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AND RELATED NUMBERS AND POLYNOMIALS

Yilmaz Simsek

The main purpose of this paper is to construct new families of special num-
bers with their generating functions. These numbers are related to many
well-known numbers, which are Bernoulli numbers, Fibonacci numbers, Lucas
numbers, Stirling numbers of the second kind and central factorial numbers.
Our other inspiration of this paper is related to the Golombek’s problem [15]
“Aufgabe 1088. El. Math., 49 (1994), 126–127”. Our first numbers are not
only related to the Golombek’s problem, but also computation of the nega-
tive order Euler numbers. We compute a few values of the numbers which
are given by tables. We give some applications in probability and statistics.
That is, special values of mathematical expectation of the binomial distribu-
tion and the Bernstein polynomials give us the value of our numbers. Taking
derivative of our generating functions, we give partial differential equations
and also functional equations. By using these equations, we derive recurrence
relations and some formulas of our numbers. Moreover, we come up with a
conjecture with two open questions related to our new numbers. We give two
algorithms for computation of our numbers. We also give some combinato-
rial applications, further remarks on our new numbers and their generating
functions.
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1. INTRODUCTION

In this section, we consider the following question:

What could be more basic tools to compute the negative order of the first
and the second kind Euler numbers? One of motivations of this paper is associated
with this question and its answer. Another motivation of this paper is related to
the work of Golombek [15], which is entitled Aufgabe 1088.

Here, let C, R, Q, Z, N be the sets of complex numbers, real numbers, rational
numbers, integers, and positive integers, respectively and let N0 = {0, 1, 2, 3,. . . } =
N ∪ {0}.

Golombek gave the following novel combinatorial sum:

(1)

k∑
j=0

(
k
j

)
jn =

dn

dtn
(
et + 1

)k |t=0 ,

where n ∈ N. Golombek [15] also mentioned that this sum is related to the following
sequence

n2n−1, n(n+ 1)2n−2, . . .

We introduce new families of special numbers, which are not only used in
counting techniques and problems, but also computing negative order of the first
and the second kind Euler numbers and other combinatorial sums. Here, our tech-
nique is related to the generating functions and their functional equations. In the
historical development of mathematics, we can observe that the generating func-
tions play a very important role in pure and applied mathematics. These function
are powerful tools in solving counting problems and investigating properties of the
special numbers and polynomials. In addition, the generating functions are also
used in computer programming, in physics, and in other areas. Briefly, in Physics,
generating functions, which arise in Hamiltonian mechanics, are quite different from
generating functions in mathematics. The generating functions are functions whose
partial derivatives generate the differential equations that determine a system’s dy-
namics. These functions are also related to the partition function of statistical
mechanics (cf. [11], [21], [37]). In mathematics, a generating function can be
expanded as formal power series in one indeterminate whose coefficients encode in-
formation about a sequence of numbers and that is indexed by the natural numbers
(cf. [11], [12], [14], [13], [21], [37], [29], [40]). As far as we know, the generating
function is firstly discovered by Abraham de Moivre (26 May 1667 -27 November
1754, French mathematician) (cf. [21]). In order to solve the general linear recur-
rence problem, Moivre constructed the concept of the generating functions in 1730.
In work of Doubilet et al. [14], we also see that Laplace (23 March 1749-5 March
1827, French mathematician, physicist and statistician) discovered the remarkable
correspondence between set theoretic operations and operations on formal power
series. Their method gives us great success to solve a variety of combinatorial prob-
lems. They developed new kinds of algebras of generating functions better suited to
combinatorial and probabilistic problems. Their method depends on group algebra
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(or semigroup algebra) (see, for details, [14]). It is well-known that there are many
different ways or approaches to generate a sequence of numbers and polynomials
from the series or the generating functions. The purpose of this paper is to con-
struct the generating functions for new families of numbers involving Golombek’s
identity in (1), Stirling numbers, central factorial numbers, Euler numbers of neg-
ative order, rook numbers and combinatorial sums. Our method and approach
provides a way of constructing new special families of numbers and combinatorial
sums. We show how several of these numbers and these combinatorial sums relate
to each other. We pose a conjecture with two open questions associated with our
new numbers and their generating functions.

We organize our paper as follows:

In Section 2, we briefly review some special numbers and polynomials, which
are Bernoulli numbers, Euler numbers, Stirling numbers, central factorial numbers
and array polynomials.

In Section 3, we give a generating function. By using this function, we define
a family of new numbers y1(n, k;λ). We investigate many properties including
recurrence relations of these numbers by using their generating functions. We
compute a few values of the numbers y1(n, k;λ), which are given by tables. We give
some remarks and comments related to the Golombek’s identity and the numbers
y1(n, k; 1). Finally, we give a conjecture with two open questions.

In Section 4, we give a generating function for a new family of the other
numbers y2(n, k;λ). By using this function, we investigate many properties with
a recurrence relation of these numbers. We compute a few values of the numbers
y2(n, k;λ), which are given by tables. We give relations between these numbers,
Fibonacci numbers, Lucas numbers, and λ-Stirling numbers of the second kind. We
also give some combinatorial sums.

In Section 5, we define λ-central factorial numbers C(n, k;λ). By using their
generating function, we derive some identities and relations including these numbers
and the others.

In Section 6, we give some applications related to the special values of math-
ematical expectation for the binomial distribution, the Bernstein polynomials and
the Bernoulli polynomials.

In Section 7, by using the numbers y1(n, k;λ), we compute the Euler numbers
of negative order. In addition, we compute a few values of these numbers, which
are given by tables.

In Section 8, we give two algorithms for our computations.

In Section 9, we give combinatorial applications, including a rook num-
bers and polynomials. We also give combinatorial interpretation for the numbers
y1(n, k; 1). Finally in the last section, we give further remarks with conclusion.

The principal value ln z is the logarithm whose imaginary part lies in the
interval (−π, π]. Moreover we also use the following notational conventions:

0n =

{
1, (n = 0)
0, (n ∈ N)
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and (
λ
0

)
= 1 and

(
λ
v

)
=
λ(λ− 1) · · · (λ− v + 1)

v!
=

(λ)v
v!

(n ∈ N, λ ∈ C)

(cf. [4], [12], [42]). For combinatorial example, we will use the notations of Bona
[5], that is the set {1, 2, . . . , n} is an n-element set, that is, n distinct objects.
Therefore, Bona introduced the shorter notation [n] for this set. The number
n(n − 1)(n − 2) · · · (n − k + 1) of all k-element lists from [n] without repetition
occurs so often in combinatorics that there is a symbol for it, namely

(n)k = n(n− 1)(n− 2) · · · (n− k + 1)

(cf. [5, pp. 11-13.]).

2. Background

In this section, we give a brief introduction about Bernoulli numbers, Euler
numbers, the (λ-) Stirling numbers and array polynomials, which will be used in
subsequent sections.

In [2]-[45], we see that there are many known properties and relations in-
volving various kind of the special numbers and polynomials such as Bernoulli
polynomials and numbers, Euler polynomials and numbers, Stirling numbers and
also rook polynomials and numbers by making use of some standard techniques
based upon generating functions and other known techniques.

Bernoulli polynomials are defined by means of the following generating func-
tion (cf. [13]-[45]):

t

et − 1
etx =

∞∑
n=0

Bn(x)
tn

n!

(|t| < 2π). One can observe that

Bn = Bn(0),

which denotes Bernoulli numbers (cf. [13]-[45]; see also the references cited in each
of these earlier works).

The sum of powers of integers is related to the Bernoulli numbers and poly-
nomials:

(2)

n∑
k=0

kr =
1

r + 1
(Br+1(n+ 1)−Br+1) ,

(cf. [13], [40], [42]).
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The first kind Apostol-Euler polynomials of order k, with k ≥ 0, E
(k)
n (x;λ)

are defined by means of the following generating function:

(3) FP1(t, x; k, λ) =

(
2

λet + 1

)k
etx =

∞∑
n=0

E(k)
n (x;λ)

tn

n!

