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NEW EXPONENTIAL DISPERSION MODELS FOR COUNT DATA:

THE ABM AND LM CLASSES

Shaul K. Bar-Lev1,* and Ad Ridder2

Abstract. In their fundamental paper on cubic variance functions (VFs), Letac and Mora (The
Annals of Statistics, 1990) presented a systematic, rigorous and comprehensive study of natural expo-
nential families (NEFs) on the real line, their characterization through their VFs and mean value
parameterization. They presented a section that for some reason has been left unnoticed. This section
deals with the construction of VFs associated with NEFs of counting distributions on the set of non-
negative integers and allows to find the corresponding generating measures. As EDMs are based on
NEFs, we introduce in this paper two new classes of EDMs based on their results. For these classes,
which are associated with simple VFs, we derive their mean value parameterization and their associ-
ated generating measures. We also prove that they have some desirable properties. Both classes are
shown to be overdispersed and zero inflated in ascending order, making them as competitive statistical
models for those in use in both, statistical and actuarial modeling. To our best knowledge, the classes
of counting distributions we present in this paper, have not been introduced or discussed before in the
literature. To show that our classes can serve as competitive statistical models for those in use (e.g.,
Poisson, Negative binomial), we include a numerical example of real data. In this example, we compare
the performance of our classes with relevant competitive models.
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1. Introduction and background

Natural exponential families (NEFs) and exponential dispersion models (EDMs) on R play an important role
both in probability and statistical applications. Most of the frequently used distributions are indeed belonging
to such models. However, a huge number of NEFs (or EDMs) have not been used in probabilistic or statistical
modelling for two main reasons: they have not been revealed or do not have explicit functional forms (even not
via power series expansions). This, despite the fact that they could have provided significant and new models
useful in statistical applications. Indeed, the main purpose of this paper is to expose the statistical research
community to various classes of such NEFs. A thorough discussion on this observation is presented in [5].

One of the most neglected reference representing the above situation is the fundamental paper [31] on NEFs
which provides a thorough description and analytic properties of such families along with their mean value
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parameterization. In spite of the fact that their article received many citations, a major and important part
of the article was somehow abandoned without being noticed. This part refers to the section dealing with
the construction of NEFs of counting distributions on the set of nonnegative integers N0. These families are
represented by either polynomial variance functions (VFs) or other nice forms. Moreover, in their Proposition
4.4 they explicitly present a formula that allows to compute, at least numerically, the counting measure µ which
generates the appropriate NEF in terms of its mean m, for further details see also [5]. Such a formula requires
(except for a few limited special cases) some rather cumbersome numerical calculations of the n-th derivative of
product of functions depending on the mean m which are needed for calculating the mass of µ at the point n.

In our opinion, one of the reasons why this formula as well as Proposition 4.4 of [31], were not used is that
in the nineties of the last century (when the [31] article was just published) is related to the fact that there
were no powerful mathematical programs that would allow the complex and cumbersome calculations of the
mass of µ on the nonnegative integers. Fortunately, nowadays, the situation has changed and existing powerful
computing software are available and might be used to calculate. However, despite the nowadays availability
of existing powerful software, it is still intricate or even not possible to carry out the probability calculation of
the relevant NEFs in their general settings. It is therefore necessary to locate special cases of NEFs complying
Proposition 4.4 of [31] for which the software application is possible. And indeed, our aim in this paper is to
achieve this goal and introduce two classes of NEFs, which through further mathematical improvements, allow
the calculation of the appropriate count probabilities of these subclasses of NEFs. We need to point out here
that locating such classes is not as simple as it seems, and requires great care and thoughts in choosing them.
To our best knowledge, the classes of counting distributions we present in this paper have not been introduced
or discussed before in the literature. A fact that will lead to exposure of numerous counting NEFs (as well as
EDMs) that can serve as competitive statistical models for those in use (e.g., Poisson, Negative binomial) in
both, statistical and actuarial modeling.

For this we need to present some preliminaries. As is well known, and as will seen in the sequel, EDMs
are based on NEFs. Hence, we first need to present some basic properties of NEFs and VFs, mean value
parameterization, and then EDMs.

Let µ be a positive Radon measure on R with convex support Cµ. Consider the set

Dµ
.
=

{
θ ∈ R : Lµ(θ)

.
=

∫
R

exp(θx)µ(dx) <∞
}
, (1.1)

and assume that Θµ
.
= intDµ is nonempty. Then, the NEF F(µ) generated by µ is defined by the set of

probability distributions

F(µ)
.
=
{
F
(
θ, µ(dx)

)
= exp

(
θx− kµ(θ)

)
µ(dx) : θ ∈ Θµ

}
, (1.2)

where kµ(θ)
.
= logLµ(θ) is the cumulant transform of µ; kµ is strictly convex and real analytic on Θµ. Moreover,

k′µ(θ) and k′′µ(θ), θ ∈ Θµ, are the respective mean and variance corresponding to F (θ, µ), and the open interval
Mµ

.
= k′µ(Θµ) is called the mean domain of F(µ).

An important observation is that measure µ is not unique for F(µ). LetM be the set of Radon measures ν on
R for which Lν(θ) <∞ on domain Θν . Consider two measures µ, µ∗ ∈M, and suppose that µ∗ is an exponential
shift of µ; i.e., µ∗(dx) = ea+bxµ(dx) for some real a, b. Then a simple calculation shows that F(µ) = F(µ∗).
This holds also reversely, if F(µ) = F(µ∗) for two measures µ, µ∗ ∈ M, then one is an exponential shift of the
other. Consequently, we may denote the NEF by F = F(µ) and its the mean domain M = Mµ to stress that
these do not depend on µ.

Since the function k′µ : Θµ → M is one-to-one, its inverse function
(
k′µ
)−1

: M → Θµ is well defined. When
we compute the variance Vµ(θ)

.
= k′′µ(θ) of the distribution F (θ, µ) as a function of the mean m ∈M , i.e.,

Vµ(m) = k′′µ
(
(k′µ)−1(m)

)
,
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it also does not depend on µ, and we denote it by V (m). The map m 7→ V (m) from M into R+ is called the
variance function (VF) of F . In fact, a VF of an NEF F is a pair (V,M) which uniquely determines the NEF
within the class of NEFs, see [31, 32]. It is important to emphasize that a VF is a transform, not of a particular
distribution, but rather of a family F in the sense that if two VFs (V1,M1) and (V2,M2) of two NEFs F1 and
F2, respectively, satisfy V1 = V2 on M1 ∩M2 6= ∅, then F1 = F2. This would imply that given a VF (V,M), the
mean domain M is the largest open interval on which V is positive real analytic.

