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In recent years, many exceptional orthogonal polynomials (EOP) were introduced

and used to construct new families of 1D exactly solvable quantum potentials, some

of which are shape invariant. In this paper, we construct from Hermite and La-

guerre EOP and their related quantum systems new 2D superintegrable Hamiltonians

with higher-order integrals of motion and the polynomial algebras generated by

their integrals of motion. We obtain the finite-dimensional unitary representations

of the polynomial algebras and the corresponding energy spectrum. We also point

out a new type of degeneracies of the energy levels of these systems that is as-

sociated with holes in sequences of EOP. C© 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4798807]

I. INTRODUCTION

In classical mechanics, an n-dimensional Hamiltonian system H with integrals of motion

Xa(�x, �p) is called completely integrable (or Liouville integrable) if it possesses n integrals of

motion (including the Hamiltonian) that are well-defined functions on phase space, are in involution

{H, Xa}p = 0, {Xa, Xb}p = 0, a, b = 1, . . . , n − 1, and are functionally independent (where {, }p

is the Poisson bracket). A system is superintegrable if it is integrable and allows additional integrals

of motion Yb(�x, �p), {H, Yb}p = 0, b = n, n + 1, . . . , n + k, that are also well-defined functions

on phase space and such that the integrals {H, X1, . . . , Xn − 1, Yn, . . . , Yn + k} are functionally

independent. A system is maximally superintegrable if the set contains 2n − 1 functions (i.e., k = n

− 2). In quantum mechanics, we use the same definition; however, the Poisson bracket is replaced

by the commutator and {H, Xa, Yb} are well-defined quantum mechanical operators, assumed to

form an algebraically independent set.

The search for superintegrable Hamiltonians allowing second-order integrals of motion (i.e.,

quadratically superintegrable Hamiltonians) began in the mid 1960s with the work of Winternitz

et al. in 2D Euclidian space.1 During the last ten years, the topic of superintegrability has become

more popular and the classification of quadratically superintegrable systems has been extended in

various directions, so that a large body of literature now exists.2–15 For a detailed list of references on

quadratically superintegrable systems, we also refer the reader to the following paper.16 Moreover,

these quadratically superintegrable systems possess many interesting properties in classical and

also in quantum mechanics. In addition, they are connected with various subjects in mathematical

physics, such as exactly and quasi-exactly solvable systems and the well-known Hermite, Laguerre,

and Jacobi classical orthogonal polynomials (COP).17 More recently, the classification and study

were pursued to systems with third-order integrals in 2D Euclidean space.18–23 If systems with third-

order integrals of motion share many properties with the quadratically superintegrable ones, some

of them such as the multiseparability or the fact that the classical and quantum systems coincide are

a)Electronic addresses: i.marquette@uq.edu.au and cquesne@ulb.ac.be
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lost. Some results are known about wavefunctions of these systems; however, the connections with

orthogonal polynomials remain to be understood.

These works on superintegrability with third-order integrals pointed out that the direct approach,

i.e., solving the corresponding overdetermined system of partial differential equations, would become

more difficult to apply as the order increases. In order to circumvent these difficulties, many papers

were devoted to constructing and classifying new superintegrable systems with higher-order integrals

(i.e., the order of one of the integrals is greater than two) using other approaches, such as ladder

operators,24 recurrence relations,25, 26 and supersymmetric quantum mechanics (SUSYQM).27, 28

Many new families of superintegrable systems with higher-order integrals of motion were thus

obtained and studied using these new methods.

Independently of these works on superintegrability, many families of exceptional orthog-

onal polynomials (EOP) were obtained and used to construct new exactly solvable quantum

potentials.29–41 Very recently, it was recognized that these EOP could also be useful to construct new

superintegrable systems with higher-order integrals.42 The Jacobi EOP and some related system were

indeed used to generate new families of superintegrable systems. This approach needs further stud-

ies. The purpose of this paper is to obtain new superintegrable systems with higher-order integrals

from Hermite and Laguerre EOP and to investigate the finite-dimensional unitary representations of

their polynomial algebra, as well as the consequences on the degeneracies of energy levels.

Let us present the organization of this paper. In Sec. II, we recall some results concerning

higher-order SUSYQM and polynomial Heisenberg algebras (PHA). In Sec. III, we review Hermite

and Laguerre EOP and their related quantum systems. In Sec. IV, we recall some results on the

construction of superintegrable systems from ladder operators. In Sec. V, from the 1D systems related

to EOP, presented in Sec. III, and the method described in Sec. IV, we generate new families of

superintegrable systems and we obtain their polynomial algebras and the finite-dimensional unitary

representations of the latter. These results also enable us to understand the connection between EOP

and two systems allowing second- and third-order integrals previously found by Gravel,19 as such

systems are included in two of the new families constructed in the present paper.