(|t| < π when λ = 1 and |t| < |ln (−λ)| when λ 6= 1), λ ∈ C, k ∈ N with, of course,

E(k)
n (λ) = E(k)

n (0;λ),

which denote the first kind Apostol-Euler numbers of order k (cf. [20], [13], [28],
[26], [30], [40], [45]). Substituting k = λ = 1 into (3), we have the first kind Euler

numbers En = E
(1)
n (1), which are defined by means of the following generating

function:
2

et + 1
=

∞∑
n=0

En
tn

n!
,

(|t| < π) (cf. [13]-[45]; see also the references cited in each of these earlier works).

The second kind Euler numbers E∗n are defined by means of the following
generating function:

2

et + e−t
=

∞∑
n=0

E∗n
tn

n!

(|t| < π
2 ) (cf. [8], [13], [24], [26], [30], [42], [45]; see also the references cited in

each of these earlier works).

Stirling numbers of the second kind are used in pure and applied mathematics.
These numbers occur in combinatorics and in the theory of partitions. The Stirling
numbers of the second kind, denoted by S2(n, v), the number of ways to partition
a set of n objects into k groups ([5], [7], [12], [37], [42]).

Let v ∈ N0 and λ ∈ C. The λ-Stirling numbers of the second kind S2(n, v;λ)
are generalized of the Stirling number of the second kind. These numbers S2(n, v;λ)
are defined by means of the following generating function:

(4) FS(t, v;λ) =
(λet − 1)

v

v!
=

∞∑
n=0

S2(n, v;λ)
tn

n!
.

For further information about these numbers, the reader may be referred to [25]
and ([34], [33], [39]; see also the references cited in each of these earlier works).

Observe that
S2(n, v) = S2(n, v; 1),

which are computing by the following formulas:

xn =

n∑
v=0

(
x
v

)
v!S2(n, v)
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or

S2(n, v) =
1

v!

v∑
j=0

(
v
j

)
(−1)j (v − j)n

(cf. [13]-[45]; see also the references cited in each of these earlier works). A
recurrence relation for these numbers is given by

S2(n, k) = S2(n− 1, k − 1) + kS2(n− 1, k),

with
S2(n, 0) = 0 (n ∈ N); S2(n, n) = 1 (n ∈ N); S2(n, 1) = 1 (n ∈ N)

and S2(n, k) = 0 (n < k or k < 0) (cf. [13]-[45]; see also the references cited in
each of these earlier works).

Let v ∈ N0 and λ ∈ C. In [34], we defined the λ-array polynomials Snv (x;λ)
by means of the following generating function:

(5) FA(t, x, v;λ) =
(λet − 1)

v

v!
etx =

∞∑
n=0

Snv (x;λ)
tn

n!

(cf. [4], [34]).

The array polynomials Snv (x) are defined by means of the following generating
function:

(6) FA(t, x, v) =
(et − 1)

v

v!
etx =

∞∑
n=0

Snv (x)
tn

n!
,

(cf. [4], [10], [34]; see also the references cited in each of these earlier works). By
using the above generating function, we have

Snv (x) =
1

v!

v∑
j=0

(−1)v−j
(
v
j

)
(x+ j)

n

with
S0

0(x) = Snn(x) = 1, Sn0 (x) = xn

and for v > n,
Snv (x) = 0

(cf. [10], [34], [35]; see also the references cited in each of these earlier works).

Recently, central factorial numbers T (n, k) have been studied by many au-
thors. These numbers are used in theory of numbers, combinatorics and probability.
Central factorial numbers T (n, k) (of the second kind) are defined by means of the
following generating function:

(7) FT (t, k) =
1

(2k)!

(
et + e−t − 2

)k
=

∞∑
n=0

T (n, k)
t2n

(2n)!
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(cf. [5], [7], [12], [41], [35], [37]; see also the references cited in each of these earlier
works).

These numbers have the following relations:

xn =

n∑
k=0

T (n, k)x(x− 1)(x− 22)(x− 32) · · · (x− (k − 1)2).

Combining the above equation with (7), we also have

T (n, k) = T (n− 1, k − 1) + k2T (n− 1, k),

where n ≥ 1, k ≥ 1, (n, k) 6= (1, 1). For n, k ∈ N, T (0, k) = T (n, 0) = 0 and
T (n, 1) = 1 (cf. [5], [7], [12], [41], [35], [37]).

3. A family of new numbers y1(n, k;λ)

In this section, we give generating function for the numbers y1(n, k;λ). We
give some functional equations and differential equations of this generating func-
tion. By using these equations, we derive various new identities and combinatorial
relations involving these numbers. Some of our observations on these numbers can
be briefly expressed as follows: the numbers y1(n, k;λ) are related to the λ-Stirling
numbers of the second kind, the central factorial numbers, the Euler numbers of
negative orders and the Golombek’s identity.

Let k ∈ N0 and λ ∈ C. We define these numbers, y1(n, k;λ) by the following
generating function:

(8) Fy1(t, k;λ) =
1

k!

(
λet + 1

)k
=

∞∑
n=0

y1(n, k;λ)
tn

n!
.

The function Fy1(t, k;λ) is an analytic function.

By using (8), we get

∞∑
n=0

y1(n, k;λ)
tn

n!
=

∞∑
n=0

 1

k!

k∑
j=0

(
k
j

)
jnλj

 tn

n!
.

Comparing the coefficients of tn on both sides of the above equation, we arrive at
the the following theorem:

Theorem 1. Let n ∈ N0. The following identity holds:

(9) y1(n, k;λ) =
1

k!

k∑
j=0

(
k
j

)
jnλj .
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We assume that λ 6= 0. For k = 0, 1, 2, 3, 4 and n = 0, 1, 2, 3, 4, 5, we use (9)
to compute a few values of the numbers y1(n, k;λ) as follows:

n\k 0 1 2 3 4
0 1 λ+ 1 1

2
λ2 + λ+ 1

2
1
6
λ3 + 1

2
λ2 + 1

2
λ+ 1

6
1
24
λ4 + 1

6
λ3 + 1

4
λ2 + 1

6
λ+ 1

24

1 0 λ λ2 + λ 1
2
λ3 + λ2 + 1

2
λ 1

6
λ4 + 1

2
λ3 + 1

2
λ2 + 1

6
λ

2 0 λ 2λ2 + λ 3
2
λ3 + 2λ2 + 1

2
λ 2

3
λ4 + 3

2
λ3 + λ2 + 1

6
λ

3 0 λ 4λ2 + λ 9
2
λ3 + 4λ2 + 1

2
λ 8

3
λ4 + 9

2
λ3 + 2λ2 + 1

6
λ

4 0 λ 8λ2 + λ 27
2
λ3 + 8λ2 + 1

2
λ 32

3
λ4 + 27

2
λ3 + 4λ2 + 1

6
λ

5 0 λ 16λ2 + λ 81
2
λ3 + 16λ2 + 1

2
λ 128

3
λ4 + 81

2
λ3 + 8λ2 + 1

6
λ

Table 1: Some numerical values of the numbers y1(n, k;λ).

For k = 0, 1, 2, . . . , 9 and n = 0, 1, 2, . . . , 9, we also use (9) to compute a few
values of the numbers y1(n, k; 1) as follows:

n\k 0 1 2 3 4 5 6 7 8 9
0 1 2 2 4

3
2
3

4
15

4
45

8
315

2
315

4
2835

1 0 1 2 2 4
3

2
3

4
15

4
45

8
315

2
315

2 0 1 3 4 10
3 2 14

15
16
45

4
35

2
63

3 0 1 5 9 28
3

20
3

18
5

14
9

176
315

6
35

4 0 1 9 22 85
3 24 224

15
328
45

102
35

62
63

5 0 1 17 57 274
3

275
3

328
5

1624
45

5048
315

208
35

6 0 1 33 154 925
3 367 4529

15
8416
45

3224
35

2360
63

7 0 1 65 429 3238
3

4580
3

7223
5

9065
9

173216
315

8576
35

8 0 1 129 1222 11665
3 6554 107114

15
252268

45
118717

35
104288

63

9 0 1 257 3537 42994
3

86645
3

181458
5

1444534
45

6781748
315

402723
35

Table 2: Some numerical values of the numbers y1(n, k; 1).

