence of Sasaki-Einstein metrics on S_W^L :

PROPOSITION 3.4. *Under the Assumption* 1.3, *if*

(3.5)
$$A_a(1) = -\int_{-1/(1+2a)}^{1} x \prod_{k=1}^{n} (1 + \mu_{k,a} x) dx = 0,$$

then S_W^L admits a Sasaki-Einstein metric with the Reeb field ξ_a .

REMARK 3.6. In the special case a=0, we easily see that (3.5) is nothing but the condition (1.4) in the introduction.

Next, we shall show the existence of $a \in \mathbf{R}$ such that both a > -1/2 and $A_a(1) = 0$ hold. We now put

$$f(x; a) := x \prod_{k=1}^{n} (1 + \mu_{k,a} x),$$

$$F(a) := \int_{-1/(1+2a)}^{1} f(x; a) dx \quad (= -A_a(1)).$$

Since $\lim_{a\to +\infty} F(a) = +\infty$ and $\lim_{a\to -1/2+0} F(a) = -\infty$, the continuity of F allows us to find $a_0 > -1/2$ such that $F(a_0) = 0$. Moreover,

$$F'(a) = \int_{-1/(1+2a)}^{1} \frac{\partial}{\partial a} f(x; a) dx + \frac{-2}{(1+2a)^2} f\left(-\frac{1}{1+2a}; a\right).$$

Note also that $\mu_{k,a} = \mu_k + a(1 + \mu_k)$. Hence for $-1/(1 + 2a) \le x \le 1$,

$$\frac{\partial}{\partial a} f(x; a) = x^2 \sum_{j=1}^n \left\{ (1 + \mu_j) \prod_{k \neq j} (1 + \{\mu_k + a(1 + \mu_k)\} x) \right\} \ge 0,$$

$$f\left(-\frac{1}{1 + 2a}; a\right) = -\left(\frac{1}{1 + 2a}\right)^{n+1} \prod_{k=1}^n \left\{ (1 + a)(1 - \mu_k) \right\} < 0.$$

Now in the expression of F'(a), the first term is nonnegative and the second term is positive. Therefore F'(a) > 0. Hence we obtain the following lemma.

LEMMA 3.7. Under the Assumption 1.3, there exists a unique real number $a_0 > -1/2$ such that $F(a_0) = 0$.

Therefore, by Proposition 3.4 and Lemma 3.7, if Assumption 1.3 is satisfied, then S_W^L always admits a Sasaki-Einstein metric with the Reeb field ξ_{a_0} . On the other hand, in view of [9], [11](see also [26]), we now conclude that $K_{M_W^L}$ admits a complete Ricci-flat Kähler metric in every Kähler class. The proof of Theorem 1.5 is now complete.

4. Examples. In this section, we shall give a couple of examples of Sasaki-Einstein manifolds as an application of Theorem 1.5.

EXAMPLE 4.1. We first put

$$W := \prod_{i=1}^{l} \mathbf{P}^{n_i}(\mathbf{C}) ,$$

$$L := \bigotimes_{i=1}^{l} p_i^* \left(\mathcal{O}_{\mathbf{P}^{n_i}(\mathbf{C})}(\nu_i) \right) ,$$

where $p_i: W \to P^{n_i}(C)$ is the natural projection to the *i*-th factor (i = 1, 2, ..., l). In view of the isomorphism $K_{P^k(C)}^{-1} \cong \mathcal{O}_{P^k(C)}(k+1)$, if

$$-(n_i+1) < v_i < n_i+1$$
, $(i = 1, 2, ..., l)$,

then the pair (W, L) satisfies Assumption 1.3. Hence by Theorem 1.5, S_W^L admits a Sasaki-Einstein metric, though this is toric. Then F(a) in Section 3 is given by

$$F(a) = \int_{-1/(1+2a)}^{1} x \prod_{i=1}^{l} \left(1 + \left\{ \frac{\nu_i}{n_i + 1} + a \left(1 + \frac{\nu_i}{n_i + 1} \right) \right\} x \right)^{n_i} dx.$$

For instance, we consider the simplest case, that is, $W = P^1(C)$ and $L = \mathcal{O}_{P^1(C)}(1)$. In this case, M_W^L is a del Pezzo surface obtained from $P^2(C)$ by blowing up one point, and we see the irregularity of (S_W^L, ξ_{a_0}) by

$$a_0 = \frac{-5 + \sqrt{13}}{12}$$
.