II. LADDER OPERATORS, SUSYQM AND POLYNOMIAL HEISENBERG ALGEBRAS

Le us consider a one-dimensional Hamiltonian H( + ) (with � = 1 and 2m = 1),

H (+) =
d2

dx2
+ V (+)(x), (1)

possessing raising and lowering operators a† and a that are realized as kth order differential operators

a =
dk

dxk
+ pk−1(x)

dk−1

dxk−1
+ · · · + p1(x)

d

dx
+ p0(x), (2)

with the following commutation relations

[H (+), a] = −λa, [H (+), a†] = λa†, (3)

[a, a†] = P (+)(H (+) + λ) − P (+)(H (+)), (4)

where P( + ) is a kth degree polynomial in H( + ). This polynomial can be factorized in the following

way

P (+)(H (+)) =

k
∏

i=1

(H (+) − ǫi ). (5)

The PHA43, 44 generated by {H( + ), a, a†} and defined by Eqs. (3) and (4) provides some

information on the spectrum of H( + ). The annihilation operator a can allow at most k zero modes

(i.e., a state such that aψ = 0). As a consequence, by iteratively acting with the creation operator

a†, at most k infinite ladders can be generated. The creation operator can also allow zero modes
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(i.e., a state such a†ψ = 0), in which case only finite sequences of levels (i.e., singlet, doublet,

and more generally multiplet states) are obtained. The pattern of energy levels can become more

complicated as the order of these ladder operators increases. In order to illustrate this statement, let

us briefly consider the k = 3 case. There may exist three zero modes for the creation and annihilation

operators; however, due to conflicting asymptotic properties, only three in total can be normalizable

and thus acceptable wavefunctions. As a consequence, the pattern of levels consists in one, two, or

three infinite sequences of levels or an infinite sequence with a singlet state or doublet states.20, 44–46

Some results are also known for k = 4.44, 47 Let us notice the interesting fact that the cases of

ladder operators of order three and four are related with the fourth and fifth Painlevé transcendents,

respectively. However, ladder operators of order higher than four are an unexplored subject. In the

next section, we will present systems related to EOP with ladder operators of order three, four, and

six, respectively.

Let us now introduce a second 1D Hamiltonian H( − ),

H (−) = −
d2

dx2
+ V (−)(x), (6)

related by higher-order SUSYQM with the initial Hamiltonian H( + ) in the form

f (H (+)) = A† A, f (H (−)) = AA†, (7)

AH (+) = H (−) A, A† H (−) = H (+) A. (8)

The supercharges A† and A (of order m) are realized as mth differential operators, and A takes the

form

A =
dm

dxm
+ qm−1(x)

dm−1

dxm−1
+ · · · + q1(x)

d

dx
+ q0(x). (9)

For first-order SUSYQM, Eq. (7) can be taken as

f (H (+)) = H (+) − E, f (H (−)) = H (−) − E, (10)

where E is a factorization energy. The potentials are thus given by

V (±) = q2
0 (x) ∓ q ′

0(x) + E . (11)

In the case of reducible second-order SUSYQM, the function f can be taken as

f (H (+)) = (H (+))2 −
c2

4
, f (H (−)) = (H (−))2 −

c2

4
. (12)

The potentials are thus given by

V (±) = ∓q ′
1 +

q ′′
1

2q1

+
q2

1

4
−

(

q ′
1

2q1

)2

+
c2

4q2
1

, (13)

where c = E1 − E2 and E1, E2 are two factorization energies.

In the case of first-order SUSYQM (i.e., when m = 1), the function q0 is called the superpotential.

The case of first-order supercharges was thoroughly studied48 and in particular shape-invariant

systems were considered.49 The case of second-order supercharges was the object of many papers

and, for instance, systems that are deformations of the harmonic oscillator were constructed.50, 51

The applications of second-order SUSYQM to third-order ladder operators20, 45, 46 and fourth-order

ones44, 47 were also studied. One can show that SUSYQM allows to relate wavefuntions of the

Hamiltonians H( + ) and H( − ), their energy spectrum and also their ladder operators, as well as their

corresponding PHA. Hence the Hamiltonian H( − ) also admits a PHA of the form

[H (−), b] = −λb, [H (−), b†] = λb†, (14)

[b, b†] = P (−)(H (−) + λ) − P (−)(H (−)), (15)
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with

b = Aa A†, b† = Aa† A†, (16)

P (−)(H (−)) = P (+)(H (−)) f (H (−) − λ) f (H (−)). (17)

This implies that SUSYQM can be used as a tool to construct systems with higher-order ladder

operators.

In the next section, we will be interested in constructing 1D systems based on first- and second-

order SUQYQM and related to Hermite and Laguerre EOP.

III. EOP AND SUPERSYMMETRIC QUANTUM MECHANICS

The algebraic relations given by Eqs. (7) and (8) can be only formal because they do not take

singularities nor boundaries into account. As a consequence, the isospectrality property can be lost

as in the case of a regular Hamiltonian related to a singular superpartner Hamiltonian. It was shown

that one can circumvent this problem by considering an appropriate nodeless seed solution (see,

e.g., Refs. 48, 50, and 51) to construct the supercharge operators given in Eq. (9) in order to obtain

two regular superpartners (or two singular superpartners but with the same type and number of

singularities), while SUSYQM relations are still valid. It was also shown in the case of first- and

second-order SUSYQM that the exactly solvable systems obtained may be closely connected with

EOP.29–41

In the case of first-order SUSYQM, Eq. (10) applies. One then uses a nodeless seed solution of

the initial Schrödinger equation

(

−
d2

dx2
+ V (+)(x)

)

φ(x) = Eφ(x), (18)

with energy E smaller than the ground-state energy E
(+)
0 of H( + ), and therefore nonnormalizable.

