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New Exponential Estimates for Time-Delay Systems

Shengyuan Xu, James Lam, and Maiying Zhong

Abstract—This note considers the problem of exponential stability for
time-delay systems. In terms of linear matrix inequalities, a new sufficient
condition for exponential stability is obtained. Based on this, an improved
upper bound of the decay rate can be easily calculated. When time-varying
norm-bounded parameter uncertainties appear, a new sufficient condition
for robust exponential stability of uncertain time-delay systems is also pro-
vided. The reduced conservatism of the proposed conditions is illustrated
via two numerical examples.

Index Terms—Exponential stability, linear matrix inequality (LMI),
time-delay systems, uncertain systems.

I. INTRODUCTION

Time-delay systems have been investigated by many researchers
since they are encountered in engineering systems, biology, eco-
nomics, and other areas [7], [11]. Stability analysis of time-delay
systems is of both practical and theoretical importance since time de-
lays are frequently the main cause of instability and poor performance
of a system. A great number of stability results have been proposed
in the literature; see, e.g., [1]–[4], [6], [14]–[16], and the references
therein. These results can be classified into two types according to
their dependence of the delay size; that is, delay-dependent stability
results and delay-independent ones. Delay-dependent stability results
are generally less conservative than delay-independent ones.

It is noted that many stability results for time-delay systems are con-
cerned with asymptotic stability. In practical applications, however,
it is also important to find estimates of the transient decay rate of a
delay system. Therefore, the problem of exponential stability has been
studied. For instance, an estimate of the decay rate of a linear stable
delay systems was given in [10], which was further improved in [5].
By using the properties of matrix measure, sufficient conditions for
the exponential stability of time-delay systems were obtained in [13].
When time-varying delays appear, some robust exponential stability re-
sults were proposed in [12]. However, the conditions in both [12] and
[13] are not easy to check. Very recently, by a linear matrix inequality
(LMI) approach, exponential stability conditions were presented in [8]
and [9], respectively. These conditions can be easily checked.

In this note, we provide a new exponential stability condition for
time-delay systems by choosing an appropriate Lyapunov–Krasovskii
functional and introducing slack variables. Based on this, an upper
bound of the decay rate can be easily calculated. When time-varying
norm-bounded parameter uncertainties appear, a robust exponential
stability condition is also provided. Both the exponential stability and
the robust exponential stability conditions are given in terms of LMIs.
The proposed conditions in this note are less conservative than some
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of those in the literature, which is demonstrated via two numerical
examples.

Notation: Throughout this note, for real symmetric matrices X and
Y , the notation X � Y (respectively, X > Y ) means that the matrix
X � Y is positive semidefinite (respectively, positive definite). I is an
identity matrix with appropriate dimension. The superscript “T ” rep-
resents the transpose. The notations j � j and k � k refer to the Euclidean
vector norm and the induced matrix two-norm, respectively. We use
�min( � ) and �max( � ) to denote the minimum and maximum eigen-
value of a symmetric matrix, respectively. Matrices, if their dimensions
are not explicitly stated, are assumed to have compatible dimensions.

II. MAIN RESULTS

Consider the following time-delay system:

(�) : _x(t) = Ax(t) + A1x(t� h) (1)

x(t) = '(t) 8t 2 [�h; 0] (2)

where x(t) 2 n is the state, and '(t) is the initial condition. The
scalar h > 0 is the delay of the system, A and A1 are known real
constant matrices.

Definition 1: System (�) is said to be exponentially stable with a
decay rate � if there exist scalars � � 1 and � > 0 such that jx(t)j �
�e��tj'jh where j'jh = sup�h���0 j'(�)j.

We provide a new exponential stability test for delay system (�) in
the following theorem.

Theorem 1: For given scalars � > 0 and h > 0; the time-delay
system (�) is exponentially stable with a decay rate � if there exist
matrices P1 > 0; P3 > 0; Q > 0; Z1 > 0; Z2 > 0; Y;W; S; and P2
such that the LMIs, as shown in (3) and (4) at the bottom of the next
page, hold.