Some special values of y1(n, k;λ) are given as follows:

y1(0, k;λ) =
1

k!
(λ+ 1)k,

y1(n, 0;λ) = 0, (n ∈ N)

and
y1(n, 1;λ) = λ, (n ∈ N) .

By using (8), we derive the following functional equation

λkekt =

k∑
l=0

(−1)k−l
(
k
l

)
l!Fy1(t, l;λ).
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Combining (8) with the above equation, we get

λk
∞∑
n=0

(kt)
n

n!
=

∞∑
n=0

(
k∑
l=0

(−1)k−l
(
k
l

)
l!y1(n, l;λ)

)
tn

n!
.

Comparing the coefficients of t
n

n! on both sides of the above equation, we obtain the
following theorem:

Theorem 2.

knλk =

k∑
l=0

(−1)k−l
(
k
l

)
l!y1(n, l;λ).

We give a relationship between the numbers y1(n, k;λ) and the λ-Stirling
numbers of the second kind by the following theorem:

Theorem 3.

S2(n, k;λ2) =
k!

2n

n∑
l=0

(
n
l

)
S2(l, k;λ)y1(n− l, k;λ).

Proof. By using (4) and (8), we derive the following functional equation:

FS(2t, k;λ2) = k!FS(t, k;λ)Fy1(t, k;λ).

From the above equation, we have

∞∑
n=0

2nS2

(
n, k;λ2

) tn
n!

=

∞∑
n=0

S2 (n, k;λ)
tn

n!

∞∑
n=0

y1(n, k;λ)
tn

n!
.

Therefore

∞∑
n=0

2nS2

(
n, k;λ2

) tn
n!

=

∞∑
n=0

(
k!

n∑
l=0

(
n
l

)
S2(l, k;λ)y1(n− l, k;λ)

)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we get the
desired result.

A relationship between the numbers y1(n, k;λ), S2(n, k;λ3) and the array
polynomials Snk (x;λ) is given by the following theorem:

Theorem 4.

S2(n, k;λ3) =

n∑
l=0

k∑
j=0

(
n
l

)(
k
j

)
λ2k−2jj!

3n
y1(l, j;λ)Sn−lk (2k − 2j;λ).
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Proof. Combining (4), (5) and (8), we get

FS(3t, k;λ3) =

k∑
j=0

k!

(k − j)!
λ2k−2jFA(t, 2k − 2j, k;λ)Fy1(t, j;λ).

By using the above functional equation, we obtain

∞∑
n=0

3nS2

(
n, k;λ3

) tn
n!

=

k∑
j=0

k!

(k − j)!
λ2k−2j

∞∑
n=0

Snk (n, 2k − 2j;λ)
tn

n!

∞∑
n=0

y1(n, j;λ)
tn

n!
.

Therefore

∞∑
n=0

3nS2

(
n, k;λ3

) tn
n!

=

∞∑
n=0

n∑
l=0

k∑
j=0

(
n
l

)(
k
j

)
j!λ2k−2jy1(l, j;λ)Sn−lk (2k−2j;λ)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at
the desired result.

There are many combinatorial applications for (9). That is, by substituting
λ = 1 into (9), we set

(10) B(n, k) = k!y1(n, k; 1).

In [15], Golombek gave the following formula for (9):

B(n, k) =
dn

dtn
(
et + 1

)k |t=0 .

Remark 1. If we substitute λ = −1 into (9), then we get the Stirling numbers of
the second kind (cf. [5]-[44]):

S2(n, k) = (−1)ky1(n, k;−1) =
1

k!

k∑
j=0

(−1)k−j
(
k
j

)
jn.

Remark 2. We claim that the numbers B(n, k) are related to the following num-
bers:

ak2k

where the sequence ak is a positive integer depend on k. Consequently, in the work
of Spivey Identity 8-Identity 10 Spevy, we see

B(0, k) = 2k,

B(1, k) = k2k−1,

B(2, k) = k(k + 1)2k−2,

see also [5, p. 56, Exercise 21] and [11, p. 117].
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Remark 3. In [38, Identity 12.], Spivey also proved the following novel identity
by the falling factorial method:

(11) B(m,n) =

m∑
j=0

(
n
j

)
j!2n−jS2(m, j).

The numbers B(0, k) are given by means of the following well-known gener-
ating function: Let |x| < 1

2 , we have

∞∑
k=0

B(0, k)xk =
1

1− 2x
.

The numbers B(1, k) are given by means of the following well-known generating
function: Let |x| < 1

2 , we have

∞∑
k=1

B(1, k)xk =
x

(1− 2x)
2 .

Remark 4. In work of Boyadzhiev [6, p.4, Eq-(7)], we have

k∑
j=0

(
k
j

)
jnxj =

n∑
j=0

(
k
j

)
j!S2(n, j)xj(1 + x)k−j .

Substituting x = 1 into the above equation, we arrive at (11).

Theorem 5. Let d ∈ N and m0,m1,m2, ...,md ∈ Q . Let m0 6= 0. Thus we have

(12)

d−1∑
v=0

mvB(d− v, k) = 2k−d
(
k
d

)
.

Proof. It is well-known that

(1 + x)k =

k∑
j=0

(
k
j

)
xj .

Taking the dth derivative, with respect to x, we obtain

(13)

(
k
d

)
(1 + x)k−d =

k∑
j=0

(
k
j

)(
j
d

)
xj−d.

Substituting x = 1 into the above equation, we get

(14) 2k−d
(
k
d

)
=

k∑
j=0

(
k
j

)(
j
d

)
.
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In [36], we have (
j
d

)
= m0j

d +m1j
d−1 + · · ·+md−1j,

where m0,m1, . . . ,md−1 ∈ Q. Therefore

2k−d
(
k
d

)
=

k∑
j=0

(
k
j

)(
m0j

d +m1j
d−1 + · · ·+md−1j

)
.

Thus we get

2k−d
(
k
d

)
=

d−1∑
v=0

mv

k∑
j=0

(
k
j

)
jd−v.

Combining (10) with the above equation, we have

2k−d
(
k
d

)
=

d−1∑
v=0

mvB(d− v, k).

This completes the proof.

There are many combinatorial arguments of (13). That is, if we substitute
d = 3 and 4 into (13), then we compute B(3, k) and B(4, k), respectively, as follows:

B(3, k) = k2(k + 3)2k−3

and
B(4, k) = k(k3 + 6k2 + 3k − 2)2k−4.

By using (12), we derive the following result:

B(d, k) =
2k−d

m0

(
k
d

)
−
d−1∑
v=1

mv

m0
B(d− v, k).

Therefore, we conjecture that

B(d, k) = (kd + x1k
d−1 + x2k

d−2 + · · ·+ +xd−2k
2 + xd−1k)2k−d,

where x1, x2, . . . , xd−1 and d are positive integers. Consequently, we arrive at the
following open questions:

1-How can we compute the coefficients x1, x2, . . . , xd−1?

2-We assume that for |x| < r

∞∑
k=1

B(d, k)xk = fd(x).

Is it possible to find fd(x) function?
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3.1. Recurrence relation and some identities for the numbers y1(n, k;λ)

Here, by applying derivative operator to the generating functions (8), we give
a recurrence relation and other formulas for the numbers y1(n, k;λ).

Theorem 6. Let k ∈ N. The following identity holds:

y1(n+ 1, k;λ) = ky1(n, k;λ)− y1(n, k − 1;λ).

Proof. Taking derivative of (8), with respect to t, we obtain the following partial
differential equation:

∂

∂t
Fy1(t, k;λ) = kFy1(t, k;λ)− Fy1(t, k − 1;λ).