This choice differs from that made in“standard” first-order SUSYQM, where the seed solution is the

ground-state wavefunction. The superpotential is thus determined by

q0 = −
φ′

φ
. (19)

In the case of second-order SUSYQM, one considers two such seed solutions φ1, φ2 of

Eq. (18) with energy E1 and E2, respectively. The functions q0(x) and q1(x) in the supercharges

A and A† given by (9) (with m = 2) take the form

q1 = −
W ′(φ1, φ2)

W(φ1, φ2)
, q0 =

q ′
1

2
+

q2
1

4
−

q ′′
1

2q1

+

(

q ′
1

2q1

)2

−
c2

4q2
1

, (20)

where W(φ1, φ2) is the Wronskian of φ1 and φ2.

A. Hermite EOP in first-order SUSYQM

Let us consider as initial Hamiltonian H( + ) (i.e., (1)) the well-known harmonic oscillator, for

which

V (+) = x2 (21)

is defined on the real line. The energy spectrum and the wavefunctions are given by

ψ (+)
ν (x) ∝ e− 1

2
x2

Hν(x), E (+)
ν = 2ν + 1, ν = 0, 1, 2, . . . , (22)
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where Hν(x) is the Hermite polynomial of degree ν. This system possesses the following first-order

ladder operators

a =
d

dx
+ x, a† = −

d

dx
+ x, (23)

which satisfy a PHA as given by Eqs. (3) and (4) with λ = 2 and P( + )(H( + )) = H( + ) − 1.

Let us consider first-order SUSYQM and a seed solution of the form33

φm(x) = (−i)m Hm(i x)e
1
2

x2

= Hm(x)e
1
2

x2

, (24)

with the corresponding energy Em = − (2m + 1), where Hm(x) is a pseudo-Hermite polynomial52

of degree m with all its coefficients positive. The seed solution is nodeless on the real line if we take

m = 0, 2, 4, 6, . . . . Furthermore, its inverse φ−1
m (x) is nonsingular and normalizable, so that it is an

acceptable physical wavefunction of the superpartner potential.

The superpotential q0 can be written as

q0 = −x −
H′

m

Hm

. (25)

On using identities satisfied by Hm(x), the superpartner potential is obtained in the form

V (−)(x) = x2 − 2

[

H′′
m

Hm

−

(

H′
m

Hm

)2

+ 1

]

, (26)

with the energy spectrum

E (−)
ν = 2ν + 1, ν = −m − 1, 0, 1, 2, . . . , (27)

and the corresponding wavefunctions

ψ (−)
ν (x) ∝

{

φ−1
m (x) if ν = −m − 1,

Aψ (+)
ν (x) if ν = 0, 1, 2, . . . ,

(28)

which can be rewritten as

ψ (−)
ν (x) ∝

e− 1
2

x2

Hm

yn(x), ν = −m − 1, 0, 1, 2, . . . (29)

The latter involve the Hermite EOP yn(x), which are nth-degree polynomials (with n = m

+ ν + 1) forming an orthogonal and complete set with respect to the positive-definite measure

e−x2(

Hm(x)
)−2

dx . Such polynomials are defined by

yn(x) =

{

1 if ν = −m − 1,

−Hm Hν+1 − 2mHm−1 Hν if ν = 0, 1, 2, . . . ,
(30)

and satisfy the second-order differential equation
[

d2

dx2
− 2

(

x +
H′

m

Hm

)

d

dx
+ 2n

]

yn(x) = 0. (31)

The system obtained using SUSYQM and given by Eq. (26) has ladder operators of third order,

which are constructed using the ladder operators (23) of the initial Hamiltonian and the supercharges,

as shown in Eq. (16). These ladder operators also satisfy a PHA given by Eq. (17) with P( − )(H( − ))

= (H( − ) − 1)(H( − ) − E)(H( − ) − E − 2) and λ = 2, where E is the factorization energy Em.

B. Laguerre EOP in first-order SUSYQM

Let us now consider the case of the radial oscillator, for which

Vl(x) =
1

4
x2 +

l(l + 1)

x2
(32)
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TABLE I. Seed solutions: Cases I, II, and III.

φlm χ l Elm

Case I χ I
l (z)L

(α)
m (−z) z

1
4

(2α+1)e
1
2

z − (α + 2m + 1)

Case II χ II
l (z)L

(−α)
m (z) z− 1

4
(2α−1)e− 1

2
z − (α − 2m − 1)

Case III χ III
l (z)L

(−α)
m (−z) z− 1

4
(2α−1)e

1
2

z α − 2m − 1

is defined on the positive half-line. The wavefunctions (with z = 1
2
x2, α = l + 1

2
, ν = 0, 1, 2, . . . )

are given by

ψνl(x) ∝ x l+1e− 1
4

x2

L
(l+ 1

2
)

ν

(

1

2
x2

)

∝ ηl(z)L (α)
ν (z), ηl(z) = z

1
4

(2α+1)e− 1
2

z, (33)

with the corresponding energy spectrum

Eνl = 2ν + l +
3

2
. (34)

In this case we have three possible nonnormalizable seed solutions φlm(x),38–40 which we present

in Table I together with their corresponding energy Elm.

They can be used to construct a superpartner V (−)(x) in first-order SUSYQM. To be able to

write the latter in a unified manner as

V (−)(x) = Vl(x) + Vl,rat(x) + C, (35)

Vl,rat(x) = −2

{

ġ(α)
m

g
(α)
m

+ 2z

[

g̈(α)
m

g
(α)
m

−

(

ġ(α)
m

g
(α)
m

)2
]}

, (36)

where g(α)
m is some polynomial in z to be defined in Table II and a dot denotes a derivative with

respect to z, it is convenient to start from a potential (32) with a different value l′ of the angular

momentum, which depends on the case considered,

V (+)(x) = Vl ′ (x). (37)

Observe that a similar change l → l′ has to be done in the wavefunctions (33) and the energy

spectrum (34), so that ψ
(+)
νl (x) = ψνl ′ (x) and E

(+)
νl = Eνl ′ .