Suppose that we would denote the function
(
k′µ
)−1

(·) by ψµ(·). Then we get by differentiating

ψ′µ(m) =
1

k′′µ
(
(k′µ)−1(m)

) =
1

V (m)
.

Similarly, when we would define φµ(·) .
= kµ

(
(k′µ)−1(·)

))
, we get by differentiating

φ′µ(m) =
m

V (m)
.

Again, we find these derivatives to be not dependent on the specific distribution, but only on the VF. Remarkebly,
then their antiderivatives do not depend either on µ. Thus, rather defining the functions ψµ(·) and φµ(·) as
above for specific measure µ, we define these as functions on the mean domain M of NEF F as (arbitrary)
primitives of 1/V (m) and m/V (m), respectively, i.e.,

ψ(m)
.
=

∫
dm

V (m)
, (1.3)

and

φ(m)
.
=

∫
mdm

V (m)
. (1.4)

As a result, consider that a VF (V,M) of an NEF F = F(µ) is given, and suppose that we choose any two
primitives ψ(m) and φ(m) of 1/V (m) and m/V (m), respectively. Then there exists a positive Radon measure
µ∗ ∈M such that

φ(m) = log

∫
R

exp(ψ(m)x)µ∗(dx), m ∈M,

and

F = F(µ∗) =
{
F
(
m,µ∗(dx)

)
= exp

(
xψ(m)− φ(m)

)
µ∗(dx) : m ∈M

}
. (1.5)

The reparameterization of F in (1.5) is called the mean value parameterization of F , see Proposition 2.3 of
[31]. Accordingly, an NEF has two natural presentations: one is parameterized by canonical parameter θ and
is given in (1.2) and the second by the mean parameter m, and is given in (1.5). However, as far as statistical
applications are concerned, the rather more important presentation is the mean value parameterization (as θ is
just an artificial parameter – the argument of the corresponding Laplace transform).

We now present the definitions of steep NEFs and EDMs:

– Steep NEFs: An NEF F(µ) is called steep ⇔ its cumulant transform kµ(θ) is essentially smooth convex
function on Dµ (defined in (1.1)) ⇔M = intCµ, cf. [8, 31]. We shall refer to this definition in the sequel.
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– EDMs: Let F = F(µ) be an NEF generated by µ with Laplace and cumulant transforms Lµ and kµ,
respectively. Denote

Λ =
{
p ∈ R+ : Lpµ is the Laplace transform of a positive Radon measure µp

}
,

then Λ is nonempty due to convolution, and it is called the Jorgensen set (or the dispersion parameter
space in the terminology of EDMs). It has been shown that Λ = R+ iff µ (and thus all members of F(µ))
is infinitely divisible. If p ∈ Λ, the cumulant function of µp is

kµp(θ) = logLpµ(θ) = pkµ(θ).

Hence, the NEF generated by µp is the set of probability distributions

Fp = F(µp)
.
=
{
F
(
θ, µp(dx)

)
= exp

(
θx− pkµ(θ)

)
µp(dx) : θ ∈ Θµp = Θµ

}
.

Furthermore, the mean parameterization goes similarly as above. Denote the VF of Fp by (Vp,Mp), given
by

Vp(m) = k′′µp
(
(k′µp)−1(m)

)
= pk′′µ

(
(k′µ)−1(m/p)

)
= pV (m/p), (1.6)

and Mp = pMµ; denote primitives of 1/Vp(m) and m/Vp(m) by ψp(m) and φp(m), respectively. We choose
these to satisfy

ψp(m) =

∫
dm

Vp(m)
=

∫
dm

pV (m/p)
=

∫
d(m/p)

V (m/p)
= ψ(m/p), (1.7)

and

φp(m) =

∫
mdm

Vp(m)
=

∫
mdm

pV (m/p)
= p

∫
(m/p)d(m/p)

V (m/p)
= pφ(m/p). (1.8)

Then, there is a positive Radon measure µ∗p such that

Fp = F(µ∗p) =
{
F
(
m,µ∗p(dx)

)
= exp

(
xψp(m)− φp(m)

)
µ∗p(dx) : m ∈Mp

}
=
{
F
(
m,µ∗p(dx)

)
= exp

(
xψ(m/p)− pφ(m/p)

)
µ∗p(dx) : m ∈ pM

}
.

(1.9)

The set of NEFs

∪p∈Λ Fp

was termed by [23] the EDM corresponding to µ. In particular if Λ = R+ (i.e., µ is infinitely divisible)
then EDMs are used to describe the error component in generalized linear models.

Many types of VFs of NEFs have been presented and discussed in the literature, for a thorough survey see
[5]. Associated with our study are VF’s having a polynomial structure, for which all of the respective cumulants
and moments are also polynomials. In quite generality, [3] and Corollary 3.3 of [31] showed that any r-th degree
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polynomial of the form

V (m) =

r∑
i=1

aim
i, m ∈ R+, r ∈ N, (1.10)

where ai ≥ 0, i = 1, . . . , r, and
∑r
i=1 ai > 0, is a VF of an infinitely divisible NEF. Special cases are quadratic VFs

[32], and the six strictly cubic VFs [31]. Related to our study are classes of EDM’s with variance functions that are
power functions, or sums of power functions such as in the Tweedie class with unit variance function V (m) =
αmγ [4, 23, 24, 36], the Hinde-Demétrio class with unit variance V (m) = m + mγ [22, 26, 27, 29], Poisson-
Tweedie mixture class with variance V (m) = m+αmγ [25, 26], and Poisson-exponential-Tweedie models which
have the VF V (m) = m+m2 + αmγ [1]. All these variance functions allow for non-integer powers γ > 0.

Recall that for a given VF (V,M), ψ(m) and φ(m) are primitives of 1/V (m) and m/V (m), see (1.3) and
(1.4), respectively. Accordingly, if V is of the general form (1.10) it is not possible to explicitly express ψ(m)
and φ(m), in which case the mean value parameterization (1.9) is useless for any practical consideration. If,
however, for some special cases of the ai’s coefficients, it can be calculated nicely and explicitly then so can
be the corresponding likelihood function based on an appropriate random sample. This fact has a tremendous
significance in statistical inference.

After this long introduction we arrive at the crux of the paper. [31] proved a proposition that (a) characterizes
the VF (V,M) of NEFs that are generated by counting measures on N0, and (b) gives an expression for the
generating measures of such NEFs.

Proposition 1.1 ([31], Prop. 4.4). Let F = F(µ) be an NEF on R with VF (V,M).