Combining (8) with the above equation, we get

∞∑
n=1

y1(n, k;λ)
tn−1

(n− 1)!
= k

∞∑
n=0

y1(n, k;λ)
tn

n!
−
∞∑
n=0

y1(n, k − 1;λ)
tn

n!
.

After some elementary calculations, comparing the coefficients of tn

n! on both sides
of the above equation, we obtain the desired result.

Theorem 7. Let k ∈ N. The following identity holds:

∂

∂λ
y1(n, k;λ) =

n∑
j=0

(
n
j

)
y1(j, k − 1;λ).

Proof. Taking derivative of (8), with respect to λ, we obtain the following partial
differential equation:

(15)
∂

∂λ
Fy1(t, k;λ) = etFy1(t, k − 1;λ).

Combining (8) with the above equation, we get

∞∑
n=0

∂

∂λ
y1(n, k;λ)

tn

n!
=

∞∑
n=0

n∑
j=0

(
n
j

)
y1(j, k − 1;λ)

tn

n!
.

After some elementary calculations, comparing the coefficients of tn

n! on both sides
of the above equation, we obtain the desired result.

Theorem 8. Let k ∈ N. The following identity holds:

λ
∂

∂λ
y1(n, k;λ) = ky1(n, k;λ)− y1(n, k − 1;λ).
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Proof. By using (15), we obtain the following partial differential equation:

λ
∂

∂λ
Fy1(t, k;λ) = kFy1(t, k;λ)− Fy1(t, k − 1;λ).

Combining (8) with the above equation, we get

∞∑
n=0

λ
∂

∂λ
y1(n, k;λ)

tn

n!
=

∞∑
n=0

ky1(n, k;λ)
tn

n!
−
∞∑
n=0

y1(n, k − 1;λ)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we get the
desired result.

4. A family of new numbers y2(n, k;λ)

In this section, we define a family of new numbers y2(n, k;λ) by means of the
following generating function:

(16) Fy2(t, k;λ) =
1

(2k)!

(
λet + λ−1e−t + 2

)k
=

∞∑
n=0

y2(n, k;λ)
tn

n!
,

where k ∈ N0 and λ ∈ C.

By using (16) with their functional equation, we derive various identities and
relations including our new numbers, the Fibonacci numbers, the Lucas numbers,
the Stirling numbers and the central factorial numbers.

We get the following explicit formula for the numbers y2(n, k;λ):

Theorem 9. Let n, k ∈ N. The following identity holds:

(17) y2(n, k;λ) =
1

(2k)!

k∑
j=0

(
k
j

)
2k−j

j∑
l=0

(
j
l

)
(2l − j)n λ2l−j .

Proof. By (16), we have

∞∑
n=0

y2(n, k;λ)
tn

n!
=

∞∑
n=0

 1

(2k)!

k∑
j=0

(
k
j

)
2k−j

j∑
l=0

(
j
l

)
(2l − j)n λ2l−j

 tn

n!
.

Comparing the coefficients of t
n

n! on both sides of the above equation, we obtain the
desired result.

For k = 0, 1, 2, 3 and n = 0, 1, 2, 3, 4, 5,we use (17) to compute a few values of
the numbers y2(n, k;λ) as follows:
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n\k 0 1 2 3

0 1 1
2λ + λ

2 + 1 λ2+4λ
24 + 4λ+1

24λ2 + 1
4

λ3+6λ2

720 + λ
48 + 1

48λ + 6λ+1
720λ3 + 1

36

1 0 λ
2 −

1
2λ

λ2+2λ
12 − 2λ+1

6λ2
λ3+4λ2

240 + λ
48 −

1
48λ −

4λ+1
240λ3

2 0 λ
2 + 1

2λ
λ2+λ

6 + λ+1
6λ2

λ3

80 + λ2

30 + λ
48 + 1

48λ + 1
30λ2 + 1

80λ3

3 0 λ
2 −

1
2λ

2λ2+λ
6 − λ+2

6λ2
3λ3

80 + λ2

15 + λ
48 −

1
48λ −

1
15λ2 − 3

80λ3

4 0 λ
2 + 1

2λ
2λ2+λ

3 + λ+4
6λ2

9λ3

80 + 2λ2

15 + λ
48 + 1

48λ + 2
15λ2 + 9

80λ3

5 0 λ
2 −

1
2λ

8λ2+λ
6 − λ+8

6λ2
27λ3

80 + 4λ2

15 + λ
48 −

1
48λ −

4
15λ2 − 27

80λ3

Table 3: Some numerical values of the numbers y2(n, k;λ).

By using (8) and (16), we get the following functional equation:

Fy2(t, k;λ) =
k!

(2k)!

k∑
j=0

Fy1(t, j;λ)Fy1
(
−t, k − j;λ−1

)
.

By combining (8) and (16) with the above equation, we obtain

∞∑
n=0

y2(n, k;λ)
tn

n!
=

k!

(2k)!

k∑
j=0

( ∞∑
n=0

y1(n, j;λ)
tn

n!

∞∑
n=0

(−1)ny1(n, k − j;λ−1)
tn

n!

)
.

Therefore

∞∑
n=0

y2(n, k;λ)
tn

n!
=

k!

(2k)!

∞∑
n=0

k∑
j=0

n∑
l=0

(−1)n−l
(
n
l

)
y1(l, j;λ)y1(n−l, k−j;λ−1)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, the numbers
y2(n, k;λ) is given in terms of the numbers y1(n, k;λ) by the following theorem:

Theorem 10. The following identity holds:

(18) y2(n, k;λ) =
k!

(2k)!

k∑
j=0

n∑
l=0

(−1)n−l
(
n
l

)
y1(l, j;λ)y1(n− l, k − j;λ−1).

Theorem 11. The following identity holds:

y1(n, 2k;λ) = λk
n∑
j=0

(
n
j

)
kn−jy2(j, k;λ).

Proof. By using (8) and (16), we get the following functional equation:

λkektFy2(t, k;λ) = Fy1(t, 2k;λ).
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From the above functional equation, we obtain

∞∑
n=0

y1(n, 2k;λ)
tn

n!
= λk

∞∑
n=0

(kt)n

n!

∞∑
n=0

y2(n, k;λ)
tn

n!
.

Therefore

∞∑
n=0

y1(n, 2k;λ)
tn

n!
=

∞∑
n=0

λk n∑
j=0

(
n
j

)
kn−jy2(j, k;λ)

 tn

n!
.

Comparing the coefficients of t
n

n! on both sides of the above equation, we obtain the
desired result.

By substituting λ = 1 into (16), we have

Fy2(t, k) =
1

(2k)!

(
et + e−t + 2

)k
.

The function Fy2(t, k) is an even function. Consequently, we get the following
result:

y2(2n+ 1, k; 1) = 0.

Thus, we get

(19) Fy2(t, k) = Fy2(t, k; 1) =

∞∑
n=0

y2(n, k)
t2n

(2n)!
.

By using (19), we give the following explicit formula for the numbers (y2(n, k) =
y2(n, k; 1)):

Corollary 1. The following identity holds:

(20) y2(n, k) =
1

(2k)!

k∑
j=0

(
k
j

)
2k−j

j∑
l=0

(
j
l

)
(2l − j)n .

From the equation (20), we see that

y2(0, 0) = 1.