In Table II, we present for each case the values of l′, of the constant C, and of m, as well as

the polynomial g(α)
m (z) occurring in Eq. (36), the constraints on α and m, and the resulting energy

spectrum E
(−)
νl .

The bound-state wavefunctions ψ
(−)
νl (x) of H( − ) are given by

ψ
(−)
νl (x) ∝

ηl(z)

g
(α)
m (z)

y(α)
n (z), (38)

where in Cases I and II, n = m + ν with ν = 0, 1, 2, . . . , while in Case III, n = m + ν + 1 with ν

= − m − 1, 0, 1, 2, . . . . They can be obtained by acting with A on those of H( + ), except for case

TABLE II. Superpartner: Cases I, II, and III.

l′ g
(α)
m C m Constraints E

(−)
νl

Case I l − 1 L
(α−1)
m (−z) − 1 1, 2, 3, . . . 2ν + α, ν = 0, 1, 2, . . .

Case II l + 1 L
(−α−1)
m (z) 1 1, 2, 3, . . . α > m − 1 2ν + α + 2, ν = 0, 1, 2, . . .

Case III l + 1 L
(−α−1)
m (−z) − 1 2, 4, 6, . . . α > m − 1 2ν + α + 2, ν = − m − 1, 0, 1, 2, . . .
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III and ν = − m − 1, where ψ
(−)
−m−1,l (x) ∝

(

φIII
lm(x)

)−1
and therefore y

(α)
0 (z) = 1. In all cases, the

nth degree polynomials y(α)
n (z) satisfy the following second-order differential equation

[

z
d2

dz2
+

(

α + 1 − z − 2z
ġ(α)

m

g
(α)
m

)

d

dz
+ (z − α)

ġ(α)
m

g
(α)
m

+ z
g̈(α)

m

g
(α)
m

]

y(α)
n (z) = (m − n)y(α)

n (z). (39)

Moreover, they form an orthogonal and complete set with respect of the positive-definite measure

zαe−z
(

g(α)
m (z)

)−2
dz. As a consequence, there exist three families of Laguerre EOP, which are denoted

as L I
α,m,n(z), L II

α,m,n(z), and L III
α,m,n(z), respectively.

The radial oscillator (37) has second-order ladder operators

a =
1

4

(

2
d2

dx2
+ 2x

d

dx
+

1

2
x2 −

2l ′(l ′ + 1)

x2
+ 1

)

,

a† =
1

4

(

2
d2

dx2
− 2x

d

dx
+

1

2
x2 −

2l ′(l ′ + 1)

x2
− 1

)

,

(40)

which satisfy a PHA as given by (3) and (4) with λ = 2 and P (+)(H (+)) = 1
16

(2H (+) − 3 −
2l ′)(2H (+) − 1 + 2l ′). Thus the three possible superpartners have ladder operators of order four

as shown in (16). They possess a PHA, as given by (14), (15), and (17) with λ = 2 and

P (−)(H (−)) = 1
16

(2H (−) − 3 − 2l ′)(2H (−) − 1 + 2l ′)(H (−) − 2 − E)(H (−) − E), where E is the fac-

torization energy Elm given in Table I with α replaced by α − 1 in Case I and by α + 1 in Case II

or III.

C. Laguerre EOP in second-order SUSYQM

In the case of systems constructed using reducible second-order SUSYQM associated with

EOP, we need to consider two nodeless seed solutions φ1 and φ2. For the radial oscillator, we have

three types of seed solutions and thus in the case of second-order SUSYQM we get six different

possibilities.

Let us restrict ourselves to one of the six cases, i.e., when the first seed solution φ1 is taken of

type I and the second φ2 of type II, as presented in Tables I and II. For this choice, we have

V (+)(x) = Vl(x) −
1

2
(E1 + E2), φ1(x) = φI

lm1
(x), φ2(x) = φII

lm2
(x), (41)

where the energies associated with the two seed solutions are

E1 = −

(

l + 2m1 +
3

2

)

, E2 = −

(

l − 2m2 −
1

2

)

, m2 < l +
1

2
. (42)

The supercharges for second-order SUSYQM, given in Eqs. (9) and (20), can be constructed from

the Wronskian

W(φ1, φ2) =
2

x
g(α)

μ (z)χ I
l (z)χ II

l (z), (43)

g(α)
μ = zW̃

(

L (α)
m1

(−z), L (−α)
m2

(z)
)

− (z + α)L (α)
m1

(−z)L (−α)
m2

(z), (44)

where g(α)
μ is a μth-degree polynomial with μ = m1 + m2 + 1 and W̃

(

f (z), g(z)
)

denotes the

Wronskian of two z-dependent functions. The superpartner takes the form

V (−)(x) = Vl(x) − 2

⎧

⎨

⎩

ġ(α)
μ

g
(α)
μ

+ 2z

⎡

⎣

g̈(α)
μ

g
(α)
μ

−

(

ġ(α)
μ

g
(α)
μ

)2
⎤

⎦

⎫

⎬

⎭

−
1

2
(E1 + E2) (45)

and its energy spectrum, which can be calculated from SUSYQM, is the following

E
(−)
νl = E

(+)
νl = 2ν + 2l + m1 − m2 + 2, ν = 0, 1, 2, . . . . (46)
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The bound-state wavefunctions of H( − ) can be obtained by acting with A on those of H( + ),

