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EDST- III: 
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In addition, the representation for EDCT-I  [(9) in the above']  
can be simplified as 

ma ma 
N N X'; l (m)  = cos - X r ' ( m )  + sin - X " ( m )  

m a  + ( -$( I  - 4;) x ( N )  c o s 7  

+ ( - l ) ' " & x ( N  + l ) ] ,  

tn = 0 ,  1 ,  . . . , N .  ( 2 7 )  

In conclusion, every odd version in the family of DCT and DST 
possesses, as would be expected, a similar shift property as its even 
counterpart. Along with the derivation of generalized convolution 
properties for versions I and I1 in the family [ 2 ] ,  the basic prop- 
erties for some important transforms have been realized, thus mak- 
ing it more convenient to use these discrete transforms for digital 
signal processing. 
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New FFT Structures Based on the Bruun Algorithm 

YUHANG WU 

Abstract-In some signal processing applications, the input data are 
real. In this case, the Bruun algorithm for computation of the Discrete 
Fourier Transform (DFT) is attractive. This correspondence offers a 
pipeline and a recirculated shuffle network implementation of the 
Bruun algorithm. The parallel pipeline and recirculated FFT struc- 
tures are implemented based on the modified perfect shuffle network. 

I. INTRODUCTION 
The Discrete Fourier Transform (DFT) of an N-point sequence 

x ( k )  is defined by 
N -  I 

x ( n )  = C x ( k ) o $  n = 0, 1 ,  2 .  . . . , N - 1 ( I )  
h - 0  

where wN = 
Many methods for efficient computation of the DFT have been 

developed. In [ I ] ,  Bruun introduced an F F T  algorithm, known as 
the Bruun algorithm, which implements the DFT as a filter bank. 
The Bruun algorithm computes the D F T  of real data with real arith- 
metic. Among the F F T  algorithms, the Bruun algorithm is the most 
efficient for DFT of real data. In this correspondence, we will pre- 
sent a pipeline and parallel processor implementation of the Bruun 
algorithm. 

In [ 2 ] - [ 4 ] ,  the perfect shuffle is used for computation of the FFT.  
The implementation of the F F T  based on the perfect shuffle has an 
interesting property that makes it possible to use a recirculated net- 
work. In recent years, all the implementations of F F T  using the 
perfect shuffle are concerned with the classical radix-2 FFT algo- 
rithm. We  will show how the Bruun algorithm can be implemented 
using the modified perfect shuffle network. 

11. REVIEW OF THE B R U U N  ALGORITHM FUNDAMENTALS 
In the Bruun algorithm, the D F T  X (  n ) of a sequence x ( k )  is 

evaluated by finding the Z-transform of the sequence r ( k )  at N 
uniformly spaced points around the unit circle 111. Fig. 1 shows 
the signal flow graph of the Bruun algorithm. In order to derive the 
new FFT structures based on the Bruun algorithm, w e  need to  mod- 
ify the signal flow graph (Fig. 1 ) .  The modified signal flow graph 
is shown in Fig,  2.  Here we have added the dot and dash lines with 
a multiplicative factor zero into the figure. By careful examination 
of the signal flow graph (Fig. 2 ) ,  it can be seen that the basic com- 
putation at the kth stage, except the last stage in the flow graph 
(Fig. 2 ) ,  is shown in Fig. 3. The equations represented by this flow 
graph are of the form 
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Fig. I .  The signal flow graph of the Bruun algorithm for the case of 
N = 16. 
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Fig. 2 The modihed signal flow grdph of d 16-point FFT The dot and 
dash lines represent the arrows which have a multiplicdtive factor 
zero 

(b) 
Fig. 3 .  (a) The signal Row graph of the basic computation in the Bruun 

algorithm. (b) The symbol of the Bruun algorithm butterfly. 

k =  1 , 2 , 3 ,  . . .  , l o g N -  1 

i = 0,  I ,  2 ,  . . . .  N - 1 

i MOD N / 2 "  = i MOD N / 2 , - '  

j = truncation o f i  . 2 , - ' / N  

where Xf is the signal value represented by the ith node at the k th 
stage (numbered from 0 to N - 1 from right to left) in Fig. 2 and 
F, is the filter coefficient represented by dash or dot and dash lines 
in Fig. 2 .  We will call this basic computation the Bruun algorithm 
butterfly. The computations performed at the last stage are of the 

TABLE I 
THE REAL DFT ALGORITHM 

I . I ' O R  k = I  R I  I n g N - l  DO 

2 .  B E G I N  

3 .  