For k = 0, 1, 2, . . . , 9 and n ∈ N, we use (20) to compute a few values of the numbers
y2(n, k) as follows:

y2(n, 0) = 0,

y2(n, 1) =
(−1)n + 1

2
,
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y2(n, 2) =
(−1)n + 1

6
+

2n−3 − (−2)n−3

3
,

y2(n, 3) =
(−1)n + 1

48
+

2n−3 − (−2)n−3

15
+

3n−2 + (−3)n−2

80
,

y2(n, 4) =
(−1)

n
+ 1

720
+

2n−4 + (−2)
n−4

105
+

2n−5 − (−2)
n−5

315
+

3n−2 + (−3)
n−2

560

+
4n−3 − (−4)

n−3

630
,

y2(n, 5) =
(−1)

n
+ 1

17280
+

2n−4 + (−2)
n−4

+ 2n−5 − (−2)
n−5

2835
+

3n−2 + (−3)
n−2

8960

+
2
(

4n−4 + (−4)
n−4
)

2835
+

5n−2 + (−5)
n−2

145152
,

y2(n, 6) =
(−1)

n
+ 1

604800
+

2n−5 − (−2)
n−5

+ 2n−10 + (−2)
n−10

31185
+

3n−4 + (−3)
n−4

98560

+
3n−5 − (−3)

n−5

12320
+

4n−4 + (−4)
n−4

31185
+

2
(

4n−5 − (−4)
n−5
)

155925

+
5n−2 + (−5)

n−2

1596672
+

6n−5 − (−6)
n−5

61600
,

y2(n, 7) =
(−1)

n
+ 1

29030400
+

2n−3 − (−2)
n−3

6081075
+

2n−10 + (−2)
n−10

405405
+

3n−3 − (−3)
n−3

7321600

+
3n−5 − (−3)

n−5

640640
+

4n−4 + (−4)
n−4

1216215
+

2
(

4n−5 − (−4)
n−5
)

2027025

+
5n−2 + (−5)

n−2

38320128
+

6n−5 − (−6)
n−5

800800
+

7n−2 + (−7)
n−2

1779148800
,

y2(n, 8) =
(−1)

n
+ 1

1828915200
+

7n−2 + (−7)
n−2

26687232000
+

5n−2 + (−5)
n−2

1494484992
+

3n−4 + (−3)
n−4

64064000

+
4n−5 − (−4)

n−5

18243225
+

8n−5 − (−8)
n−5

638512875
+

4n−5 − (−4)
n−5

30405375
+

3n−5 − (−3)
n−5

256256000

+
4n−6 + (−4)

n−6

182432250
+

3
(

6n−6 + (−6)
n−6
)

11211200
+

2n−8 + (−2)
n−8

18243225

+
2n−11 − (−2)

n−11

6081075
+

2n−7 − (−2)
n−7

+ 2n−12 + (−2)
n−12

91216125
,
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y2(n, 9) =
(−1)

n
+ 1

146313216000
+

7n−2 + (−7)
n−2

853991424000
+

5n−2 + (−5)
n−2

83691159552
+

9n−4 + (−9)
n−4

975822848000

+
8n−5 − (−8)

n−5

10854718875
+

3n−5 − (−3)
n−5

8712704000
+

2
(

4n−5 − (−4)
n−5
)

1550674125

+
6n−6 + (−6)

n−6

952952000
+

3n−6 + (−3)
n−6

871270400
+

6n−7 − (−6)
n−7

34034000

+
2
(

4n−7 − (−4)
n−7
)

1550674125
+

3n−7 − (−3)
n−7

536166400
+

2n−7 − (−2)
n−7

10854718875

+
2n−8 + (−2)

n−8

1550674125
+

2n−11 − (−2)
n−11

310134825
+

2n−12 + (−2)
n−12

1550674125
.

For n = 0, we have

y2(0, 0) = 1, y2(0, 1) = 2, y2(0, 2) =
2

3
, y2(0, 3) =

4

45
, y2(0, 4) =

2

315
,

and for k = 0, 1, 2, . . . , 9 and n = 1, 2, . . . , 9, we use (20) to compute a few values
of the numbers y2(n, k), as follows:

n\k 0 1 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0 0 0 0 0
2 0 1 2

3
2
15

4
315

2
2835

4
155925

4
6081075

8
638512875

2
10854718875

3 0 0 0 0 0 0 0 0 0 0
4 0 1 5

3
8
15

22
315

2
405

34
155925

8
1216215

92
638512875

2
834978375

5 0 0 0 0 0 0 0 0 0 0
6 0 1 17

3
47
15

184
315

152
2835

454
155925

634
6081075

1688
638512875

542
10854718875

7 0 0 0 0 0 0 0 0 0 0
8 0 1 65

3
338
15

1957
315

2144
2835

7984
155925

2672
1216215

41462
638512875

15206
10854718875

9 0 0 0 0 0 0 0 0 0 0

Table 4: Some numerical values of the numbers y2(n, k).

This function is related to the cosh t. That is,

Fy2(t, k) =
2k

(2k)!
(cosh t+ 1)

k
.

By using this function, we get the following combinatorial sums:

Theorem 12. Each of the following identities holds true:

y2(n, k; 1) =
1

(2k)!

k∑
j=0

(
k
j

)
2k−j

j∑
l=0

(
j
l

)
(2l − j)2n

.
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Also
k∑
j=0

(
k
j

)
2k−j

j∑
l=0

(
j
l

)
(2l − j)2n+1

= 0.

Proof. By using (19), we have

∞∑
n=0

y2(n, k)
t2n

(2n)!
=

∞∑
n=0

 1

(2k)!

k∑
j=0

(
k
j

)
2k−j

j∑
l=0

(
j
l

)
(2l − j)2n

 tn

n!
.

Comparing the coefficients of t2n on both sides of the above equation, we obtain
the desired result.

By using (19), we obtain

Fy1(t, 2k; 1)e−kt =
k!

(2k)!

k∑
v=0

Fy1(t, v; 1)Fy1(−t, k − v; 1).

By using the above functional equation, we obtain the following theorem:

Theorem 13. The following identity holds:

n∑
j=0

(
n
j

)
(−k)n−jy1(j, 2k; 1) =

k!

(2k)!

n∑
j=0

(−1)n−j
(
n
j

) k∑
v=0

y1(j, v; 1)y1(n−j, k−v; 1).

Recall that the following identity has very important applications in theory
of double series and its applications ([29, Lemma 11, Eq-(7)]):

(21)

∞∑
n=0

∞∑
k=0

A(n, k) =

∞∑
n=0

[n
2 ]∑

k=0

A(n, n− 2k),

where [x] denotes the greatest integer function.

Theorem 14. The following identity holds:

y1(n, 2k; 1) =

[n
2 ]∑
j=0

(
n
2j

)
kn−2jy2(j, k; 1).

Proof. By using (19), we obtain the following functional equation:

Fy1(t, 2k; 1) = Fy2(t, k)ekt.

Combining this equation with (8), we get

∞∑
n=0

y1(n, 2k; 1)
tn

n!
=

∞∑
n=0

(kt)n

n!

∞∑
n=0

y2(n, k; 1)
t2n

(2n)!
.
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By using (21) in the above equation, we obtain

∞∑
n=0

y1(n, 2k; 1)
tn

n!
=

∞∑
n=0

 [n
2 ]∑
j=0

kn−2j

(2j)!(n− 2j)!
y2(j, k; 1)

 tn.

Comparing the coefficients of tn on both sides of the above equation, we obtain the
desired result.

We now present a relation between the Lucas numbers Ln and the numbers
y2(n, k; 1) by the following theorem:

Theorem 15. Let a+ b = 1, ab = −1 and a−b
2 = c =

√
5

2 . Then

L(k)
n =

k∑
j=0

(
k
j

)
(2j)!(−2)k−j

[n
2 ]∑

m=0

(
n

2m

)
c2my2(m, j; 1)

(
k

2

)n−2m

,

where L
(k)
n denote Lucas numbers of order k.

Proof. In [22, pp. 232-233] and [8], the Lucas numbers Ln are defined by means
of the following generating function:

eat + ebt =

∞∑
n=0

Ln
tn

n!
.

From the above, we have

(22) FL(t, k; a, b) =
(
eat + ebt

)k
=

∞∑
n=0

L(k)
n

tn

n!
.

where

L(k)
n =

n∑
j=0

(
n
j

)
L(m)
n L(k−m)

n .

By combining (22) with (16), we obtain the following functional equation

FL(t, k; a, b) = e
tk
2

k∑
j=0

(
k
j

)
(−2)k−j(2j)!Fy2(ct, j; 1).