(a). F is concentrated on N0 with µ0 > 0 and µ1 > 0 if and only if (i) M = (0, b) for some 0 < b ≤ ∞; (ii)
there exists a real analytic function φ′ on M such that φ′(m) = m/V (m) on M , and such that

lim
m→0

φ′(m) = 1, (1.11)

(b). In this case, let φ be a primitive of φ′, choose a primitives ψ(m) of 1/V (m), satisfying

lim
m→0

m exp
(
− ψ(m)

)
= 1, (1.12)

and define,

G(m)
.
= m exp

(
− ψ(m)

)
, m ∈M.

Then the NEF F of (1.5) is generated by the measure µ∗ ∈M whose entries are computed by

{
µ∗0 = exp

(
φ(m)

)∣∣
m=0

,

µ∗n = 1
n!

(
d

dm

)n−1
((

exp(φ(m))
)
× φ′(m)×

(
G(m)

)n)∣∣∣
m=0

, n = 1, 2, . . . .
(1.13)

Condition (1.11) is necessary for the NEF to be concentrated on the nonnegative integers, however, it leaves
infinitely many choices for the function φ which are all equal upto an additive constant. For our purposes it is
most convenient to impose the condition

lim
m→0

φ(m) = 0. (1.14)
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This condition gives µ∗0 = 1, which is convenient in our analysis of the zero-inflation properties that we discuss
in the sequel. Secondly, we remark that condition (1.12) could be relaxed. We state this as a lemma.

Lemma 1.2. Proposition 1.1 holds for (1.12) relaxed to

lim
m→0

m exp
(
− ψ(m)

)
= c,

where c > 0 is any positive constant.

Proof. Denote the ψ-primitive that satisfies this condition by ψc(m). Clearly, ψc(m) = ψ1(m) − log c, where
ψ1(m) is the primitive of Proposition 1.1. When we implement the computations (1.13) with ψc in stead of ψ1,
the resulting measure µ̃ is an exponential shift of the µ∗ of (1.13).

Returning to the concept of EDM, it is now obvious that the generating measures µ∗p, p ∈ Λ are computed
similarly as in Proposition 1.1.

Corollary 1.3. Let {Fp, p ∈ Λ} be the EDM originating from the NEF F = F(µ) of Proposition 1.1. For any
p ∈ Λ, a generating measure µ∗p for the NEF (1.9) is obtained by the computations (1.13) in which the primitives
are ψp(m) = ψ(m/p), and φp(m) = pφ(m/p).

Proof. Because (i) the mean domain of the NEF Fp is Mp = pM , and (ii) φ′p(0) = φ′(0) = 1, the NEF Fp is
concentrated on N0. Furthermore,

lim
m→0

m exp
(
− ψp(m)

)
= p lim

m→0
(m/p) exp

(
− ψ(m/p)

)
= p. (1.15)

Now apply Lemma 1.2.

Two classes of variance functions that satisfy the conditions for the corresponding NEFs to be concentrated
on the nonnegative integers, were mentioned in [31]. These are the polynomial function

V (m) = m

r∏
i=1

(
1 +

m

pi

)
, M = R+, (1.16)

and the rational function

V (m) =
m∏r

i=1

(
1− m

pi

) , M =
(
0,min(p1, . . . , pr)

)
, (1.17)

where pi > 0, i = 1, 2, . . ., and r ∈ N.
A few simple cases (r ≤ 2) of these classes have been considered in the statistical literature, for instance, the

VF

V (m) = m
(

1 +
m

p

)2

,

which results in the the Abel distribution, also known as generalized Poisson [13, 14].
For r ≥ 3, the corresponding µn’s in (1.13), and thus also the NEF probabilities in (1.5), cannot be presented

neither in closed and explicit forms nor in terms of infinite sum (or some transcendental functions). They can
be derived only through numerical calculations by either mathematical software as Mathematica, or Maple or
by writing appropriate computer programs in 4th generation languages as Matlab, R and Python. This explains
our statement above that many NEFs (at least with polynomial VF structure and degree r ≥ 3) have not
been used for statistical modeling or applications for the mere fact that they have not been known before and
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thus not been considered and investigated. Therefore in this paper we intend to correct to a certain extent
the ‘injustice’ caused to these discrete NEFs. Notice however an important point. When we refer to (1.5) in a
Bayesian framework and when (1.5) serves as a prior distribution then the µn’s calculation becomes superfluous
and redundant when calculating the posterior distribution, as one can choose arbitrarily any two primitives
ψ(m) and φ(m). We shall further relate to this point in Section 2.

In particular, we present in the sequel two subclasses: one of the form (1.16), and one of the form (1.17).
For convenience we say classes although they are subsets of (1.16) and (1.17). These classes of VFs were
chosen because of the relative simplicity of the calculations of ψ(m) and φ(m) for which explicit expressions are
available. The two VF classes are

Vp(m) = m
(

1 +
m

p

)r
, M = R+; (1.18)

Vp(m) =
m(

1− m
p

)r , M = (0, p), (1.19)

where p > 0 and r ∈ N0. Later we will coin each class a name and discuss its properties. However, at this point,
we will notice a very important fact. Both classes are of the form (1.6) representing VFs of EDMs. Consequently,
their corresponding probabilities belong to the realm of EDMs.

The paper is organized as follows. In Section 2 we will discuss further important aspects related to the
practical implementation of Proposition 1.1. In Section 3 we elaborate the two classes presented in (1.18) and
(1.19). For each class we derive expressions for ψ(m) and φ(m) which fulfills the premises of Proposition 1.1. We
then describe some of their properties. In particular it will be shown that the corresponding NEFs’ distributions
are overdispersed and zero-inflated in ascending order in r. A numerical example of real data, presented in
Section 4, compares the performances of our two classes to other well used discrete distributions. This example
demonstrates the superiority of the members of these classes for larger power r of the polynomial VF, vis-a-vis
all other distributions. Section 5 is devoted to some concluding remarks.

2. Further aspects and analysis and presentation
of the two classes

As stated above, our goal is to locate classes of VFs, subclasses of (1.16) and (1.17), for which we can derive
explicitly and relatively simple expressions both for the ψ(m) and φ(m) functions. Our first class has variance
function (see (1.18))

Vp(m) = m
(

1 +
m

p

)r
,

which belongs to the realm of (1.16). The special cases r = 0, r = 1 and r = 2 correspond, respectively, to the
Poisson, negative binomial and Abel (or generalized Poisson) NEF’s. The class in (1.18) is called the ABM class,
as it was first presented by [2] in a Bayesian framework. Further details regarding such a Bayesian framework
for the ABM class can be found in [5]. The second class does not have a polynomial structure. Its variance
function has the form (see (1.19)

Vp(m) =
m(

1− m
p

)r .
We call this class the LM class, as being a subclass of (1.17) which was presented in [31].