EXAMPLE 4.2. Next, let $W := \operatorname{Gr}(k,p)$ be the complex Grassmannian manifold of all p-dimensional subspaces of C^k , which is a complex manifold of dimension p(k-p). Then there exists an ample line bundle A(k,p) over $\operatorname{Gr}(k,p)$ such that $K_{\operatorname{Gr}(k,p)}^{-1} \cong A(k,p)^k$ (see for instance [24, p. 205]). We put $L := A(k,p)^{\nu}$. If $-k < \nu < k$, then the pair (W,L) satisfies Assumption 1.3. Hence by Theorem 1.5, S_W^L admits a Sasaki-Einstein metric, and if $2 \le p \le k-2$, then S_W^L is non-toric.

EXAMPLE 4.3. Let \mathcal{M}_n be the moduli space of smooth hypersurfaces of degree n in $P^{n+1}(C)$. For the Fermat type hypersurface

$$W_0 := \left\{ [X_0, X_1, \dots, X_{n+1}] \in \mathbf{P}^{n+1}(\mathbf{C}) ; \sum_{i=0}^{n+1} (X_i)^n = 0 \right\} \in \mathcal{M}_n,$$

a theorem of Tian [25] shows that W_0 admits a Kähler-Einstein metric, and in particular

$$\mathcal{M}_n^{\text{KE}} := \{ W \in \mathcal{M}_n ; W \text{ admits a K\"{a}hler-Einstein metric} \}$$

is a non-empty open subset of \mathcal{M}_n . For every $W \in \mathcal{M}_n^{\mathrm{KE}}$, we have $K_W \cong \mathcal{O}_{\mathbf{P}^{n+1}(C)}(-2)|_W$ by adjunction formula. Put $L := \mathcal{O}_{\mathbf{P}^{n+1}(C)}(1)|_W$. Then the pair (W, L) satisfies Assumption 1.3, and Theorem 1.5 shows that S_W^L admits a Sasaki-Einstein metric. If n=3, W is a well-known cubic threefold, and in this case by [7, Theorem 13.12], W is not birationally equivalent to $\mathbf{P}^3(C)$, and S_W^L is again non-toric.

REFERENCES

- [1] C. P. BOYER AND K. GALICKI, 3-Sasakian manifolds, Surv. Differ. Geom. 7 (1999), 123-184.
- [2] C. P. BOYER AND K. GALICKI, A note on toric contact geometry, J. Geome. Phys. 35 (2000), 288–298.
- [3] C. P. BOYER AND K. GALICKI, Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2008.
- [4] C. P. BOYER, K. GALICKI AND J. KOLLÁR, Einstein metrics on spheres, Ann. of Math. 162 (2005), 557–580.
- [5] C. P. BOYER, K. GALICKI AND S. R. SIMANCA, Canonical Sasakian metrics, Comm. Math. Phys. 279 (2008), 705–733.
- [6] K. CHO, A. FUTAKI AND H. ONO, Uniqueness and examples of compact toric Sasaki-Einstein metrics, Comm. Math. Phys. 277 (2008), 439–458.