~A(�) = A+ �I (5)
~A1(�) = e

�h
A1 (6)


(�) = P1 ~A(�) + ~A(�)TP1 + P2

+ P
T

2 � Y � Y
T +Q+ hZ2 (7)

	1(�) = P1 ~A1(�)� P2 + Y �W
T (8)

	2(�) = ~A(�)TP2 + P3 � S
T (9)

	3(�) = ~A1(�)
T
P2 � P3 + S

T
: (10)

Proof: Let

�(t) = e
�t
x(t): (11)

Then, it is easy to see that the delay system (�) is transformed to

_�(t) = ~A(�)�(t) + ~A1(�)�(t� h) (12)

�(t) = �(t) = e
�t
'(t) 8t 2 [�h; 0]: (13)

Under the condition of the theorem, we first show the asymptotic sta-
bility of the delay system (12). To this end, we define a Lyapunov func-
tional candidate for (12) as follows:

V (�t) = V1(�t) + V2(�t) + V3(�t) (14)
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where t � h, and

�t = �(t+ �) � 2h � � � 0

V1(�t) = �(t)TP1�(t)

V2(�t) = 2�(t)TP2
t

t�h

�(�)d�

+
t

t�h

�(�)d�
T

P3

t

t�h

�(�)d�

+
t

t�h

�(�)TQ�(�)d�

V3(�t) =
0

�h

t

t+�

_�(s)TZ1 _�(s)dsd�

+
0

�h

t

t+�

�(s)TZ2�(s)dsd�:

Then, we have the time derivative of Vi(�t); i = 1; 2; 3; along the
trajectories of (12) as

_V1(�t) = 2�(t)TP1[ ~A(�)�(t) + ~A1(�)�(t� h)] (15)

_V2(�t) = 2[ ~A(�)�(t) + ~A1(�)�(t� h)]TP2
t

t�h

�(�)d�

+ 2�(t)TP2[�(t)� �(t� h)]

+ 2 [�(t)� �(t� h)]T P3
t

t�h

�(�)d�

+ �(t)TQ�(t)� �(t� h)TQ�(t� h) (16)
_V3(�t) = h _�(t)TZ1 _�(t) + h�(t)TZ2�(t)

�
t

t�h

_�(�)TZ1 _�(�)d�

�
t

t�h

�(�)TZ2�(�)d�: (17)

By using the Newton-Leibniz formula

t

t�h

_�(�)d� = �(t)� �(t� h)

and (15)–(17), we obtain

_V (�t) = �(t)T P1 ~A(�) + ~A(�)TP1

+ P2 + P
T
2 +Q+ hZ2 �(t)

+ 2�(t)T [P1 ~A1(�)� P2]�(t � h)

+ 2�(t)T [ ~A(�)TP2 + P3]
t

t�h

�(�)d�

+ 2�(t� h)T [ ~A1(�)
T
P2 � P3]

t

t�h

�(�)d�

� �(t� h)TQ�(t� h) + h[ ~A(�)�(t)

+ ~A1(�)�(t� h)]TZ1[ ~A(�)�(t) + ~A1(�)�(t� h)]T

�
t

t�h

_�(�)TZ1 _�(�)d� �
t

t�h

�(�)TZ2�(�)d�

+ 2�(t)TY
t

t�h

_�(�)d� � 2�(t)TY [�(t)� �(t� h)]

+ 2�(t� h)TW
t

t�h

_�(�)d�

� 2�(t� h)TW [�(t)� �(t� h)]

+ 2
t

t�h

�(�)T d�S
t

t�h

_�(�)d�

� 2
t

t�h

�(�)T d�S[�(t)� �(t� h)]