Before we proceed to discuss the two classes separately in the subsections below, we will present a number
of general comments regarding these classes (as well as any other classes too).
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1. Steepness: The NEFs corresponding to the two classes of VFs are concentrated on N0, thus their convex
support is C = [0,∞). The ABM class belongs to steep NEFs as its mean domain M = R+ coincides with
intC. In contrast, the LM class is nonsteep as the corresponding mean domain M = (0, p) is a proper
subset of (0,∞).

2. Infinitely divisibility and EDMs: Both classes constitute infinitely divisible NEFs as they are subsets
of (1.10) and thus the dispersion parameter space Λ = R+ (i.e., they are VFs for all p ∈ R+). Thus, as
indicated above, they establish EDMs.

3. The form of Θ: We notice that the set Θ is the image of R+ for the ABM clas, and the image of (0, p) of
the LM class by the map m 7→ θ = ψ(m). Thus, it has the form (−∞, q), for some q ∈ R. Obviously, the
calculation of the inverse function m 7→ θ = ψ(m) cannot be done in an elementary way for r > 2 (and
sometimes also not for r = 2).

If µ is bounded then one can impose conditions on µ to be a probability. The question arises, therefore,
when µ is bounded. The following lemma provides an answer for the ABM class, it goes similarly for the
LM class.

Lemma 2.1. The generating µ of the NEF F is bounded iff q ≥ 0.

Proof. ⇐=: If q > 0 then k(0) < ∞. Recall that ek(0) is the total mass of µ. If q = 0, then for θ < 0 we
assume that limθ→−∞ k(θ) = 0 and write

k(θ) =

∫ θ

−∞
k′(t)dt =

∫ k′(θ)

0

k′(ψ(s))ψ′(s)ds =

∫ k′(θ)

0

s

V (s)
ds

=

∫ k′(θ)

0

ds

(1 + s
p )r

,

where in the last equality we used VF corresponding to the ABM class. Since limθ→0 k
′(θ) = ∞ we can

claim that

lim
θ→0

k(θ) =

∫ ∞
0

ds

(1 + s
p )r

=
p

r − 1
, r ≥ 2.

This shows that when q = 0, the total mass of µ is ep/(r−1). If µ is normalized to make it a probability
then limθ→−∞ k(θ) = 0 is no longer fulfilled after such a normalization.
=⇒: If q < 0 the measure µ is unbounded since 0 does not belong to the closure of Θ.

4. Overdispersion: Recall that in statistics, overdispersion is the presence of greater variability in a data
set than would be expected based on a given statistical model. For instance, the Poisson NEF which is
commonly used in practice to model count data (e.g., number of insurance claims; number of customers
arriving into a queueing system). The theoretical mean and variance for the Poisson model are equal. On
the other hand, in a large number of empirical data sets, the sample variance is considerably larger than
the sample mean. Consequently, researchers have tried to model such data sets by families of distributions,
such as the negative binomial and the generalized Poisson -Abel) distributions, for which the variance is
larger than the mean. The statistical literature is full of articles on this subject, but we refrain from citing
them for the sake of brevity.

Consider the polynomial VF in (1.16) and denote explicitly its degree; i.e.,

Vr+1(m)
.
= m

r∏
i=1

(
1 +

m

pi

)
.
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Then trivially we have that the larger the degree of the polynomial, the larger is Vr, i.e.,

m = V1(m) < V2(m) < · · · .

Firstly, the latter property indicates that all of the associated NEFs distributions are overdispersed with
respect to the Poisson distribution, and secondly, there is an ascending order in r of such an overdispersion.
Similarly, this overdispersion property trivially holds also for the second class given in (1.17). As the ABM,
and the LM are subclasses of (1.17) or(1.16), they share the same overdispersion property. Moreover, one
can simply realize that for any degree r one has V ABMr < V LMr , i.e., the LM class is more overdispersed
than the ABM one.

3. Some analysis of the ABM and LM classes

In the following two subsections we will discuss the two classes in two aspects. One is to find explicit
expressions for ψ(m) and φ(m) functions that satisfy the conditions (1.11), (1.12), and (1.14), and for which
Proposition 1.1 is applicable. The second aspect is to show that the distributions of the relevant NEFs are
zero-inflated with respect to the Poisson NEF and among themselves in an ascending order. Recall that a zero-
inflated model is a statistical model based on a zero-inflated probability distribution, i.e. a distribution that
allows for frequent zero-valued observations. In various insurance data the probability of the event of no claims
during the insured period is rather large and the Poisson model does not fit. Various other models have been
suggested in the realm of zero-inflated models in which the probability of zero is larger than the probability of
nonzero. Such zero-inflated distributions are naturally overdispersed relative to the Poisson distribution. On this
subject, too, the statistical literature is full of relevant articles, but we refrain from quoting them for reasons of
brevity.

In each subsection we provide two propositions. One relates to the computations of the ψp(m), φp(m),
and Gp(m) functions fulfilling the conditions (1.11), (1.14), and (1.15); the second proposition relates to the
zero-inflated property.

3.1. The ABM class

The ABM class has been first introduced by [2] for implementing mortality projections in actuarial science.
In this respect, the Lee-Carter model [30], and variants thereof (e.g. [34]) is a largely acceptable method of
mortality forecasting. [2] have dealt with predicting mortality rates by embedding the Lee-Carter model within
a Bayesian framework. They used the ABM class of counting distributions as alternatives to the Poisson counts
of events (deaths) under the Lee-Carter modeling for mortality forecast and showed that members of the ABM
class predicts better than the Poisson the mortality rates of elderly age people. This has been demonstrated for
national data of the US, Ireland and Ukraine. Since the Bayesian approach was involved, it was not relevant
there to calculate neither the constants of integration for the primitives ψ and φ, nor the µ∗n’s in (1.13), as these
constants and mass points are cancelled out while computing the appropriate posterior distribution, for further
details see [5]. They also did not demonstrate how the general expressions are obtained for ψ and φ. Therefore,
we will provide the appropriate proof.

Proposition 3.1. Consider the ABM class with the variance function given in (1.18) for r ≥ 1. The cor-
responding ψp(m), φp(m) and Gp(m) functions fulfilling the conditions (1.11), (1.14), and (1.15), have the
forms

ψp(m) = log
m

m+ p
+

r−1∑
j=1

1

j

( pj

(m+ p)j
− 1
)

; (3.1)
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φp(m) =

{
p log m+p

p , (r = 1);
p
r−1

(
1−

(
p

m+p

)r−1
)
, (r ≥ 2);

(3.2)

Gp(m) = (m+ p) exp
( r−1∑
j=1

1

j

( pj

(m+ p)j
− 1
))
. (3.3)

We exclude the trivial case r = 0 (Poisson). As usual, an empty sum
∑0
j=1 · = 0 in (3.1) and (3.3) in the

r = 1 case.

