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New Family of Single-Error 
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Absfracf-A construction is given .that combines an (n, MI, &) 
code with an (n, Mt, de = [+(dl + l)]) code to form a (an, M1M2, 
dl) code. This is used to construct a new family of nongroup single- 
error correcting codes of all lengths n from 2’” to 3 . 2m-1 - 1, for 
every wz 2 3. These codes have more codewords than any group 
code of the same length and minimum distance. A number of other 
nongroup codes are also obtained. Examples of the new codes are 
(16,2560,3) and (16,36,7) codes, both having more codewords than 
any comparable group code. 

I. INTRODUCTION 

0 

NLY A FEW binary nongroup codes are known 
that have more codewords than any group code. 
Examples are the single-error correcting codes of 

Golay [2] and Julin [5] of lengths 8-11; the double-error 
correcting codes of Nadler [7], Green [3], Nordstrom and 
Robinson [8], and Preparata [II], of lengths 12-15 and 
4” - 1, m 2 3; and codes based on Hadamard matrices 
@I, P. 317). 

In Section III we give a simple description of the codes 
of Golay and Julin and extend them to obtain nongroup 
single-error correcting codes of all lengths from 2” to 
3.2” - 1, m > 3, which have more codewords than any 
group code of the same length and minimum distance. 

The extension is carried out by means of a construction 
(given in Section II) that combines an (n, M,, d,) code with 
an (n, M,, cl, = [$(d, + l)]) code to give a (an, M,M,, d,) 
code. In Section IV we construct a family of nongroup 
quadratic residue codes of high minimum distance. Finally, 
in Section V the main construction is used to generate 
recursively all Reed-Muller codes of lengths 2”, and to 
generate triple-error correcting codes of lengths 32-47. 

Throughout, an (n, M, d) code denote0 a set of M binary 
vectors of length n of Hamming distance at least d apart. 

II. CON~TRUCTI~N 

The heart of the construction is an operator @ that sends 
pairs of binary vectors of length n to binary vectors of 
length 2n, defined by 

( 21, x2, . . * , Gil 0 (Yl, Y2, . . , Yn) 

= (z, + Yl, . . . , 2, + Yn, !/I, . . . , YJ, 

where + is t#he ordinary addition modulo 2. 
This is extended to the construction for codes. Let 

c?, = (n, M,, d,) and c?, = (n, M,, d, = [+(d, + l)]) be 
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two codes. Then the new code, denoted by e, @ c,, is 

e1Oe2 = {XOY, xEC1, YEezl. 

An informal description is that the codewords of c?, @ e, 
are obtained by adding an arbitrary codeword of e, to an 
arbitrary codeword of c?,, and appending a copy of the 
codeword of e,. 

Theown 1: e, @ e, is a (an, M,M,, d,) code. 
Proof: Every choice of codeword x E e, and y E e, 

gives rise to a different codeword x @ y, so the new code 
has M,ild, codewords. To show that the distance between 
x1 @ y, and xZ @ yZ is at least d,, in the case x1 # xZ 
then x1 and x2 differ in at least d, places and so do x1 @ yl 
and xZ @ yz. On the other hand, if x1 = xZ and y, # ya then 
by the construction the distance between x1 @ y, and 
x1 @ y, is exactly twice the distance between y, and y, 
and so is 2 2~1, 2 cl,. 

Remarks 

1) Since (cc @ y) + (z’ 0 y’) = (x + x’) @ (y + y’) 
(the + denoting component-wise addition modulo 2), if 
c?, and c?, are group codes then so is e, @ c?,. But c?, @ C?, 
need not be cyclic even when c?, and c!, are. 

2) The construction can be applied to codes over any 
field, and Theorem 1 will still hold. 

3) Since discovering this construction it has been pointed 
out to us by Elspas that an equivalent construction was 
given by Plotkin [lo] for the case when d, is even. Since 
then it has been almost unnoticed, and it seems to be 
worthwhile restating the construction in its general form. 
It is not mentioned, for example, by Berlekamp in his 
survey of methods of combining codes ([l], ch. 14). 

A similar construction with lower minimum distance is 
given by Slepian ([12], [I], p. 347), in which (n,, M,, d,) 
and (n,, jd,, d,) codes are concatenated to form the direct 
sum (n, + n,, M,M2, d = min (d,, d,)) code. 

III. NEW FAMILY OF SINGLE-ERROR CORRECTING CODES 

The sphere-packing bound for an (n, M, 3) single-error 
correcting code is 

M 5 a”/(1 + 12). (1) 

For n of the form n = 2” - 1, this bound is attained by 
the Hamming (am - 1, 22m-‘nn-1, 3) codes. If I - 1 informa- 
tion symbols of a Hamming code are set to zero, the 
shortened Hamming codes 

(2” - 2, 22”-m-L, 3) 

are obtained. These are known [4] to have the maximum 
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number of codewords of any group or nongroup code when 
n = 4, 5, and 2” - 2, m  2 3; and from (1) it follows that 
they have the maximum number of codewords of any 
single-error correcting group code of any length n. 