ψ
(+)
νl (x) = ψνl(x), and are given by

ψ
(−)
νl (x) ∝

ηl(z)

g
(α)
μ (z)

y(α)
n (z), n = μ + ν, ν = 0, 1, 2, . . . , (47)

where the nth degree polynomial y(α)
n (z) satisfies the second-order differential equation

[

z
d2

dz2
+

(

α + 1 − z − 2z
ġ(α)

μ

g
(α)
μ

)

d

dz
+ (z − α)

ġ(α)
μ

g
(α)
μ

+ z
g̈(α)

μ

g
(α)
μ

]

y(α)
n (z) = (μ − n)y(α)

n (z), (48)

which is similar to the corresponding result (Sec. III B) obtained in first-order SUSYQM. It can

be shown that the polynomials y(α)
n (z) form an orthogonal and complete set with respect of the

positive-definite measure zαe−z
(

g(α)
μ

)−2
dz. These EOP are denoted by L I,II

α,m1,m2,n
(z).

For convenience, we remove the additive constant 1
2
(E1 + E2) in the potentials V (+)(x) and

V (−)(x). This translation will only affect the energies (46), but not the superintegrability prop-

erty. Taking this modification into account, we find the following factorization relations f(H( + ))

= (H( + ) − E1)(H( + ) − E2) and f(H( − )) = (H( − ) − E1)(H( − ) − E2) for the functions defined

in Eq. (7). The superpartner H( − ) has ladder operators that are realized as differential operators of

order six and obtained from Eq. (16). The PHA of H( − ) is given by (14), (15), and (17) with

λ = 2 and P (−)(H (−)) = 1
16

(2H (−) − 3 − 2l)(2H (−) − 1 + 2l)(H (−) − E1 − 2)(H (−) − E2 −
2)(H (−) − E1)(H (−) − E2).

IV. SUPERINTEGRABILITY AND LADDER OPERATORS

The direct approach to obtain superintegrable systems with higher-order integrals of motion

leads to overdetermined systems of partial differential equations. The corresponding compatibility

equations take the form of nonlinear differential equations, which may be a challenging problem to

solve. A way to generate new superintegrable systems is to use 1D systems allowing ladder operators

(or recurrence relations) and to construct multidimensional systems with integrals of motion that

take the form of products of ladder operators. Let us mention that the classification of systems with

ladder operators can also be challenging; however, as seen in Sec. II, SUSYQM provides a way to

obtain systems with higher-order ladder operators from specific superpartners.

Let us consider the following two-dimensional Hamiltonian allowing separation of variables in

Cartesian coordinates:

H = Hx + Hy = −
d2

dx2
−

d2

dy2
+ Vx (x) + Vy(y). (49)

We impose the existence of ladder operators of form (2) in both axes that satisfy the PHA

[Hx , a†
x ] = λx a†

x , [Hx , ax ] = −λx ax , (50a)

ax a†
x = Q(Hx + λx ), a†

x ax = Q(Hx ), (50b)

[Hy, a†
y] = λya†

y, [Hy, ay] = −λyay, (51a)

aya†
y = S(Hy + λy), a†

yay = S(Hy), (51b)

where λx and λy are constants while Q(x) and S(y) are polynomials. From these operators we get

the following integrals of motion (of order 2, k1n1 + k2n2, and k1n1 + k2n2) with n1λx = n2λy

= λ, n1,n2 ∈ Z
∗,

K =
1

2λ
(Hx − Hy), I− = an1

x a†n2

y , I+ = a†n1

x an2

y . (52)

The system possesses three algebraically independent integrals of motion and is thus maximally

superintegrable. We can also consider the integrals I1 = I− − I+ and I2 = I− + I+ . Let us point
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out an important aspect of this method. From the equations above, we can see that even with ladder

operators of lower order, the method allows to generate integrals of motion of an arbitrary order in

a nice factorized form that would be difficult to obtain in a direct approach.

These integrals of motion generate the polynomial algebra of the system,

[K , I±] = ±I±, [I−, I+] = Fn1,n2
(K + 1, H ) − Fn1,n2

(K , H ), (53)

Fn1,n2
(K , H ) =

n1
∏

i=1

Q

(

H

2
+ λK − (n1 − i)λx

) n2
∏

j=1

S

(

H

2
− λK + jλy

)

, (54)

which is of order k1n1 + k2n2 − 1. Such a polynomial algebra is a deformed u(2) algebra and its

finite-dimensional representation modules can be found by realizing it as a generalized deformed

oscillator algebra {bt, b, N}. The operators bt = I+ , b = I− , N = K − u and 
(H, u, N )

= Fn1,n2
(K , H ) indeed satisfy the defining relations of such an algebra,53

[N , bt ] = bt , [N , b] = −b, bt b = 
(H, u, N ), bbt = 
(H, u, N + 1), (55)

where u is some constant and 
(H, u, N) is called “structure function.” If the latter satisfies the

properties


(E, u, 0) = 0, 
(E, u, p + 1) = 0, 
(E, u, n) > 0 n = 1, 2, . . . , p, (56)

then the deformed oscillator algebra has an energy-dependent Fock space of dimension p + 1 with

a Fock basis |E, n〉, n = 0, 1, . . . , p, fulfilling

H |E, n〉 = E |E, n〉, N |E, n〉 = n|E, n〉, b|E, 0〉 = 0, bt |E, p〉 = 0, (57a)

bt |E, n〉 =
√


(E, u, n + 1)|E, n + 1〉, b|n〉 =
√


(E, u, n)|E, n − 1〉. (57b)