=
1

h2

t

t�h

t

t�h

�(t; �; �)T�(�)�(t; �; �)d�d� (18)

where

�(t; �; �) = [ �(t)T �(t� h)T �(�)T _�(�)T ]T

�(�) =


(�) 	1(�) h	2(�) hY

	1(�)
T �Q�W �W T h	3 (�) hW

h	2(�)
T h	3(�)

T �hZ2 h2S

hY T hWT h2ST �hZ1

+ h

~A(�)TZ1
~A1(�)

TZ1

0

0

Z
�1
1

~A(�)TZ1
~A1(�)

TZ1

0

0

T

:

Now, by Schur complement, it follows from (3) that �(�) < 0. By this
and (18), it is easy to have

_V (�t) � �aj�(t)j2 (19)

where a = �min(��(�)) > 0. Now, let k1 =
max(k ~A(�)k; k ~A1(�)k). Then, for any t � 0, it follows
from (12) that

j�(t)j = �(0) +
t

0

[ ~A(�)�(s) + ~A1(�)�(s� h)]ds

� j�(0)j+ k1

t

0

[j�(s)j+ j�(s� h)j]ds

� j�(0)j+ 2k1
t

�h

j�(s)jds:


(�) 	1 (�) h	2 (�) hY h ~A (�)T Z1
	1 (�)

T
W +W T �Q h	3 (�) hW h ~A1 (�)

T
Z1

h	2 (�)
T

h	3 (�)
T �hZ2 h2S 0

hY T hWT h2ST �hZ1 0

hZ1 ~A (�) hZ1 ~A1 (�) 0 0 �hZ1

< 0 (3)

P1 P2

P T
2 P3

> 0 (4)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 51, NO. 9, SEPTEMBER 2006 1503

Then, for any 0 � t � h, we have

j�(t)j � j�(0)j+ 2k1
0

�h

j�(s)jds+ 2k1
t

0

j�(s)jds

� (2k1h+ 1)j�jh + 2k1
t

0

sup
0�r�s

j�(r)jds:

Therefore, for any 0 � t � h,

sup
0�s�t

j�(s)j � (2k1h+ 1)j�jh + 2k1
t

0

sup
0�r�s

j�(r)jds:

Applying the Gronwall–Bellman Lemma to this inequality gives that
for any 0 � t � h

sup
0�s�t

j�(s)j � (2k1h+ 1)j�jh exp(2k1h): (20)

Thus

sup
0�s�h

j�(s)j2 � (2k1h+ 1)2j�j2h exp(4k1h): (21)

Note that

0

�h

t

t+�

_�(s)TZ1 _�(s)dsd� � h
t

t�h

_�(s)TZ1 _�(s)ds

(22)
0

�h

t

t+�

�(s)TZ2�(s)dsd� � h
t

t�h

�(s)TZ2�(s) ds:

(23)

Then, by (14) and (21)–(23), we have

V (�h) � k2 j�(h)j2 +
h

0

�(s)ds

2

+
h

0

j _�(s)j2ds+ 2
h

0

j�(s)j2ds

� k2(h
2 + 2h+ 1) sup

0�s�h

j�(s)j2

+ k2

h

0

j _�(s)j2ds

� k2(h+ 1)2 sup
0�s�h

j�(s)j2

+ k2k
2
1

h

0

[j�(s)j+ j�(s� h)j]2ds

� k2 (h+ 1)2 + 2hk21 sup
0�s�h

j�(s)j2

+ 2k2k
2
1hj�j

2
h

� k3j�j
2
h (24)

where

k2 = max(�max(P ); h�max(Z1); h�max(Z2); �max(Q))

k3 = k2 (h+ 1)2 + 2hk21

� (2k1h+ 1)2 exp(4k1h) + 2k2k
2
1h

P =
P1 P2

P T
2 P3

:

Now, by (4), (14), and (19), it is easy to see that for any t � h

�min(P )j�(t)j
2 � V (�t) � V (�h):

This together with (24) implies that for any t � h

j�(t)j2 �
k3

�min(P )
j�j2h: (25)