Golay and Julin Codes 

For lengths 8-l 1, single-error correcting nongroup codes 
containing more codewords than shortened Hamming 
codes were given by Golay [2] and Julin [5]. Their codes 
may be obtained as follows. 

Let 9 be the (11 X 11) binary circulant matrix whose 
first row is 11011100010, containing l’s at 0 and at the 
quadratic residues of 11. Let Q be the (12 X 12) binary 
matrix formed by adding a row and column of O’s to a>. 

W= 

Then (for example, see Leech [S]) the sums modulo 2 of 
pairs of rows of a, and the complements of such sums, 
form the 132 vectors of the Steiner system X(5, 6, la), and 
thus form a (12,132,4) code in which all words have weight 
6. Deleting the first coordinate gives a cyclic (11, 132, 3) 
code with 66 words each of weights 5 and 6. This may be 
increased to 144 words by adding 1209, O”l”d, 04120’, 
061203, Os120, O”1 and their complements, giving e,, = 
(11, 144,3). 

Taking the even-weight codewords of e,, gives an 
(11, 72, 4) code that contains a cyclic set of 66 words of 
weight 6. Again deleting a coordinate gives e,,, = (10,72,3), 
containing 5 words of weight 2, 36 of weight 5,30 of weight 
6, and 1 of weight 10. 

If now one coordinate is deleted from the 36 words of 
weight 5, and the codewords 09, l9 added, the code e, = 
(9,383) is obtained. This has the surprising property that 
by a suitable permutation of the 9 coordinates it can be 
made into the tricyclic code-i.e., shifting a codeword 
cyclically by 3 places again gives a codeword-consisting 
of 09, l9 and all tricyclic shifts of the row vectors 

000 011 
101 011 
101 100 
101 000 
100 110 
011 001 
111 100 
111 010 
011 100 
111 001 
110 110 
101 101 

110 
000 
001 
110 
010 
010 
100 
010 
011 
001 
001 
010. 

The 18 words of weight 4 in e, have Hamming distance 
4 among themselves. By deleting a coordinate and adding 
O8 and 1’ we obtain e, = (8, 20, 3); and by a permutation 
of the 8 coordinates this can be made into the cyclic code 
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consisting of OS, l’, (Ol)*, (10)4, and all cyclic shifts of 
11010000and11100100. 

The n,ew codes are now obtained by applying the con- 
struction of Section II to e, - e,,. Combining e, = 
(8, 20, 3) with the (8, 27, 2) single parity-check code gives 
a (16, (5/4). 2048, 3) code, compared to 2048 words for the 
shortened Hamming code. Combining the extended 
(9, 20, 4) and the (9, 28, 2) code gives an (18, (5/4) .212, 4) 
and thus a (17, (5/4). 212, 3). From (9, 38, 3) and (9, 2’, 2) 
we obtain an (18, (19/16).213, 3), and so on. Repeated 
applications of the construction give the following. 

Theorem d: For any block length n satisfying 2” i n < 
3. 2m-1 there exists a nongroup (n, ~2~-~-l, 3) code, where 
X = 5/4,19/16, or 9/S accordingly as the binary expansion 
of n begins 1000 +. . , 1001 . . . , or 101 . . . . X is the 
fractional improvement in the number of codewords over 
the shortened Hamming code. 

Remark 

Of this family of codes, only the one of length 8 is known 
to be optimal. For the others, the number of codewords 
lies below the best-known upper bound [4]. 

Encoding and decoding of any of the codes of Theorem 2 
can be reduced to the finite (but as far as we know, un- 
solved) problem of encoding and decoding the codes 
e, - e,,. The encoding is done iteratively, following the 
construction. To illustrate the decoding method, suppose 
codes e, = (n, M, 3) and e, = (n, 2”-‘, 2) were combined 
by the construction to give & = (2n, 2”-‘M, 3). We will 
show how to decode & given a decoder for e,. 

Let the received vector be 

Y = (Y,,, Ym * . * , Ynl, YlZ, Y22, . * . , Y%Z) 

and define P,(y), the projection onto e,, to be 

PI(Y) = (Yll + Yl2, YZI + Y22 , . . . , Ynl + Y,z> 

and let 

P2(Y) = 5 Yi2. i=l 

If no errors occurred, P,(y) E e, and Pz(y) = 0. If some 
ylil is in error, P,(y) will have a single error in position i that 
the decoder for e, will find; and Pz(y) = 0. On the other 
hand, if some y/i2 is in error, again the decoder for e, finds i, 
and now Pz(y) = 1. Thus, any single error can be corrected. 