Proof. Using the EDM properties (1.7) and (1.8), it suffices to determine the ψ(m), φ(m) and G(m) functions
of the originating ABM NEF with variance function V (m) = m(1 +m)r. Consider∫

1

V (m)
dm =

∫
1

m(1 +m)r
dm,

and apply polynomial division,

1

m(1 +m)r
− 1

m
= − 1

m

(
1−

( 1

1 +m

)r)
= − 1

m

(
1− 1

1 +m

)(
1 +

1

1 +m
+
( 1

1 +m

)2
+ · · ·+

( 1

1 +m

)r−1
)

= − 1

1 +m

r−1∑
j=0

( 1

1 +m

)j
= −

r∑
j=1

1

(1 +m)j
.

Hence

ψ(m) =

∫
1

m(1 +m)r
dm =

∫ ( 1

m
−

r∑
j=1

1

(1 +m)j

)
dm

= logm− log(1 +m) +

r∑
j=2

1

j − 1

1

(1 +m)j−1
+ c = log

m

1 +m
+

r−1∑
j=1

1

j

1

(1 +m)j
+ c,

where c is the integration constant. By the EDM property (1.7) we get

ψp(m) = ψ(m/p) = log
m

m+ p
+

r−1∑
j=1

1

j

pj

(m+ p)j
+ c.

Substituting Gp(m) = m exp
(
− ψp(m)

)
), and solving Gp(0) = p (see Cor. 1.3), gives

Gp(0) = lim
m→0

(m+ p) exp
(
−
r−1∑
j=1

1

j

pj

(m+ p)j
− c
)

= p exp
(
−
r−1∑
j=1

1

j
− c
)

= p

⇔ c = −
r−1∑
j=1

1

j
,
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resulting in the forms (3.1) and (3.3). Recall that ψp maps the mean domain M into the space Θ of the natural
parameter θ. From (3.1) we note that it is not possible to express the inverse map (m as a function of θ),
implying that the corresponding Laplace transform cannot be explicitly expressed as a function of θ. This is
the situation that will prevail in the other classes of VFs under consideration.

Now, to find φp(m) fulfilling (1.14), we again solve first for

φ(m) =

∫
m

V (m)
dm =

∫
1

(1 +m)r
dm =

{
log(1 +m) + d, (r = 1);

− 1
r−1

1
(1+m)r−1 + d, (r ≥ 2),

with integration constant d. Applying EDM property φp(m) = pφ(m/p), and the condition φp(0) = 0, we obtain

d =

{
0, (r = 1);
p
r−1 , (r ≥ 2).

Consequently, the primitive φp to be used in Proposition 1.1 has the form (3.2).

Now we go back to discussing the ABM class in the context of zero-inflated distributions. The probability mass
at zero, using (µ∗p)0 = 1, is

Pr(0; p,m)
.
= (µ∗p)0 exp

(
− φp,r(m)

)
= exp

(
− φp,r(m)

)
, (3.4)

r = 1, 2, . . ., where φp,r(m) denotes the φp(m) function when the VF has degree r+ 1. Note that the probability
at 0 of the Poisson NEF with r = 0, is e−m. We present the following proposition according to which the
probability at 0 is an increasing function in r. the associated distributions become more and more zero-inflated,
a feature that enables the ABM class to serve as statistical model for zero-inflated data.

Proposition 3.2. The zero-mass probability Pr(0; p,m) in the ABM class is increasing in r ≥ 0.

Proof. The zero probabiities are by using (3.4) and (1.8), for any r, p,m > 0,

Pr(0; p,m) = exp
(
− φp,r(m)

)
= exp

(
− pφ1,r(m/p)

)
.

Thus, for showing that Pr(0; p,m) is increasing, it suffices to take p = 1; i.e., to prove that φ1,r(m) is decreasing,
where φ1,r(m) is given in (3.2) with p = 1. First, we consider r > 1 for which

φ1,r(m) =
1

r − 1

(
1−

( 1

1 +m

)r−1
)
.

Define functions {fx(s) : (0,∞)→ R, x ∈ (0, 1)} by

fx(s) =
1

s
(1− xs).

We shall argue that fx(s) is decreasing (in s > 0) for any x ∈ (0, 1). The derivative

d

ds
fx(s) = − 1

s2
(1− xs)− 1

s
xs log x = −1

s

(1

s
+

1

s

(
xs + sxs log x

))
.

A simple calculus shows that xs + sxs log x > −1 for s > 0 for any x ∈ (0, 1) (for instance by determining its
minimum). Thus, fx(s) is decreasing (as function of s > 0), and consequently, φ1,r(m) is decreasing for r > 1,
and Pr(0; p,m) is increasing for r ≥ 2 for any values of p > 0 and m > 0.
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To complete the proof we show (i) P0(0; p,m) < P1(0; p,m), and (ii) P1(0; p,m) < P2(0; p,m).

(i). P0(0; p,m) = e−m is the zero-probability of the Poisson distribution with mean m. From (3.2) we see
P1(0; p,m) =

(
p/(m+ p)

)p
. Thus

P0(0; p,m) < P1(0; p,m) ⇔ e−m <
( p

m+ p

)p ⇔ e−m
(m+ p

p

)p
< 1.

The latter inequality follows easily by taking the logarithm, and by noting that log(1 + x) < x for x > 0.
(ii). It suffices to consider p = 1 to conclude

P1(0; p,m) < P2(0; p,m) ⇔ P1(0; 1,m) < P2(0; 1,m) ⇔ φ1,1(m) > φ1,2(m)

⇔ log(m+ 1) > 1−
( 1

m+ 1

)2
.

Equivalently, log x > 1− 1/x2 for x > 1, which is again a simple calculus exercise.

3.2. The LM class

The LM class is given by VFs of the form (1.19). Recall that the corresponding class of NEFs when r ≥ 1 is
non-steep with mean domain (0, p), support N0 and convex support [0,∞). When r = 0 the corresponding VF
is the Poisson one. [11] considered a special case V (m) = m/(1− m

p ) on the mean domain (0, p) and compute

explicitly a measure µ such that F = F(µ) is an NEF supported on N0.
We will compute the primitives ψp and φp that fulfill the conditions (1.11), (1.14), and (1.15) in much the

same way as we did in Section 3.1 for the ABM class. In Appendix B we will explore a second way to find these
functions, namely by following more closely the proof of Proposition 4.4 of [31], which is based on using the
Lagrange formula, and express the µ∗n’s by means of Hermite polynomials.