Since Fy2(ct, j; 1) is an even function, we have

∞∑
n=0

L(k)
n

tn

n!
=

∞∑
n=0

(
k

2

)n
tn

n!

k∑
j=0

(
k
j

)
(−2)k−j(2j)!

∞∑
m=0

y2(m, j; 1)cm
t2m

(2m)!
.
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Using (21) in the above equation, we get

∞∑
n=0

L(k)
n

tn

n!
=

∞∑
n=0

k∑
j=0

(
k
j

)
(2j)!(−2)k−j

[n
2 ]∑

m=0

(
n

2m

)
c2my2(m, j; 1)

(
k

2

)n−2m
tn

n!
.

Comparing the coefficients of tn on both sides of the above equation, we obtain the
desired result.

We also present an identity including the Fibonacci numbers fn, the Lucas
numbers Ln and the numbers y1(n, k; 1) by the following theorem:

Theorem 16. Let a+ b = 1, ab = −1 and a−b
2 = c =

√
5

2 . Then

L(k)
n = k!

n∑
j=0

(
n
j

)
(2c)

n−j
y1(n− j, k; 1)

((
a− 2ckj

)
fj + fj−1

)
.

Proof. We set

Ff (t, a, b) =
eat − ebt

a− b
=

∞∑
n=0

fn
tn

n!

(cf. [22, p. 232], [8]). By combining (22) and (8) with the above equation, we
obtain the following functional equation

FL(t, k; a, b) = k!Fy1(2ct, k; 1)
(
eakt − 2cFf (kt, a, b)

)
.

Therefore

∞∑
n=0

L(k)
n

tn

n!
= k!

∞∑
n=0

n∑
j=0

(
n
j

)
aj (2c)

n−j
y1(n− j, k; 1)

tn

n!

−k!

∞∑
n=0

n∑
j=0

(
n
j

)
(2c)n−j+1y1(n− j, k; 1)kjfj

tn

n!
.

After some elementary calculations and comparing the coefficients of tn

n! on both
sides of the above equation, we obtain the desired result.

4.1. Recurrence relation for the numbers y2(n, k;λ)

Here, taking derivative of (16), with respect to t, we give a recurrence relation
for the numbers y2(n, k;λ).

Theorem 17. Let k ∈ N. Then

y2(n+1, k;λ) = ky2(n, k;λ)−y2(n, k−1;λ)−λ−1
n∑
j=0

(
n
j

)
(−1)n−jy2(j, k−1;λ).
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Proof. Taking derivative of (16), with respect to t, we obtain the following partial
differential equation:

∂

∂t
Fy2(t, k;λ) = kFy2(t, k;λ)− Fy2(t, k − 1;λ)− λ−1e−tFy2(t, k − 1;λ).

Combining (16) with the above equation, we obtain

∞∑
n=1

y2(n, k;λ)
tn−1

(n− 1)!
= k

∞∑
n=0

y2(n, k;λ)
tn

n!
−
∞∑
n=0

y2(n, k − 1;λ)
tn

n!

−
∞∑
n=0

n∑
j=0

(
n
j

)
(−1)n−jy2(j, k − 1;λ)

tn

n!
.

After some elementary calculation, comparing the coefficients of tn

n! on both sides
of the above equation, we obtain the desired result.

Theorem 18. Let n ∈ N0 and k ∈ N. Then

2λ2 ∂

∂λ
y2(n, k;λ) = λ2

n∑
j=0

(
n
j

)
y2(j, k− 1;λ)−

n∑
j=0

(−1)n−j
(
n
j

)
y2(j, k− 1;λ).

Proof. Taking derivative of (16), with respect to λ, we obtain the following partial
differential equation:

2λ2 ∂

∂λ
Fy2(t, k;λ) = Fy2(t, k − 1;λ)

(
et − 1

λ2
e−t
)
.

Combining (16) with the above equation, we get

2λ2
∞∑
n=0

∂

∂λ
y2(n, k;λ)

tn

n!
=

∞∑
n=0

n∑
j=0

(
n
j

)
y2(j, k − 1;λ)

tn

n!

− 1

λ2

∞∑
n=0

n∑
j=0

(−1)n−j
(
n
j

)
y2(j, k − 1;λ)

tn

n!
.

After some elementary calculation, comparing the coefficients of tn

n! on both sides
of the above equation, we get the desired result.

5. λ-central factorial numbers C(n, k;λ)

In this section, we define λ-central factorial numbers C(n, k;λ) by means of
the following generating function: Let k ∈ N0 and λ ∈ C. Then

(23) FC(t, k;λ) =
1

(2k)!

(
λet + λ−1e−t − 2

)k
=

∞∑
n=0

C(n, k;λ)
tn

n!
.
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For λ = 1, we have the central factorial numbers

T (n, k) = C(n, k; 1)

(cf. [2], [7], [18], [35], [41]).

Theorem 19. The following identity holds:

C
(
n, k;λ2

)
= 2−n(2k)!

n∑
j=0

(
n
j

)
C(j, k;λ)y2(n− j, k;λ).

Proof. By using (16) and (23), we get the following functional equation:

FC
(
2t, k;λ2

)
= (2k)!FC(t, k;λ)Fy2(t, k;λ).

From this equation, we get

∞∑
n=0

C
(
n, k;λ2

) (2t)
n

n!
= (2k)!

∞∑
n=0

C(n, k;λ)
tn

n!

∞∑
n=0

y2(n, k;λ)
tn

n!
.

Therefore

∞∑
n=0

C(n, k;λ2)
2ntn

n!
=

∞∑
n=0

(2k)!

n∑
j=0

(
n
j

)
C(j, k;λ)y2(n− j, k;λ)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we get the
desired result.

By using (7) and (19), we obtain the following functional equation:

FT (t, k; 1)Fy2(t, k; 1) =
1

(2k)!
FT (2t, k; 1).

Combining the above equation with (7) and (19), we get

1

(2k)!

∞∑
n=0

T (n, k)
4nt2n

(2n)!
=

∞∑
n=0

y2(n, k)
tn

n!

∞∑
n=0

T (n, k)
t2n

(2n)!
.

Therefore

1

(2k)!

∞∑
n=0

4nT (n, k)
t2n

(2n)!
=

∞∑
n=0

 [n
2 ]∑
j=0

(
n
2j

)
y2(n− 2j, k)T (j, k)

 tn

n!
.

Comparing the coefficients of t2n

(2n)! on both sides of the above equation, we obtain a

relationship between the central factorial numbers T (n, k) and the numbers y2(j, k)
by the following theorem:
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Theorem 20. If n is even an integer, then we have

T (n, k) = 4−n(2k)!

[n
2 ]∑
j=0

(
n
2j

)
y2(n− 2j, k)T (j, k).

If n is an odd integer, then we have

[n
2 ]∑
j=0

(
n
2j

)
y2(n− 2j, k)T (j, k) = 0.

Remark 5. In [3], Alayont et al. have studied the rook polynomials, which count
the number of ways of placing non-attacking rooks on a chess board. By using
generalization of these polynomials, they gave the rook number interpretations of
generalized central factorial and the Genocchi numbers.

In [2], Alayont and Krzywonos gave the following result for the classical cen-
tral factorial numbers:

The number of ways to place k rooks on a size m triangle board in three
dimensions is equal to T (m+ 1,m+ 1− k), where 0 ≤ k ≤ m.

6. Application: in the binomial distribution and in the Bernstein
polynomials

Let n be a nonnegative integer. For every function f : [0, 1]→ R and the nth

Bernstein polynomial of f is defined by

Bn(f, x) =

n∑
k=0

(
n
k

)
f
(n
k

)
Bnk (x),

where Bnk (x) denotes the Bernstein basis functions:

Bnk (x) =

(
n
k

)
xk(1− x)n−k

and x ∈ [0, 1]. Let (Uk)k≥1 be a sequence of independent distributed random
variable having the uniform distribution on [0, 1] and defined by Adell et al. [1]:

Sn(x) =

n∑
k=1

1[0,x](Uk).