These relations can be used to obtain the finite-dimensional unitary representations of the polynomial

algebra (53), (54), and the corresponding degenerate energy spectrum of the system. In the next

section, we will restrict the construction of superintegrable systems to the case λx = λy, wherein each

of the products contained in (54) reduces to only one term. This will allow to identify more clearly

new degeneracies not obtained in the finite-dimensional unitary representations. Note, however,

that all the families of superintegrable systems considered in this paper could be extended in a

straightforward manner to more general cases where λx 
= λy.

V. NEW FAMILIES OF 2D SUPERINTEGRABLE SYSTEMS AND POLYNOMIAL

ALGEBRAS FROM EOP

A. Superintegrable systems from Hermite EOP

1. Case 1

Let us consider the two-dimensional superintegrable system given by Eq. (49) with respectively

in the x-axis the superpartner of the harmonic oscillator related to Hermite EOP presented in Sec.

III A and in the y-axis the harmonic oscillator itself ,

Hx = −
d2

dx2
+ x2 − 2

[

H′′
m

Hm

−

(

H′
m

Hm

)2

+ 1

]

, m even, (58)

Hy = −
d2

dy2
+ y2. (59)

This 2D system includes one of the Gravel’s systems19 (Potential 1 in Ref. 21) for m = 2. It has

integrals of motion given by (52) and the energy spectrum corresponding to physical states is given
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TABLE III. Finite-dimensional unitary representations for the superintegrable system given by Eqs. (58) and (59) and related

to Hermite EOP.

u p Energy E Structure function 
 Physical states

1 u1 N 2(p + 1) 16x(p + 1 − x)(x + m)(x + 1 + m) νx = 0, 1, 2, . . . , νy = 0, 1, 2, . . .

2 u3 0 2(p − m) 16x(p + 1 − x)(x − 1 − m)(x − 1) νx = − m − 1, νy = 0

by

E = Ex + Ey = 2(νx + νy + 1), νx = −m − 1, 0, 1, 2, . . . , νy = 0, 1, 2, . . . . (60)

From Sec. III A, we know that in both axes the ladder operators satisfy a PHA. Equations

(50a)–(51b) therefore apply with λx = λy = 2 and

Q(Hx ) = (Hx − 1)(Hx + 2m − 1)(Hx + 2m + 1), S(Hy) = Hy − 1. (61)

The structure function 
(E, u, x) is obtained from Eqs. (54) and (61) as


(E, u, x) =

(

E

2
+ 2x + 2u − 1

) (

E

2
+ 2x + 2u + 2m − 1

)

×

(

E

2
+ 2x + 2u + 2m + 1

) (

E

2
− 2x − 2u + 1

)

.

(62)

From this structure function and the first constraint of Eq. (56), we obtain four solutions for the

parameter u,

u1 = −
E

4
+

1

2
, u2 = −

E

4
− m +

1

2
, u3 = −

E

4
− m −

1

2
, u4 =

E

4
+

1

2
. (63)

The finite-dimensional unitary representations are calculated from the two other constraints of Eq.

(56) and are presented in Table III.

As shown by Table III, in terms of physical states, the first solution corresponds to all excited

states of Hamiltonian Hx combined with all states of Hamiltonian Hy, while the second solution is

associated with the ground state of Hx combined with that of Hy.

2. Case 2

Let us now consider the following 2D superintegrable system with both potentials related to

Hermite EOP,

Hx = −
d2

dx2
+ x2 − 2

[

H′′
m1

Hm1

−

(

H′
m1

Hm1

)2

+ 1

]

, (64)

Hy = −
d2

dy2
+ y2 − 2

[

H′′
m2

Hm2

−

(

H′
m2

Hm2

)2

+ 1

]

, (65)

where m1 and m2 are even and we may assume m1 ≥ m2. This is a generalization of Case 1, which

also includes another system obtained by Gravel19 (Potential 6 of Ref. 21) for m1 = m2 = 2. The

integrals of motion are given by Eq. (52) again and the energy spectrum of physical states is

E = Ex + Ey = 2(νx + νy + 1), νx = −m1 − 1, 0, 1, . . . , νy = −m2 − 1, 0, 1, . . . . (66)
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TABLE IV. Finite-dimensional unitary representations for the superintegrable system given by Eqs. (64) and (65) and related

to Hermite EOP.

u p Energy E Structure function 
 Physical states

1 u1 N 2(p + 1) 64x(p + 1 − x)(x + m1)(x + 1 + m1) νx = 0, 1, 2, . . . ,

× (p + 1 + m2 − x)(p + 2 + m2 − x) νy = 0, 1, 2, . . .