Proposition 3.3. Consider the LM class with the variance function given in (1.19) for r ≥ 0. The corresponding
ψp(m), φp(m), and Gp(m) functions fulfilling the conditions (1.11), (1.14), and (1.15), have the forms

ψp(m) = log
m

p
+

r∑
i=1

(−1)i
1

i

(
r

i

)(m
p

)i
; (3.5)

φp(m) =
p

r + 1

(
1−

(
1− m

p

)r+1
)

; (3.6)

Gp(m) = p exp
(
−

r∑
i=1

(−1)i
1

i

(
r

i

)(m
p

)i)
(3.7)

Proof. We determine the ψ(m), φ(m) and G(m) functions of the originating LM NEF with variance function
V (m) = m/(1−m)r. Namely,

∫
1

V (m)
dm =

∫
(1−m)r

m
dm =

∫
1

m

r∑
i=0

(
r

i

)
(−m)i dm

=

∫
1

m
dm+

r∑
i=1

(−1)i
(
r

i

)∫
mi−1 dm = logm+

r∑
i=1

(−1)i
1

i

(
r

i

)
mi + c,
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which gives by (1.7)

ψp(m) = log
m

p
+

r∑
i=1

(−1)i
1

i

(
r

i

)(m
p

)i
+ c.

Substituting Gp(m) = m exp
(
− ψ(m)

)
, and solving Gp(0) = p (see Cor. 1.3), gives

Gp(0) = lim
m→0

p exp
(
−

r∑
i=1

(−1)i
1

i

(
r

i

)(m
p

)i − c) = p ⇔ c = 0,

resulting in the forms (3.5) and (3.7).
For φ(m), ∫

m

V (m)
dm =

∫
(1−m)r dm = − 1

r + 1
(1−m)r+1 + d.

Applying EDM property φp(m) = pφ(m/p), and the condition φp(0) = 0, we obtain

d =
p

r + 1
.

Consequently, the primitive φp has the form (3.6).

We now examine the zero-inflated property. We use similar notations as in the ABM case and denote
by Pr(0; p,m) the zero-mass probability of the distribution associated with the LM NEF obtained by
VF m/(1− m

p )r.

Proposition 3.4. The zero-mass probability Pr(0; p,m) in the LM class is increasing in r ≥ 0.

Proof. Similar as in the proof of Proposition 3.2 it suffices to show that φ1,r(m) is decreasing, where φ1,r(m) is
given in (3.6) with p = 1:

φ1,r(m) =
1

r + 1

(
1− (1−m

)r+1)
, 0 < m < 1; r = 0, 1, . . . .

Define functions {fx(s) : (0,∞)→ R, x ∈ (0, 1)} by

fx(s) =
1

s
(1− xs).

In the proof of Proposition 3.2 we showed that fx(s) is decreasing (in s > 0) for any x ∈ (0, 1). Specifically,
we get that φ1,r(m) is decreasing for r ≥ 0, and Pr(0; p,m) is increasing for r ≥ 0 for any values of p > 0 and
m ∈ (0, p).

Remark 3.5. For the LM class we assumed that r is a natural number. However, all results obtained for this
class are also correct for any real number r ≥ 1 as the LM class of VFs can be shown to fulfill the premises of
[31], Proposition 4.4. Consequently, the finite sum in (3.5) could be replaced by sum of entire series using the
binomial series of Newton instead of the binomial formula of Pascal. Note that the proof of Proposition 3.4 used
already any r ≥ 1.

However, we focus in this work only on classes for which we can obtain relatively simple expressions for both
ψp(m) and φp(m) in the form of finite sums and the like and not in sums of entire series.
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Table 1. Data set of insurance claims.

Value 0 1 2 3 4 5

Frequency 3719 232 38 7 3 1

Table 2. Descriptive statistics.

Number of observations 4000
Mean 0.0865000
Cariance 0.122548
Skewness 5.31602
Kurtosis 41.0067
Fraction zeros 0.929750
Index of dispersion 1.41674

4. A numerical example

In this section we show that our classes are very well suited for fitting small counting data. Consider the
well-known 6 data sets of automobile insurance claims per policy over a fixed period of time that have been
studied in [21]. They fitted Poisson (P) and the negative Binomial distributions (NB), Since then, many models
have been developed for fitting one or more of these data sets [9, 12, 15, 17–20, 26, 28, 35, 37]. It is not the
purpose of this paper to give a full description of all the 6 data sets, of all these fitting models, and of a full
comparison with our ABM and LM models. For the complete picture, we refer to the ancillary file of [7]. Here,
we consider the data set of insurance claims in Zaire in 1974.
The descriptive statistics of the data show over-dispersion (index of dispersion, defined as the variance divided
by the mean, is larger than one), zero-inflation (fraction of zeros is more than 90%), and relative large skewness
and kurtosis (see Tab. 2).

The following two-parameter models and their probability mass functions have been considered for fitting.
We leave out models with one parameter, with three or more parameters, and regression models.

(a). PIG (Poisson-inverse Gaussian distribution) in [37],

pn =

∫ ∞
0

e−x xn

n!
f(x;β, µ) dx, n = 0, 1, . . . ,

where f(x;β, µ) is the inverse Gaussion pdf of the form

f(x;β, µ) =
µ√

2πβx3
e−

(x−µ)2
2βx , x > 0,

with positive parameters β and µ.
(b). NLD (new logarithmic distribution) in [19],

pn =
log(1− αθn)− log(1− αθn+1)

log(1− α)
n = 0, 1, . . . ,

with parameters α < 1 (α 6= 0), and 0 < θ < 1.
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(c). PLB (Poisson-Lindley-Beta prime distribution) in [20],

pn =
α(1 + α)Γ(α+ β)Γ(β + n)

Γ(β)Γ(α+ β + n+ 3)

(
(β + n)(2 + n) + α+ 2

)
n = 0, 1, . . . ,

with positive parameters α, β.
(d). GDP (a new geometric discrete Pareto distribution) in [9],

pn =
qn

(n+ 1)α
− qn+1

(n+ 2)α
, n = 0, 1, . . . ,

with parameters 0 < q ≤ 1 and α ≥ 0.
(e). BTD (Bell-Touchard discrete distribution) in [12],

pn =
1

n!
eθ(1−e

α) αnTn(θ), n = 0, 1, . . . ,

with positive parameters α, θ, and where the Tn(·) are Touchard polynomials; i.e.,

Tn(θ) = e−θ
∞∑
k=0

kn θk

k!

We compare the fitted distributions of the models given above with the distributions of our ABM and LM
classes for a range of powers r. The performances of the fitted distributions are computed, using the parameters
that are reported in the cited references. The mean parameter m in our models is estimated by the sample mean
of the data, while the dispersion parameter p is computed by maximum likelihood estimation. The resulting
values for r = 1, . . . , 10 are shown in Table 3.