4 .  

5 .  

6 .  

7 .  

8. 

9 .  

i n .  

1 1 .  

1 2 .  

COMPUTE-F / "  j . I ,  2 ,  .... N I 2  */  

I" F j  a r e  t h e  DFT f i l t e r  c o e f f i c i e n t s  * /  
FllK i = O  1 0  N-1 DO 

l<l:(:lN 

j = i R u N c (  i * z k - I  / N  

I F  ( i MOD N / 2 k  ) = ( i MOD ) 

THEN UCGIN 

x k  = xk-' + F , *  x k - 1  + x k - 1  

I F  j = O  T H E N  x k  = x!-I - x k - 1  

i + N / Z k + l  i + N / z k  
1 1  

i +  N / Z k  i + N / 2 k  

E L S E  X k  = X:-'-F,* X k - l  + x k - l  
if N / 2 k  ' i + N / Z k + *  i + N / 2 k  

LNII 

I:NI) 

FNI) 

form 

XlngN , - x I o g N -  I - ZXJOfgr - ' ( 4 )  

xJqy = x J o g N - 1  - z*xJu,gY-' ( 5 )  

- 

where Z = e-l?all/N . n = I ,  2 ,  . . . .  : N  - 1 ;  Z *  denote the 
complex conjugate of Z. Note: n is not equal to i, Z = - 1 and Z *  
= 1 in the case of n = 0. 

111. IMPLEMENTATION 
As already mentioned, the Bruun algorithm is most efficient when 

the input data are real. W e  will concentrate on the case of real DFT 
throughout this correspondence. In Table I, the algorithm for com- 
puting real DFT is given. 

The statements 8 and 9 in the table perform a butterfly operation 
defined by (2) and ( 3 )  in Section 11. Only one multiplier is neces- 
sary for implementing the butterfly compared to four in the clas- 
sical FFT butterfly. The statements 13-24 in Table I perform the 
computations of the last stage shown in Section Ii. Since the com- 
plex conjugate operation is just a simple sign inversion of the imag- 
inary part of the complex number, only two real multipliers are 
necessary for implementing this stage. 

A .  The Serial Pipeline Implementation 
The serial pipeline structure of the Bruun algorithm is derived 

as shown in Fig. 4 .  In each stage of the pipeline network, the out- 
put X, + I of the butterfly block performing the butterfly operation 
is connected to the input of a shift register of an appropriate length. 
The register output is connected to the first input xk  of the butterfly 
block. The other output X, of the butterfly block is connected to 
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N 12 l 

Fig. 4. The serial pipeline implementation of the Bruun algorithm. The 
numbers near the shift register blocks indicate the lengths of the regis- 
ters. 

the next stage. The second input x ,  + I of the butterfly block is con- 
nected to the previous stage, while the remaining input y, is con- 
nected to the previous stage via another shift register which is half 
the length of the first one.  

Each stage handles the computations associated with a single 
value of the loop index k in Table I. The operation of the kth stage 
is as follows. First, the input data pass unchanged into both the 
shift registers of the lengths N / 2 ,  and N / 2 " + ' .  Then the incoming 
data are passed into the shift register of the length N / 2 "  + I and are 
combined with the data in the two shift registers with the delays 
N / 2 , + '  and N / 2 ' .  One output from the block performing the but- 
terfly operation is sent back into the shift register of the length 
N / 2 ' ,  while another is sent to the next stage. When all N / 2 L  but- 
terfly operations have been completed, the results in the shift reg- 
ister of the length N / 2 '  are allowed to pass through the block to 
the next stage, while the next N / 2 k  point input data are loaded into 
the two shift registers. The rightmost stage performs the compu- 
tations of the last stage, i .e. ,  statements 13-24 in Table 1. The last 
statement in Table I performs the permutation of the output values 
X, .  This procedure, however, cannot be performed on the pipeline 
structure described above. Note that the classical pipeline F F T  pro- 
duces its output values in bit-reversed order. This is not the case 
in the structure shown above. If output of natural order is desired, 
a simple network should be attached to the output of the pipeline 
FFT network. 