In [1], it is well-know that, Sn(x) is a binomial random variable. That is the theory
of Probability and Statistics, the binomial distribution is very useful. This distribu-
tion, with parameters n and probability x, is the discrete probability distribution.
This distribution is defined as follows:

P (Sn(x) = k) =

(
n
k

)
xk(1− x)n−k,
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where k = 0, 1, 2, · · · , n. Let E denote mathematical expectation. Than

Ef

(
Sn(x)

n

)
= Bn(f, x)

(cf. [1]). For any x ∈ (0, 1), n ≥ 2, and r > 1, Adel et al. [1] defined

(24) E (Sn(x))
r

=

n∑
k=0

(
n
k

)
krxk(1− x)n−k.

Substituting x = 1
2 into (24), we get

(25) E

(
Sn

(
1

2

))r
=

1

2n

n∑
k=0

(
n
k

)
kr.

By combining (9) with (25), we arrive at the following theorem:

Theorem 21. Let n ∈ N\ {1}. Let r ∈ N. Then

y1(r, n) =
2n

n!
E

(
Sn

(
1

2

))r
.

Integrating (24) from 0 to 1, we get

1∫
0

E (Sn(x))
r
dx =

1

n+ 1

n∑
k=0

kr.

By substituting (2) into the above equation, after some elementary calculations, we
get the following theorem:

Theorem 22. The following identity holds:

1∫
0

E (Sn(x))
r
dx =

1

(n+ 1) (r + 1)

r∑
j=0

r+1−j∑
l=0

(
n+ 1
j

)(
r + 1− j

l

)
nlBl,

where Bl denotes the Bernoulli numbers.

7. Computation of the Euler numbers of negative order

In this section, we not only give elementary properties of the first and second
kind Euler polynomials and numbers, but also compute the first kind of Apostol
type Euler numbers associated with the numbers y1(n, k;λ) and y2(n, k;λ).
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The second kind Apostol type Euler polynomials of order k, E
∗(k)
n (x;λ) are

given by means of the following generating function:

FP (t, x; k, λ) =

(
2

λet + λ−1e−t

)k
etx =

∞∑
n=0

E∗(k)
n (x;λ)

tn

n!
.

Substituting x = 0 into the above equation, we get the second kind Apostol type

Euler numbers of order k, with k ≥ 0, E
∗(k)
n (λ) by means of the following generating

function:

FN (t; k, λ) =

(
2

λet + λ−1e−t

)k
=

∞∑
n=0

E∗(k)
n (λ)

tn

n!
.

If we substitute k = λ = 1 into the above generating function, then we have

E∗n = E∗(1)
n (1).

Substituting x = 0 into the equation (3) with −k, we get the first kind Apostol-

Euler numbers of order −k, E
(−k)
n (λ) are given by means of the following generating

function:

(26) GE(t,−k;λ) =

(
λet + 1

2

)k
=

∞∑
n=0

E(−k)
n (λ)

tn

n!
.

The second kind Apostol type Euler numbers of order −k are defined by means of
the following generating function:

(27) FN (t;−k, λ) =

(
λet + λ−1e−t

2

)k
=

∞∑
n=0

E∗(−k)
n (λ)

tn

n!
.

The numbers E
∗(−k)
n (λ) are related to the numbers E

(−k)
n (λ) and the Apos-

tol Bernoulli numbers B
(−k)
n (λ) of the negative order. By using (27), we get the

following functional equation:

FN (t;−k, λ) =

k∑
j=0

(
k
j

)
2j−ktk−jGE(t,−j;λ)HB(−t,−k + j;λ−1),

where

HB(t,−k;λ) =

(
λet − 1

t

)k
=

∞∑
n=0

B(−k)
n (λ)

tn

n!

(cf. [25], [27], [39]). By using this equation, we get

∞∑
n=0

E∗(−k)
n (λ)

tn

n!
=

k∑
j=0

(
k
j

)
2j−ktk−j

∞∑
n=0

E(−j)
n (λ)

tn

n!

∞∑
n=0

B(−k+j)
n (λ−1)

(−t)n

n!
.
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Therefore

∞∑
n=0

E∗(−k)
n (λ)

tn

n!
=

∞∑
n=0

k∑
j=0

(
k
j

) n−k+j∑
l=0

(−1)n+j−k−l
(
n− k + j

l

)
×2j−k(n)k−jE

(−j)
l (λ)B

(−k+j)
n+j−k−l(λ

−1)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at
the following theorem.

Theorem 23. The following identity holds:

E∗(−k)
n (λ) =

k∑
j=0

(
k
j

) n−k+j∑
l=0

(−1)n+j−k−l
(
n− k + j

l

)
2j−k(n)k−j

× E
(−j)
l (λ)B

(−k+j)
n+j−k−l(λ

−1).

We observe that the second kind Euler numbers of negative order E
∗(−k)
n have

been computed by Liu [24].

By using the numbers y1(n, k;λ), we are ready to compute the first kind Euler
numbers of negative order.

Combining (8) and (26), we get

k!2k
∞∑
n=0

y1(n, k;λ)
tn

n!
=

∞∑
n=0

E(−k)
n (λ)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at
the following theorem.

Theorem 24. Let k ∈ N0. Then

(28) E(−k)
n (λ) = k!2−ky1(n, k;λ).

Remark 6. Substituting λ = 1 into (28), we obtain the following explicit formula
for the first kind Euler numbers of order −k:

(29) E(−k)
n = 2−kB(n, k).

From the equation (29), we see that

E
(0)
0 = 1.

For k = 0, 1, 2, . . . , 7 and n ∈ N, we use (29) to compute a few values of the numbers
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E
(−k)
n as follows:

E(0)
n = 0,

E(−1)
n =

1

2
,

E(−2)
n = 2n−2 +

1

2
,

E(−3)
n =

3n

8
+ 3.2n−3 +

3

8
,

E(−4)
n =

3n

4
+ 4n−2 + 3.2n−3 +

1

4
,

E(−5)
n =

5n

32
+

5.3n

16
+

5.4n−2

2
+ 5.2n−4 +

5

32
,

E(−6)
n =

6n

64
+

3.5n

32
+

5.3n

16
+ 15.4n−3 + 15.2n−6 +

3

32
,

E(−7)
n =

7n

128
+

7.6n

128
+

21.5n

128
+

35.3n

128
+

35.4n−3

2
+ 21.2n−7 +

7

128
,

...

That is for n = 0, 1, 2, . . . , 9 and k = 0, 1, 2, . . . , 9, we compute a few values of the

numbers E
(−k)
n , given by the above relations, as follows:

n\k 0 1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1 1 1

1 0 1
2 1 3

2 2 5
2 3 7

2 4 9
2

2 0 1
2

3
2 3 5 15

2
21
2 14 18 45

2

3 0 1
2

5
2

27
4 14 25 81

2
245
4 88 243

2

4 0 1
2

9
2

33
2

85
2 90 168 287 459 1395

2

5 0 1
2

17
2

171
4 137 1375

4 738 1421 2524 4212

6 0 1
2

33
2

231
2

925
2

5505
4

13587
4 7364 14508 26550

7 0 1
2

65
2

1287
4 1619 5725 65007

4
317275

8 86608 173664

8 0 1
2

129
2

1833
2

11665
2

49155
2

160671
2

441469
2

1068453
2 1173240

9 0 1
2

257
2

10611
4 21497 433225

4
816561

2
5055869

4 3390874 32620563
4

Table 5: Some numerical values of the numbers E
(−k)
n .

Theorem 25. Let k ∈ N0. Then

y2(n, k;λ) =
2k

(2k)!

k∑
l=0

(
k
l

)
E∗(−l)n (λ).
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Proof. By using (16) and (27), we get the following functional equation:

Fy2(t, k;λ) =
2k

(2k)!

k∑
l=0

(
k
l

)
FN (t;−l, λ).