Noting the relationship in (11) and the inequality in (25), we have that
for any t � h,

jx(t)j2 �
k3

�min(P )
e
�2�tj'j2h (26)

Similarly, by (20), we have

sup
0�s�h

jx(s)j = sup
0�s�h

e
��sj�(s)j

� (2k1h+ 1)j'jh exp(2k1h): (27)

Then, it follows from (26) and (27) that for any t > 0

jx(t)j � max (2k1h+ 1)

� exp(2k1h+ �h);
k3

�min(P )
e
��tj'jh:

Therefore, by Definition 1, we have that the time-delay system (�) is
exponentially stable with a decay rate �. This completes the proof.

Remark 1: Theorem 1 provides a new exponential stability condi-
tion for time-delay system (�) in terms of LMIs. With this result, an
upper bound of the decay rate can be calculated easily.

Remark 2: It is worth pointing out that the method in Theorem 1
can also be used to obtain exponential stability condition for neutral
systems. To show this, we consider the following neutral system:

_x(t) +D _x(t� h) = Ax(t) + A1x(t� h): (28)

By (11), it is easy to see that the neutral system in (28) is transformed
to

_�(t) + D̂(�) _�(t� h) = Â(�)�(t) + Â1(�)�(t� h) (29)

where

D̂(�) = e
�h
D Â (�) = A + �I Â1(�)

= e
�h (A1 + �D) :

Choose a Lyapunov functional candidate for (28) as follows:

V (�t) = V1(�t) + V2(�t) + V3(�t) + V4(�t)

where Vi(�t); i = 1; 2; 3; are given in (14), and

V4(�t) =
t

t�h

_�(s)TZ3 _�(s)dsd�
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TABLE I
COMPARISON OF THE DECAY RATES IN EXAMPLE 1

with Z3 > 0. Then, following the same line as in the derivation of
Theorem 1, we can easily obtain a sufficient condition for exponential
stability of the neutral system in (28).

By Theorem 1, it is easy to obtain the following delay-dependent
asymptotic stability result for time-delay system (�).

Corollary 1: The time-delay system (�) is asymptotically stable
if there exist matrices P1 > 0; P3 > 0; Q > 0; Z1 > 0; Z2 >

0; Y;W; S; and P2 such that the following LMIs hold:


̂ 	̂1 h	̂2 hY hATZ1

	̂T

1 W +W T
�Q h	̂3 hW hAT

1 Z1

h	̂T

2 h	̂T

3 �hZ2 h2S 0

hY T hWT h2ST �hZ1 0

hZ1A hZ1A1 0 0 �hZ1

< 0

P1 P2

P T

2 P3
> 0

where


̂ = P1A + A
T
P1 + P2 + P

T

2

� Y � Y
T +Q+ hZ2 (30)

	̂1 = P1A1 � P2 + Y �W
T (31)

	̂2 = A
T
P2 + P3 � S

T (32)

	̂3 = A
T

1 P2 � P3 + S
T
: (33)

Remark 3: It is worth mentioning that although the Lyapunov–
Krasovskii functional in (14) was also used in [14] to investigate the
asymptotic stability of time-delay systems, the slack variable S in
Theorem 1 has not been introduced in [14] since in the derivation of
asymptotic stability in [14] only single integrals were used while we
use double integrals (see the proof of Theorem 1); the use of double
integrals makes it possible to introduce the slack variable S in our
case. It is now well known that it is helpful to reduce conservatism
in stability results for delay systems by introducing slack variables.
Thus, the introduction of the slack variable S in Corollary 1 may also
reduce conservatism in the asymptotic stability condition in [14].

To show the reduced conservatism of the exponential stability con-
dition in Theorem 1, we consider the time-delay system in [8] in the
form of (1) with

A =
�3 �2

1 0
A1 =

�0:5 0:1

0:3 0
:

The upper bounds of the decay rate �� calculated by the methods in
[8], [9] and Theorem 1 are compared in Table I. It can be seen that the
result in Theorem 1 is less conservative than those in [8] and [9] for
this example.