B. The Parallel Pipeline Implementation 
The parallel pipeline implementation of the Bruun F F T  algo- 

rithm provides one butterfly block for each butterfly operation in 
Table I .  Fig. 5 shows the parallel pipeline network in the case of 
N = 16. It has log N - 1 stages of N / 2  butterfly blocks each plus 
the last stage. Each stage of N / 2  butterfly blocks performs the en- 
tire iterations of the k loop in Table I. The last stage performs the 
computations from statement 13 to statement 24 in Table I. The 
input of the network is in the natural order, but the output is not in 
the bit-reversed order as  the classical FFT.  A simple network with 
the wire exchanging may be added to place output in the natural 
order, if desired. If we number the blocks in Fig. 5 from top to 
bottom, then the interconnections may be obtained from the fol- 
lowing: the block [ i ]  in the kth stage is connected to the blocks 
[ i / 2 ] ,  [ i / 2 ]  + N / 8 ,  and [ i / 2 ]  + N / 4  in the previous stage. The 
[ ] denotes the biggest integer that is less than or equal to the en- 
closed quantity. The interconnection between the last stage and the 
last-but-one stage is as follows: the block [ i ]  in the last stage is 
connected to the two blocks: [ i / 2 ]  and [ i / 2 ]  + N / 4  in the last- 
but-one stage. 

C. The Recirculated Implementation 
From [2]  and [ 3 ] ,  it is known that the recirculated implementa- 

tion of the classical radix-2 F F T  based on the perfect shuffle con- 
nection is obtained by connecting the output of the butterflies to 
the input via a perfect shuffle connection. In order to derive the 
recirculated implementation of the Bruun algorithm, the butterfly 
block of Fig.  3 must be modified to perform both the butterfly op- 
eration defined by ( 2 )  and (3), and the operations of the last stage 
defined by (4) and ( 5 ) .  Such a butterfly block is associated with 
three real value input, two complex value output, and the coeffi- 
cients input. Since the imaginary part of the output has a value only 
at the end of the entire F F T  computation, we are able to deal only 
with the real part of the output. W e  now denote two of the input 
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Fig 5.  The parallel pipeline implementation of the Bruun algorithm for 
N = 16. 

Fig. 6. The recirculated implementation of the Bruun algorithm using 
modified shuffle connection. 

of the butterfly corresponding to the input x, , x, + N ~ 2 ~  in Fig. 3 as 
x, ,  x ,  + I ,  and the third input as  v, , where k is an even number in 
range 0 5 k 5 N - 1 ,  j is an integer number in range 0 5 j 5 
N / 2  - 1 .  Similarly, we denote the two output as X ,  and X ,  + I .  W e  
modify the perfect shuffle connection by adding the connection for 
input y! . The modified connection scheme can be described by the 
following equations: 

N 
p ( i )  = i - - 

2 
N 3 N  
- 5 i 5 - - 1 fory, .  (7 )  
4 4 

A connection is provided from the output X ,  of the previous stage 
to the input x ,  of the stage if and only if m = a ( i  ). Similarly, a 
connection is provided from X i  to y, if and only if j = 6 ( i  ). Fol- 
lowing this scheme, we obtain that for a particular butterfly block 
containing x k ,  xI + I ,  and yl12, if xk and x k  + I are connected to 
X,-I(,, and X ,  I(,+ respectively, then yk12 must be connected to 
X t a ~ ~ ( k ) + a ~ ~ ( k + , ) ) / 2 ,  i .e. ,  input y, is connected to the output of the 
previous stage with the index which is the middle index of the first 
two. 

It has been shown 161 rliat thc full Bruun algorithm computation 
can be performed by recycling data through a simple stage con- 
sisting of the data propagation along the above connection scheme, 
followed by the parallel execution of the N / 2  modified butterfly 
operations. The different coefficients are applied to the butterfly 
operations for each time. Such an implementation is shown in Fig. 
6. 

IV. CONCLUSION 
We have presented the serial and parallel pipeline structures for 

the implementation of the Bruun algorithm. Furthermore, the re- 
circulated network for implementing the Bruun algorithm is shown. 
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Performance Analysis of Kimura and Honoki’s 
Hybrid Approach to 2-D Spectral Estimation 

XIAN-DA ZHANG AND DA-YONG CUI 

Abstract-More recently, Kimura and Honoki 11 ] have proposed a 
hybrid approach to high-resolution 2-D spectral estimation. However, 
they have not done performance analysis of the final spectrum esti- 
mate, and have only conjectured that the final estimate coincides with 
the true ME estimate for the case of cyclic and skew-cyclic Toeplitz 
R ( I ) .  In this correspondence, we fill the above gap in performance 
analysis so as to provide a “theoretical” and “practical” solution, and 
present a counterexample to show Kimura and Honoki’s conjecture is 
not true. 