2 u1 0 2(p − m2) 64x(p + 1 − x)(p − x)(x + m1) νx = 0,

× (x + 1 + m1)(p − m2 − x) νy = − m2 − 1

3 u3 0 2(p − 1 − m1 − m2) 64x(p + 1 − x)(p − x)(x − 1 − m1) νx = − m1 − 1,

× (x − 1)(p − m2 − x) νy = − m2 − 1

4 u3 0 2(p − m1) 64x(x − 1)(x − 1 − m1)(p + 1 − x) νx = − m1 − 1,

× (p + 1 + m2 − x)(p + 2 + m2 − x) νy = 0

5 u5 0 − 2(p + 1 + m1 + m2) 64x(p + 1 − x)(x − 1)(x + m2) νx = − m1 − 1,

× (p − x)(p + 1 + m1 − x) νy = − m2 − 1

From Sec. III A, we also know that in both axes the ladder operators satisfy a PHA. In

Eqs. (50a)–(51b), we have λx = λy = 2 and

Q(Hx ) = (Hx − 1)(Hx + 2m1 − 1)(Hx + 2m1 + 1),

S(Hy) = (Hy − 1)(Hy + 2m2 − 1)(Hy + 2m2 + 1).
(67)

The structure function calculated from (54) and (67) is


(E, u, x) =

(

E

2
+ 2x + 2u − 1

) (

E

2
+ 2x + 2u + 2m1 − 1

)

×

(

E

2
+ 2x + 2u + 2m1 + 1

) (

E

2
− 2x − 2u + 1

)

×

(

E

2
− 2x − 2u + 2m2 + 1

) (

E

2
− 2x − 2u + 2m2 + 3

)

.

(68)

From the first constraint of Eq. (56), we find six solutions for the parameter u,

u1 = −
E

4
+

1

2
, u2 = −

E

4
− m1 +

1

2
, u3 = −

E

4
− m1 −

1

2
,

u4 =
E

4
+

1

2
, u5 =

E

4
+ m2 +

1

2
, u6 =

E

4
+ m2 +

3

2
.

(69)

The two other constraints of Eq. (56) allow to obtain the finite-dimensional unitary representations,

which are given in Table IV.

From the physical state viewpoint, solution 1 presented in Table IV corresponds to the excited

states of Hx combined with those of Hy. On the other hand, solutions 2 to 5, only valid for p = 0, are

respectively associated with the first excited state of Hx and the ground state of Hy, the ground states

of both Hx and Hy, the ground state of Hx and the first excited state of Hy, and the ground states of

both Hx and Hy again. It is worth observing that the two solutions corresponding to the combination

of the two ground states are actually characterized by the same structure functions when condition

p = 0 is taken into account.

From Tables III and IV, we see that we do not obtain all the levels of the physical energy

spectrum and that there also exist some additional degeneracies not described by the polynomial

algebra. This phenomenon can be explained in terms of holes in the sequence of Hermite EOP.
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B. Superintegrable systems from Laguerre EOP LI
α,m,n, LII

α,m,n, and LIII
α,m,n

Let us now consider the case where Hx corresponds to one of the systems associated with

Laguerre EOP (Sec. III B) and Hy to a harmonic oscillator,

Hx = −
d2

dx2
+

1

4
x2 +

l(l + 1)

x2
− 2

{

ġ(α)
m

g
(α)
m

+ 2z

[

g̈(α)
m

g
(α)
m

−

(

ġ(α)
m

g
(α)
m

)2
]}

+ C, (70)

Hy = −
d2

dy2
+ y2, (71)

with integrals of motion given by Eq. (52). The energy spectrum of the physical states for the three

cases can be written as

EI = 2νx + 2νy + l +
3

2
, l > 0, νx , νy = 0, 1, 2, . . . , (72)

EII = 2νx + 2νy + l +
7

2
, l > m −

3

2
, νx , νy = 0, 1, 2, . . . , (73)

EIII = 2νx + 2νy + l +
7

2
, l > m −

3

2
, m even,

νx = −m − 1, 0, 1, . . . , νy = 0, 1, 2, . . . .

(74)

From the ladder operators presented in Sec. III, we obtain that the two PHA are given by Eqs.

(50a)–(51b) with λx = λy = 2 and

Q(Hx ) =
1

16
(2Hx − 3 − 2l ′x )(2Hx − 1 + 2l ′x )(Hx − 2 − Ex )(Hx − Ex ),

S(Hy) = Hy − 1,

(75)

where l ′x and Ex assume different values according to whether the Laguerre EOP belong to Case I,

II, or III (see Table II). The structure function, derived from (54) and (75), takes the form


(E, u, x) =
1

4

(

E

2
+ 2x + 2u −

3

2
− l ′x

)(

E

2
+ 2x + 2u −

1

2
+ l ′x

)

×

(

E

2
+ 2x + 2u − 2 − Ex

) (

E

2
+ 2x + 2u − Ex

)

×

(

E

2
− 2x − 2u + 1

)

.

(76)

Equation (56) leads to five solutions for the parameter u,

u1 = −
E

4
+

3

4
+

l ′x
2

, u2 = −
E

4
+

1

4
−

l ′x
2

,

u3 = −
E

4
+ 1 +

Ex

2
, u4 = −

E

4
+

Ex

2
, u5 =

E

4
+

1

2
.

(77)

The finite-dimensional unitary representations are presented in Table V.

In Cases I and II, the solution is unique and provides all the energy levels with all their

degeneracies. In Case III, we observe the same phenomenon as in Case 1 involving Hermite EOP.

Solution 1 indeed corresponds to all excited states of Hx combined with all states of Hy, while

solution 2 is associated with the ground state of Hx and that of Hy.
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TABLE V. Finite-dimensional unitary representations for the superintegrable system given by Eqs. (70) and (71) and related

to Laguerre EOP.