Now, we consider a time-delay system with time-varying norm-
bounded parameter uncertainties described by

(�̂) : _x(t) = (A+�A(t))x(t)

+ (A1 +�A1(t))x(t� h) (34)

x(t) = �(t) 8t 2 [�h; 0] (35)


(�) + �ETE 	1(�) + �ETE1 h	2(�) hY h ~A(�)TZ1 P1D

	1(�)
T + �ET

1 E W +W T
�Q+ �ET

1 E1 h	3(�) hW h ~A1(�)
TZ1 0

h	2(�)
T h	3(�)

T
�hZ2 h2S 0 hPT

2 D

hY T hWT h2ST �hZ1 0 0

hZ1
~A(�) hZ1

~A1(�) 0 0 �hZ1 hZ1D

DTP1 0 hDTP2 0 hDTZ1 ��I

< 0

P1 P2

P T

2 P3
> 0


̂ + �ETE 	̂1 + �ETE1 h	̂2 hY hATZ1 P1D

	̂T

1 + �ET

1 E W +W T
�Q+ �ET

1 E1 h	̂3 hW hAT

1 Z1 0

h	̂T

2 h	̂T

3 �hZ2 h2S 0 hPT

2 D

hY T hWT h2ST �hZ1 0 0

hZ1A hZ1A1 0 0 �hZ1 hZ1D

DTP1 0 hDTP2 0 hDTZ1 ��I

< 0

P1 P2

P T

2 P3
> 0
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TABLE II
COMPARISON OF THE DECAY RATES IN EXAMPLE 2

where

[ �A(t) �Ah(t) ] = DF (t)[E E1 ] (36)

andF (t) 2 k�l is an unknown time-varying matrix function bounded
by

F (t)TF (t) � I 8t: (37)

By Theorem 1, it is easy to have the following result.
Theorem 2: For given scalars � > 0 and h > 0; the uncertain

time-delay system (�̂) is robustly exponentially stable with a decay
rate � if there exist matrices P1 > 0; P3 > 0; Q > 0; Z1 > 0; Z2 >

0; Y;W; S; P2 and a scalar � > 0 such that the first set of LMIs shown
at the bottom of the previous page hold, where 
(�);	1(�);	2(�);
and 	3(�) are given in (7)–(10), respectively.

By Theorem 2, it is easy to have the following robust asymptotic
stability results.

Corollary 2: The uncertain time-delay system (�̂) is robustly
asymptotically stable if there exist matrices P1 > 0; P3 > 0; Q >

0; Z1 > 0; Z2 > 0; Y;W; S; P2 and a scalar � > 0 such that the
second set of LMIs shown at the bottom of the previous page hold,
where 
̂; 	̂1; 	̂2; and 	̂3 are given in (30)–(33), respectively.

To compare the robust exponential stability result in Theorem 2 with
that in [9], we consider an uncertain time-delay system in the form of
(34)–(37) with

A =
�4 1

0 �4
A1 =

0:1 0

4 0:1

and D = 0:2I; E = E1 = I . Then, it is to see that this system
can be rewritten in the form of that in [9, Ex. 2] with k�A(t)k �
0:2; k�A1(t)k � 0:2. The comparison of the upper bound of the decay
rates �� obtained by [9] and Theorem 2 is given in Table II, which shows
that the condition in Theorem 2 is less conservative than that in [9] for
this example.

III. CONCLUSION

This note has provided a new exponential stability condition for
time-delay systems in terms of LMIs. Based on this, an upper bound of
the decay rate can be calculated easily. When parameter uncertainties
appear in a time-delay system, a new robust exponential stability con-
dition has been proposed. Both the exponential stability and the robust
exponential stability conditions proposed in this note are less conser-
vative than some of those in the literature, which has been illustrated
via two numerical examples.
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