I .  INTRODUCTION 
The techniques of 2-D maximum entropy (ME) spectral esti- 

mation have been recently studied by many researchers. More re- 
cently, Kimura and Honoki [ l ]  have proposed a hybrid approach 
that consists of two steps. The first step is a usual multichannel 
I -D M E  estimation in the “time” domain. In the second step, the 
sequence of interchannel cross spectrum obtained in the first step 
is extended by the M E  method in the “frequency” domain. Their 
interesting approach is practical and attractive since it fully utilizes 
the high-resolution performance of the M E  estimate for I -D sig- 
nals, and is able to avoid the highly nonlinear nature of the ME 
estimation for 2-D signals. 

However, some important theoretical problems associated with 
the estimation algorithm remain to be solved. Especially, Kimura 
and Honoki have not analyzed the performance of their final spec- 
trum estimate. They have only conjectured that the final spectrum 
estimate coincides with the true M E  estimate for the case of cyclic 
and skew-cyclic Toeplitz R (  I ). 

In this correspondence, we fill this gap in the performance anal- 
ysis, and present a counterexample o f  Kimura and Honoki’s con- 
jecture. Our work provides a “theoretical” and “practical” solu- 
tion to the performance analysis of the final spectrum estimate given 
by Kimura and Honoki’s hybrid approach. 

11. KIMURA A N D  HONOKI’S HYBRID APPROACH 
For the convenience o f  our  subsequent performance analysis, we 

Consider a 2-D homogeneous random field { x (I, s )  } with zero 
begin by recalling briefly Kimura and Honoki’s hybrid approach. 
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mean. Let Q be  a rectangular region 

Q = { ( I , k ) :  -L I I I L,  - K  5 k 5 K }  ( I )  

and let r (  I ,  k )  denote the covariance 

r ( / ,  k) = E [ x ( t  + I, s + t ) x ( t ,  s ) ]  ( I ,  k )  E Q ( 2 )  

where r ( I ,  k )  = r (  - I ,  - k )  since { x ( t ,  s ) }  is assumed to be ho- 
mogeneous. 

Define the covariance matrix 

I. (3) 
r (I ,  - K  + 1 )  

L r ( I :  K )  r ( l ,  

spectral estimation consists of two steps. 

domain: 

- 1) . . . r ( l ,  0). 1 
Kimura and Honoki’s hybrid approach to high-resolution 2-D 

The first step is to solve the Yule-Walker equation in the “time” 

[ I A ,  . . . A , ] ~ ( L )  = [ A ~ O  . . . 01 (4 )  

where I’(L) is the blocked Toeplitz matrix defined by 

. . . R ( L )  1 

L R (  - L )  R (  -L + I )  . . . R ( 0 )  J 
Then,  the M E  estimate of the spectrum n ( w ,  ) = CP., R (  I ) exp 
( - j w l l )  for the multichannel I -D process X ( t )  = [ x ( t ,  0), x ( t ,  
I ) ,  . . .  , x ( t , K ) ] i s g i v e n b y  

n(ul)  = [A(exp ( - jwl l ) ) ] - ’AL[A(exp ( - j w ~ l ) ) ] - ~  (6)  

( 7 )  

where 

A(z I )  = I + A , z l ’  + . . . + A,.zFL. 

[ la l (o , )  . . * U K ( u , ) ] f i ” ( w l )  = [ a ( w , ) O  . . . 01. 

The second step is to  solve the Yule-Walker equation in the 
“frequency” domain: 

(8 )  

The final spectrum estimate B ( w , ,  w 2 )  is given by 

w h e r e a ( w l ;  z 2 )  = 1 + a l ( w l ) z z ’  + . . . + aK(wl)zyK. 
Define the two matrices M, and M- by 

0 0 . . .  0 

1 0 . . .  0 

. .  . .  . .  
0 0 . . .  1 

“1 
0 

M- = 

0 0 . . .  0 -1 -  

1 0 . * * 0  0 

0 1 . . . 0  0 . .  . .  . .  . .  . .  . .  [ 0 0 . . .  1 0- 

(9) 
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