The computation of the probabilities of the NEF (1.9) is done by a numerical computer program. Given
parameters m and p of the variance function Vp(m), the functions ψp and φp follow from Proposition 3.1 (ABM
class) and Proposition 3.3 (LM class), the measure (µ∗p)n is computed numerically by solving the derivatives
in (1.13). In Appendix A we give the main computational ingredients of this procedure, but we refer to [7] for
more technical details. Moreover, the code is available at https://github.com/adriaanridder/abm.

Table 3. The estimated dispersion parameter p for the ABM and LM classes.

r ABM LM

1 0.216600 0.277098
2 0.459964 0.520502
3 0.704120 0.764666
4 0.948471 1.009018
5 1.192899 1.253448
6 1.437365 1.497914
7 1.681853 1.742403
8 1.926354 1.986905
9 2.170867 2.231417

10 2.415385 2.475934

https://github.com/adriaanridder/abm
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Table 4. Performance measures of the fitting models. ABM and LM for r ∈ {1, . . . , 10} that
gave the highest p-value.

Model χ2 df p-value RMSE KL

PIG 0.543789 2 0.761935 1.760396 1.9866e-04
NLD 2.312184 2 0.314714 2.235378 3.1047e-04
PLB 0.370556 2 0.830873 1.488770 2.0715e-04
GDP 0.383445 2 0.825536 1.303073 1.7734e-04
BTD 9.251567 2 0.009796 4.056789 8.6835e-04
ABM (r = 10) 0.444362 2 0.800770 0.726298 1.5896e-04
LM (r = 4) 0.382901 2 0.825760 1.044667 1.6972e-04

Let x0, x1, . . . , xK be the data set of counts as presented in Table 1; thus K = 5, and xk is the observed
number of value k. Let N =

∑K
k=0 xk be the total number of observations. The empirical probability mass

function is

p
(emp)
k =

xk
N
, k = 0, . . . ,K.

The probabilities of the distribution of a fitting model are denoted by pmod
k . The performance of a fitting model

is expressed through the following measures.

– χ2 value; taken into account sufficiently large expected numbers in the categories. In this way, the data
set of Table 1 has 5 categories 0, . . . , 3,≥ 4. Doing this as well for the fitting models, the χ2 statistic is

χ2 =

3∑
k=0

(
xk −Np(mod)

k

)2
Np

(mod)
k

+

(∑
k≥4 xk −N

∑
k≥4 p

(mod)
k

)2
N
∑
k≥4 p

(mod)
k

.

– p-value of the χ2 quantile; taken into account the number of categories and the number of parameters that
are estimated from the data. For the data set of Table 1 partitioned in 5 categories and 2 parameters, we
get 5− 2− 1 = 2 degrees of freedom.

– Root mean squared error (RMSE): √√√√ 1

K + 1

K∑
k=0

(
xk −Npmod

k

)2
.

– Kullback-Leibler divergence (KL):

K∑
k=0

p
(emp)
k log

p
(emp)
k

p
(mod)
k

.

When we consider the p-value criterion (see Tab. 4), several distributions are compatible, including the ABM
and LM models. However, for the RMSE and Kullback-Leibler criteria, the ABM and LM models show a major
improvement. In [7] we give an overview of comparisons of these models for many more data sets having various
different statistical properties. The overall picture is that our models show competitive, or best performances
in all cases, while the other models perform sometimes good sometimes bad.

It might be of interest to present the performances of the investigated ABM and LM classes for r = 1, . . . , 10.
We show these in figures.
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Figure 1. Performances of the fitted models of the ABM and LM classes for r upto 10.

From these figures we make a few observations. Firstly, the LM class performs better than the ABM class
for the p-value performance criterion, but not for the other criteria. Secondly, when the degree r of the variance
function increases, the performances of ABM and LM become more and more equal. Also, note that performance
criteria do not alsway show a monotone behaviour.

4.1. Poisson-Tweedie class

A corresponding approach of modelling counting distributions by exploiting the concept of EDM’s with power
variance functions, has been developed in [10, 25, 26] by considering the Poisson-Tweedie class. We shall sketch
the distribution, compute the fit to the data set of Table 1, and compare with our models.

The Poisson-Tweedie distribution consists of a Tweedie distribution mixture of Poisson probabilities [10, 26].
We choose the Tweedie distribution from the EDM with mean m > 0, p > 0 the dispersion parameter, and
γ ≥ 1 the power of the Tweedie variance function. However, we exclude γ = 1 (Poisson distribution), 1 < γ < 2
(compound Poisson), and γ = 2 (Gamma). Then, the variance satisfies the power function

V (m) = m+ p1−γmγ = m
(

1 +
(m
p

)γ−1
)
.

Furthermore, its cumulant is [26],

κ(θ) =
p(γ − 1)α

γ − 2

(
(−t)α −

(
1− t− eθ

)α)
, θ ≤ −t,

where α ∈ (0, 1) is the stability parameter of a positive α-stable distribution, satisfying (γ − 1)(1 − α) = 1.
Parameter t ≤ 0 is the natural parameter of the Tweedie distribution which becomes by reparameterization
with respect to the mean

t = − 1

γ − 1

(m
p

)1−γ
.

From the cumulant one derives a recursion for the associated probabilities P (n) = Pγ(m, p) [16],

P (0) = exp
(p(γ − 1)α

γ − 2

(
(−t)α − (1− t)α

))
,
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Table 5. Performance measures of ABM, and LM models in comparison with the Poisson-
Tweedie.

Model χ2 df p-value RMSE KL

ABM(r = 10) 0.444362 2 0.800770 0.726298 1.5896e-04
ABM(r = 20) 0.428988 2 0.806950 0.754472 1.5961e-04
LM(r = 4) 0.382901 2 0.825760 1.044667 1.6972e-04
PT(γ = 2.683) 0.437404 2 0.803561 1.051929 1.6452e-04

and for n ≥ 0,

P (n+ 1) =
p(γ − 1)α−1(1− t)α−1

n+ 1

n∑
j=0

Γ(j + 1− α)

Γ(1− α)j!

( 1

1− t
)j
P (n− j).

Given the data of Table 1, we executed similar experiments as we did for our models. We considered a range
of γ-values, and given a γ-value, the mean parameter m is estimated by the sample mean of the data, while
the dispersion parameter p is computed by maximum likelihood estimation. From all these fitted models the
highest p-value was obtained for

m = 0.0865, p = 0.1432, γ = 2.683.

The performance of this fitted model is shown in Table 5, where we repeat our best models. The p-values of
the fitted ABM models were increasing with the power r, thus we decided to run the ABM model for powers r
upto r = 20.

The conclusion is that the Poisson-Tweedie is a competitve model to our models, but it performs slightly
worse in all criteria.