Case u p Energy E Structure function 
 Physical states

I 1 u1 N 2p + 3
2

+ l x(p + 1 − x)(2x − 1 + 2l) νx = 0, 1, 2, . . . ,

× (2x + 2m + 2l − 1)(2x + 2m + 2l + 1) νy = 0, 1, 2, . . .

II 1 u1 N 2p + 7
2

+ l x(p + 1 − x)(3 + 2l + 2x) νx = 0, 1, 2, . . . ,

× (1 + 2l − 2m + 2x)(3 + 2l − 2m + 2x) νy = 0, 1, 2, . . .

III 1 u1 N 2p + 7
2

+ l 4x(p + 1 − x)(m + x) νx = 0, 1, 2, . . . ,

× (1 + m + x)(3 + 2l + 2x) νy = 0, 1, 2, . . .

III 2 u4 0 2p + 3
2

+ l − 2m 4x(p + 1 − x)(x − 1)(x − 1 − m) νx = − m − 1,

× (2x + 1 + 2l − 2m) νy = 0

C. Superintegrable system from Laguerre EOP L
I,II
α,m1,m2,n

Let us finally consider a superintegrable system where Hx is constructed from Laguerre EOP

associated with second-order SUSYQM (Sec. III C) and Hy corresponds to a harmonic oscillator,

Hx = −
d2

dx2
+

1

4
x2 +

l(l + 1)

x2
− 2

⎧

⎨

⎩

ġα
μ

gα
μ

+ 2z

⎡

⎣

g̈α
μ

gα
μ

−

(

ġα
μ

gα
μ

)2
⎤

⎦

⎫

⎬

⎭

, (78)

Hy = −
d2

dy2
+ y2. (79)

The integrals of motion are given by Eq. (52) again. The energy spectrum of the system can be

written as

E = Ex + Ey = 2νx + 2νy + l +
5

2
, l > m2 −

1

2
, νx , νy = 0, 1, 2, . . . . (80)

The PHA are given by Eqs. (50a)–(51b) with λx = λy = 2 and

Q(Hx ) =
1

16
(2Hx − 3 − 2l)(2Hx − 1 + 2l)

(

Hx + l + 2m1 −
1

2

)

×

(

Hx + l + 2m1 +
3

2

) (

Hx + l − 2m2 −
5

2

)(

Hx + l − 2m2 −
1

2

)

,

S(Hy) = Hy − 1,

(81)

leading to the structure function


(E, u, x) =
1

4

(

E

2
+ 2x + 2u − l −

3

2

)(

E

2
+ 2x + 2u + l −

1

2

)

×

(

E

2
+ 2x + 2u + l + 2m1 −

1

2

)(

E

2
+ 2x + 2u + l + 2m1 +

3

2

)

×

(

E

2
+ 2x + 2u + l − 2m2 −

5

2

)(

E

2
+ 2x + 2u + l − 2m2 −

1

2

)

×

(

E

2
− 2x − 2u + 1

)

.

(82)
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TABLE VI. Finite-dimensional unitary representation for the superintegrable system given by Eqs. (78) and (79) and related

to Laguerre EOP.

u p Energy E Structure function 
 Physical states

1 u1 N 2p + l + 5
2

32x(p + 1 − x)(x + l + 1
2

)(x + l + m1 + 1
2

) νx = 0, 1, 2, . . . ,

×(x + l + m1 + 3
2

)(x + l − m2 − 1
2

)(x + l − m2 + 1
2

) νy = 0, 1, 2, . . .

From (56), we obtain the following seven solutions for the parameter u,

u1 = −
E

4
+

l

2
+

3

4
, u2 = −

E

4
−

l

2
+

1

4
, u3 = −

E

4
−

l

2
− m1 +

1

4
,

u4 = −
E

4
−

l

2
− m1 −

3

4
, u5 = −

E

4
−

l

2
+ m2 +

5

4
, u6 = −

E

4
−

l

2
+ m2 +

1

4
,

u7 =
E

4
+

1

2
,

(83)

but only one finite-dimensional unitary representation presented in Table VI.

In this case, this unique solution corresponds to all physical states.

VI. CONCLUSION

In this paper, we introduced new superintegrable systems from SUSYQM and Hermite and

Laguerre EOP. These systems possess higher-order integrals of motion that generate polynomial al-

gebras. Furthermore, we obtained the finite-dimensional unitary representations of these polynomial

algebras and presented them in Tables III–VI. Moreover, as two families introduced here include

two systems previously obtained by Gravel,19 this paper also allows to understand the connections

between them and EOP.

Many solutions presented in Tables III–V are only valid for p = 0 and thus the energy spectrum

is not recovered entirely from the finite-dimensional unitary representations. This phenomenon is

associated with holes in the sequence of polynomials. As a consequence, p + 1 is no longer the actual

degeneracy of energy levels and thus the polynomial algebras do not describe all the degeneracies,

as usually observed in the case of quadratically superintegrable systems.

The nature of these degeneracies seems to differ from that of the usual degeneracies obtained in

the context of superintegrable systems (often called dynamical degeneracies) and explained by the

polynomial algebra generated by the integrals of motion. This aspect needs further investigations

and, in particular, the existence of a larger algebraic structure that would explain all the degeneracies

is an interesting open question.

Quantum exactly solvable systems based on kth order SUSYQM and connected with EOP can

be introduced along the same lines as those presented in Sec. III.39 They would allow the construction

of superintegrable systems extending the results presented in this paper.
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