From this equation, we obtain

∞∑
n=0

y2(n, k;λ)
tn

n!
=

∞∑
n=0

(
1

(2k)!

k∑
l=0

(
k
l

)
2kE∗(−l)n (λ)

)
tn

n!
.

Comparing the coefficients of t
n

n! on both sides of the above equation, we obtain the
desired result.

Theorem 26. Let k ∈ N0. Then

y2(n, k;λ) =
2k

(2k)!

k∑
l=0

(
k
l

)
λ−lE(−k)

n (−l;λ) .

Proof. By using (16) and (3), we get the following functional equation:

Fy2(t, k;λ) =
2k

(2k)!

k∑
l=0

(
k
l

)
λ−lFP1 (t,−l;−k, λ) .

From this equation, we obtain

∞∑
n=0

y2(n, k;λ)
tn

n!
=

∞∑
n=0

(
2k

(2k)!

k∑
l=0

(
k
l

)
λ−lE(−k)

n (−l;λ)

)
tn

n!
.

Comparing the coefficients of t
n

n! on both sides of the above equation, we obtain the
desired result.

By applying derivative operator to the generating function in (8), we give

a relationship between the numbers y1(n, k;λ) and E
(−1)
n (λ) as in the following

theorem:

Theorem 27. Let n, k ∈ N0. Then

y1(n+ 2, k;λ) = k2y1(n, k;λ)(30)

+
k (2k − 3)

2

n∑
l=0

(
n
l

)
y1(n− l, k;λ)El (λ)

+
k(k − 1)

4

n∑
l=0

(
n
l

)
E

(2)
l (λ) y1(n− l, k;λ).

Let n ∈ N\ {1}. Then

(31) y1(n+ 2, k;λ) = k2y1(n, k;λ) + y1(n, k − 2;λ)− (2k − 1)y1(n, k − 1;λ).
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Proof of ( 30). By applying derivative operator to (8) with respect to t, we obtain
the following partial differential equation:

∂2

∂t2
Fy1(t, k;λ) = k2Fy1(t, k;λ) +

k (2k − 3)

2
FP1(t, 0; 1, λ)Fy1(t, k;λ)

+
k (k − 1)

4
FP1(t, 0; 2, λ)Fy1(t, k;λ).

Combining (8) and (3) with the above equation, we get

∞∑
n=2

y1(n, k;λ)
tn−2

(n− 2)!

= k2
∞∑
n=0

y1(n, k;λ)
tn

n!
+
k (2k − 3)

2

∞∑
n=0

n∑
l=0

(
n
l

)
y1(n− l, k;λ)El (λ)

tn

n!

+
k (k − 1)

4

∞∑
n=0

n∑
l=0

(
n
l

)
E

(2)
l (λ) y1(n− l, k;λ)

tn

n!
.

We make a suitable arrangement of the series and then compare the coefficients of
tn

n! on both sides of the above equation, and we obtain the first assertion (30).

Proof of ( 31). Similarly, by applying derivative operator to (8) with respect to t,
we obtain the following partial differential equation:

∂2

∂t2
Fy1(t, k;λ) = k2Fy1(t, k;λ)− (2k − 1)Fy1(t, k − 1;λ) + Fy1(t, k − 2;λ).

Combining (8) with the above equation, we get

∞∑
n=2

y1(n, k;λ)
tn−2

(n− 2)!

=

∞∑
n=0

(
k2y1(n, k;λ)− (2k − 1) y1(n, k − 1;λ) + y1(n, k − 2;λ)

) tn
n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we get the
second assertion (31).

8. Algorithms and Computation

In computer science and applied mathematics, one investigate information
and computation and also their theoretical foundations. In these areas practical
techniques are very important. Therefore algorithmic processes play a very im-
portant role in both areas. Thus, in this section, we give two algorithms for the
computation of the numbers y1(n, k;λ) and y2(n, k;λ).
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Algorithm 1 Let n be a positive integer and λ 6= 0. This algorithm will return value of
the numbers y1(n, k;λ) given by equation (9).

procedure y1(n, k, λ)
Begin
Inputs:
Y1 ← 0
Outputs:
y1(n, k, λ)← Y1

if n = 0 and k = 0 then
Y1 = 1

else
for all j in {0, 1, 2, . . . , k} do

Y1 ← Y1 + Binomial Coef (k, j) ∗ Power (j, n) ∗ Power (λ, j)
end for

end if
Y1 ← (1/k!) ∗ Y1

return Y1

end procedure

Algorithm 2 Let n be a positive integer and λ 6= 0. This algorithm will return
value of the numbers y2(n, k;λ) given by equation (18) obtained by the y1 numbers
in equation (9).

procedure y2(n, k, λ)
Begin
Inputs:
Y2 ← 0
Outputs:
y2(n, k, λ)← Y2

if n = 0 and k = 0 then
Y2 = 1

else
for all j in {0, 1, 2, . . . , k} do

for all l in {0, 1, 2, . . . , n} do
Y2 ← Y2 + Power (−1,n− l) ∗ Binomial Coef (n, l) ∗ y1(l, j, λ)
∗ y1(n− l, k − j,Power (λ,−1))

end for
end for

end if
Y2 ← (k!/(2k)!) ∗ Y2

return Y2

end procedure
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9. Combinatorial applications and further remarks

In this section, we discuss some combinatorial interpretations of these num-
bers, as well as the generalization of the central factorial numbers given in Section
3-5. These interpretations include the rook numbers and polynomials and com-
binatorial interpretation for the numbers y1(n, k). We see that our numbers are
associated with known counting problems. By using counting techniques and gen-
erating function techniques, Bona [5] rederived several known properties and novel
relations involving enumerative combinatorics and related areas. A very interesting
further special case of the numbers B(n, k) is worthy of note by the work of Bona
[5]. That is, in [5, P. 46, Exercise 3-4], Bona gave the following two exercises which
are associated with the numbers B(n, k):

Exercise 3. Find the number of ways to place n rooks on an n × n chess
board so that no two of them attack each other.

Exercise 4. How many ways are there to place some rooks on an n×n chess
board so that no two of them attack each other?

Remark 7. Our numbers occur in combinatorics applications. In [5, p. 46, Exer-
cise 3-4 ], Bona gave detailed and descriptive solution of these two exercises, which
are related to the numbers B(n, k), respectively, as follows:

There has to be one rook in each column. The first rook can be anywhere in
its column (n possibilities). The second rook can be anywhere in its column except
in the same row where the first rook is, which leaves n − 1 possibilities. The third
rook can be anywhere in its column, except in the rows taken by the first and second
rook, which leaves n − 2 possibilities, and so on, leading to n(n − 1) · · · 2.1 = n!
possibilities.

Exercise 4. If we place k rooks, then we first need to choose the k columns in which

these rooks will be placed. We can do that in

(
n
k

)
ways. Continuing the line of

thought of the solution of the previous exercise, we can then place our k rooks into
the chosen columns in (n)k ways. Therefore, the total number of possibilities is

n∑
k=1

(
n
k

)
(n)k.

Remark 8. In (14), for j < d, it is well-known that(
j
d

)
= 0.

Therefore, we arrive at solutions of Exercise 16 (a) in [5, p. 55, Exercise 16(a)]
and also Exercise 10 [11, p. 126] as follows:

2n−k
(
k
d

)
=

k∑
j=d

(
k
j

)(
j
d

)
.
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10. Conclusions

In this paper, we have constructed some new families of special numbers with
their generating functions. We give many properties of these numbers. These num-
bers are related to many well-known numbers, which are Bernoulli numbers, Euler
numbers, Stirling numbers of the second kind, central factorial numbers and also
related to the Golombek’s problem [15] “Aufgabe 1088”. We have discussed some
combinatorial interpretations of these numbers. Besides, we give some applications
about not only rook polynomials and numbers, but also combinatorial sum.

Acknowledgment. The present paper was supported by the Scientific Research
Project Administration of Akdeniz University.
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