IV. FAMILY OF NONGROUP QUADRATIC RESIDUE CODES 

Let n be a prime of the form n = 4m + 1. Define vectors 
a and b by a = (a,, a,, . . . , a,-,) where a, = 0, ai = 1 
if i is a quadratic residue modulo n, ai = 0 otherwise; 
and b = (b,, b,, . . . , b,-,) where b, = 0 and bi = 1 - ai 
forl<i<n- 1. Let e be the code consisting of O”, l”, 
and all 2n cyclic shifts of a and b. 

Theorem 3: t? is an (n = 4m + 1, M  = 8m + 4, d = 2m) 
cyclic nongroup code. 

Proof: An easy consequence of Theorems 3 and 4 of 
Perron [9]. 
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Remark 

For m = 1 and 3, e is an inferior code. For m = 4, we 
obtain (17, 36, 8) and (16, 36, 7) codes, which by the 
Johnson 1954 bound have more codewords than any 
comparable group code (see [4]). For larger m it is not 
known how good these codes are, although they have more 
codewords than any comparable group code presently 
known. 

V. OTHER APPLICATIONS 

Reed-Muller Codes 

The construction of Section II generates all the Reed- 
Muller (RM) codes recursively. Let e, be an rth-order RM 
code of length 2”, with Ic = 1 + (y) + * . * + (7) informa- 
tion symbols and minimum distance d = 2”-‘; and let 
e, be an (r + l)th-order RM code of the same length. 
Then CZ, @ CC?, is a code of length 2”‘l, with 

andd = 2,-‘, which can be shown to be the (r + l)th-order 
RM code of this length. (We omit the details of the proof.) 

Triple-Error Correcting Codes 

As a final example, we apply the construction with e, 
successively taken to be the (16, 36, 7) code of Section IV 
and the (n, 2”-“, 7) shortened Golay codes for 17 5 n 5 23, 

i19 

and with c?, equal to the corresponding (n, XZ”-O, 4) codes 
of Section III. We obtain a family of (n, X2”-17, 7) codes 
that for n = 32 (X = 9/4), n = 40 (X = 19/16), and 
41 5 n 5 47 (X = 9/8) appear to contain more codewords 
than any comparable group code presently known. For 
lengths 33-39, however, these codes are inferior to the 
(n, 2n-16, 7) group codes recently discovered by Leech 
(see [13]). 

ACKNOWLEDGMENT 

The authors wish to thank E. R. Berlekamp, B. Elspas, 
and J. Leech for their helpful suggestions. 

[ll 

PI 

[31 

[41 

[51 

PI 

171 

Bl 

Dl 
DOI 

illI 

w4 

[I31 

BIBLIOGRAPHY 
E. R. Berlekamp, Algebraic Coding Theory. New York: 
McGraw-Hill, 1968. 
M. J. E. Golay, “Binary coding,” IEEE Trans. Information 
Theory, vol. PGIT-4, pp. 23-28, September 1954. 
M. V. Green, “Two heuristic techniques for block-code con- 
struction,” IEEE Trans. Information Theory (Abstract), 
vol. IT-12, p. 273, April 1966. 
S. M. Johnson “On upper bounds for unrestricted error 
correcting codes,” RAND Rept. RM-5716-PR, December 1968. 
D. Julm, “TWO improved block codes,” IEEE Trans. In- 
?;6ytzon Theory (Correspondence), vol. IT-11, p. 459, July 
----. 
J. Leech, “Some sphere packings in higher space,” Can. J. 
Math., vol. 16, pp. 657-682, 1964. 
M. Nadler, “A 32-point n = 12, d = 5 code,” IRE Trans. 
$o;matron Theory (Correspondence), vol. IT-S, p. 58, January 

, . 
A. W. Nordstrom and J. P. Robinson, “An optimum nonlinear 
code,” Inform. and Control, vol. 11, pp. 613-616, 1967. 
0. Perron, “Bemerkungen iiber die Verteilung der quadratischen 
Reste,” Math. Z., vol. 56, 122-130, 1952. 
M. Plotkin, “Binary codes with specified minimum dist,ance,” 
IEEE Trans. Information Theory, vol. IT-6, pp. 445-450, 
September 1960. 
F. P. Preparata, “A class of optimum nonlinear double-error- 
correcting codes,” Inform. and Control, vol. 13, pp. 378-400, 
1968. 
D. Slepian, “Some further theory of group codes,” Bell Sys. 
Tech. J., vol. 39, pp. 1219-1252, 1960. 
J. Leech and N. J. A. Sloane, “Sphere packings and error- 
correcting codes” (to be published). 