- [7] C. H. CLEMENS AND P. A. GRIFFITHS, The intermediate Jacobian of the cubic threefold, Ann. of Math. 95 (1972), 281–356.
- [8] A. FUTAKI, An obstruction to the existence of Kähler Einstein metrics, Invent. Math. 73 (1983), 437–443.
- [9] A. FUTAKI, Momentum construction on Ricci-flat Kähler cones, Tohoku Math. J. 63 (2011), 21–40.
- [10] A. FUTAKI, H. ONO AND G. WANG, Transverse Kähler Geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Differential Geom. 83 (2009), 585–635.
- [11] R. GOTO, Calabi-Yau structures and Einstein-Sasakian structures on crepant resolutions of isolated singularities, J. Math. Soc. Japan 64 (2012), 1005–1052.
- [12] Y. HASHIMOTO, M. SAKAGUCHI AND Y. YASUI, Sasaki-Einstein twist of Kerr-AdS black holes, Phys. Lett. B 600 (2004), 270–274.
- [13] G. R. JENSEN, Einstein metrics on principal fibre bundles, J. Differential Geom. 8 (1973), 599-614.
- [14] S. KOBAYASHI, Topology of positively pinched Kaehler manifolds, Tohoku Math. J. 15 (1963), 121–139.
- [15] N. KOISO, On rotationally symmetric Hamilton's equation for Kähler-Einstein metrics, in "Kähler metric and moduli spaces", 327–337, Adv. Stud. Pure Math. 18-I, Kinokuniya and Academic Press, Tokyo and Boston, 1990.
- [16] N. KOISO AND Y. SAKANE, Non-homogeneous Kähler-Einstein metrics on compact complex manifolds, in "Curvature and topology of Riemannian manifolds", 165–179, Lecture Notes in Math. 1201, Springer-Verlag, Berlin, Heidelberg, New York, 1986.
- [17] N. KOISO AND Y. SAKANE, Non-homogeneous Kähler-Einstein metrics on compact complex manifolds, II, Osaka J. Math. 25 (1988), 933–959.
- [18] T. MABUCHI, Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties, Osaka J. Math. 24 (1987), 705–737.
- [19] D. MARTELLI AND J. SPARKS, Toric Sasaki-Einstein metrics on $S^2 \times S^3$, Phys. Lett. B 621 (2005), 208–212.
- [20] D. MARTELLI AND J. SPARKS, Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals, Comm. Math. Phys. 262 (2006), 51–89.
- [21] D. MARTELLI, J. SPARKS AND S. T. YAU, The geometric dual of a-maximisation for toric Sasaki-Einstein manifolds, Comm. Math. Phys. 268 (2006), 39–65.
- [22] D. MARTELLI, J. SPARKS AND S. T. YAU, Sasaki-Einstein manifolds and volume minimisation, Comm. Math. Phys. 280 (2008), 611–673.
- [23] Y. SAKANE, Example of compact Einstein Kähler manifolds with positive Ricci tensor, Osaka J. Math. 23 (1986), 585–616.
- [24] M. TAKEUCHI, Homogeneous Kähler submanifolds in complex projective spaces, Janan. J. Math. (N.S.) 4 (1978), 171–219.
- [25] G. TIAN, On Kähler-Einstein metrics on certain Kähler manifolds with $C_1(M) > 0$, Invent. Math. 89 (1987), 225–246.
- [26] C. VAN COEVERING, Ricci-flat Kähler metrics on crepant resolutions of Kähler cones, Math. Ann. 347 (2010), 581–611.
- [27] M. Y. WANG AND W. ZILLER, Einstein metrics on principal torus bundles, J. Differential Geom. 31 (1990), 215–248.
- [28] X.-J. WANG AND X. ZHU, Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv. Math. 188 (2004), 87–103.

DEPARTMENT OF MATHEMATICS OSAKA UNIVERSITY TOYONAKA, OSAKA 560–0043 JAPAN

E-mail address: mabuchi@math.sci.osaka-u.ac.jp

DEPARTMENT OF MATHEMATICS
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING
SAGA UNIVERSITY
1 HONJO-MACHI, SAGA 840–8502
JAPAN

E-mail address: yasunaka@ms.saga-u.ac.jp