5. Concluding remarks

1. In this paper we analysed in depth two classes of EDMs of distributions supported on the set of non-
negative integers, suggested in literature. Specifically, we derive exact formulations of their mean value
parametrization, and we provide computational results. This enables us to execute data modelling which
we show by fitting oiur models to a real data set.

2. The classes of EDMs introduced in this paper can be used, for example, as competitors and alternatives to
the Poisson or negative binomial NEFs for modeling count data in various actuarial aspects and insurance
claims. This has been indeed demonstrated in the numerical section. However, based on our experience in
the insurance and actuarial industry, we have noticed that professionals are very concerned about using
new (both discrete and continuous) distributions to estimate and evaluate various relevant parameters as
the insurance risk factor. So in another paper of ours [6] we considered, just for the sake of demonstration,
the problem of computing the insurance risk factor

`(x) = P
( N∑
k=0

Yk > x
)
,

for large values of x, where N is a discrete random variable, counting the number of claims during a fixed
period of time, and the Yi’s are the respective independent claim sizes. The conventional actuarial literature
is full with models in which N has either Poisson or negative binomial distributions whereas the Yi’s have
a common gamma or inverse Gaussian or even positive stable distribution. [6] used ’unconventional’
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NEF distributions for N by taking the Abel, strict arcsine and Takács NEFs, i.e., NEFs having cubic
VFs characterized by [31]. For data of a Swedish claims at a car insurance company they considered all
combinations of the distributions of N and the Yi’s mentioned above and demonstrated that the best fit
for such data is obtained for the pair (arcsine, positive stable).

3. Consequently, we trust that the ABM and and LM classes (as well as other similar classes) are going to
play a significant role as a ’new generation’ of counting distributions and to have a ’prosperous future’
in applications to actuarial science data as well as to other statistical data. Indeed, in [7] the present
authors conducted a project in which more than 20 sets of count data from the statistical literature were
collected. Such data were modeled by some conventional discrete distributions and were compared to
count probabilities belonging to the ABM and LM classes. And so, as we expected, all of the latter count
probabilities, and with respect to various of metrics or goodness-of-fit tests, have shown superiority and
provided a much better fit for each of these data sets.

4. One last remark. Researchers may avoid using the LM class as it is non-steep. However, another important
class of NEFs having power VFs of the form (V,M) = (αmγ ,R+), α > 0, γ < 0 (which belong to the
Tweedie scale) is also non-steep. Indeed, for the latter class M = R+ whereas its convex support C = R.
This class though is frequently used in various applications.

Appendix A. ABM computations

In this section we briefly sketch how the measure µ∗ of the ABM distribution is computed in our code.
An extended version can be found in [7], and the code is available at https://github.com/adriaanridder/abm.
Consider the variance function of the EDM, Vp(m) = m(1 +m/p)r, for the cases r ≥ 2. The required functions
ψp, φp, and Gp are given in Proposition 3.1, and the measure µ∗ is given in Proposition 1.1 to be

µ∗n =
1

n!

( d

dm

)n−1
eHn(m)

∣∣∣
m=0

,

where

Hn(m) = φp(m) + log φ′p(m) + n logGp(m)

= φp(m) + log φ′p(m)− n
(
ψp(m)− log(m)

)
.

Apply the chain rule for µ∗n:

( d

dm

)n−1
eHn(m) =

∑ (n− 1)!

k1!k2! · · · kn−1!

(( d

dx

)k
ex
)
x=Hn(m)

n−1∏
j=1

(H(j)
n (m)

j!

)kj
,

where the sum is over all nonnegative integer solutions of the Diophantine equation
∑n−1
j=1 jkj = n − 1, and

where k =
∑n−1
j=1 kj . This leads to

µ∗n =
1

n
eHn(0)

∑ n−1∏
j=1

(
H

(j)
n (0)/j!

)kj
kj !

.

Using the expressions of ψp and φp as presented in (3.1) and (3.2), we can write the Hn function in the form

Hn(m) = q0 +

r−1∑
i=1

qi(m+ p)−i + qr log(m+ p).

https://github.com/adriaanridder/abm
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Thus the derivatives of Hn are sums of derivatives of (m+ p)−i and log(m+ p).
The computation of the LM class measure goes similarly.

Appendix B. LM miscellaneous

We now present a second way to compute the µn’s for the NEFs corresponding to the LM class by means of
Hermite polynomials, a way suggested to us by Gérard Letac (a personal communication).

Proposition B.1. Let F be the NEF corresponding to the VF m/(1 − m
p )r, 0 < m < p. Then F is generated

by

δ0 +

∞∑
k=1

pk

k!
ν∗k,

where ν∗k is the k-th fold convolution of the positive measure ν on N given by

ν(n) =
1

n!n

[(
d

dm

)n−1

enP (m)

]
m=0

and

P (m) = −
∞∑
k=1

(−r)k
k!k

mk,

where (−r)k is the Pochhammer symbol

(−r)k = −r(−r + 1)(−r + 2) · · · (−r + k − 1).

Proof. It sufficers to consider p = 1. For this case we have

dθ =
dm

VF (m)
= (1−m)r

dm

m
=

dm

m
+

∞∑
k=1

(−r)k
k!

mk−1dm

Thus θ = logm−P (m) which by denoting w = eθ we get m = weP (m). Now apply the Lagrange formula which
states that if h(w) = wg(h(w)) then

h(w) =

∞∑
n=1

wn

n!

[
(

d

dm
)n−1(g(m))n

]
m=0

.

When applying this formula to m = h(w) = k′µ(θ) and g(m) = eP (m) we get

k′µ(θ) =

∞∑
n=1

wn

n!

[
(

d

dm
)n−1enP (m)

]
m=0

.

Since dθ = dw/w we obtain

kµ(θ) =

∞∑
n=1

wn

n!n

[
(

d

dm
)n−1enP (m)

]
m=0

=

∞∑
n=1

ν(n)wn,
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and the remainder of the proof is standard.

Example B.2. For r = 1, P (m) = m and ν(n) = nn−2/n!.

Example B.3. For r = 2, P (m) = 2m−m2/2 but the computation of[
(

d

dm
)n−1en(2m−m2/2)

]
m=0

is more delicate. For such a computation with use the formula for Hermite polynomials, see] [33, p.130], by
which

e2xt−t2 =

∞∑
k=0

Hk(x)
tk

k!
.

Setting x =
√

2n and t =
√
n/2m yields

en(2m−m2/2) =

∞∑
k=0

Hk(
√

2n)
(n

2

)k/2 mk

k!
.

By employing the Taylor formula it follows that[
(

d

dm
)n−1en(2m−m2/2)

]
m=0

= Hn−1(
√

2n)
(n

2

)(n−1)/2

and thus

ν(n) =
1

n!n
Hn−1(

√
2n)

(n
2

)(n−1)/2

.
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