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New Finite-Dimensional Filters for Parameter
Estimation of Discrete-Time Linear Gaussian Models

Robert J. Elliott and Vikram Krishnamurthy, Member, IEEE

Abstract— In this paper the authors derive a new class of
finite-dimensional recursive filters for linear dynamical systems.
The Kalman filter is a special case of their general filter. Apart
from being of mathematical interest, these new finite-dimensional
filters can be used with the expectation maximization (EM)
algorithm to yield maximum likelihood estimates of the param-
eters of a linear dynamical system. Important advantages of
their filter-based EM algorithm compared with the standard
smoother-based EM algorithm include: 1) substantially reduced
memory requirements and 2) ease of parallel implementation on
a multiprocessor system. The algorithm has applications in multi-
sensor signal enhancement of speech signals and also econometric
modeling.

Index Terms— Expectation maximization algorithm, finite-
dimensional filters, Kalman filter, maximum likelihood
parameter estimation.

I. INTRODUCTION

T
HERE ARE very few estimation problems for which

finite-dimensional optimal filters exist, i.e., filters given

in terms of finite-dimensional sufficient statistics. Indeed the

only two cases that are widely used are the Kalman filter for

linear Gaussian models and the Wonham filter (hidden Markov

model filter) for finite state Markov chains in white noise.

In this paper we derive new finite-dimensional filters for

linear Gaussian state-space models in discrete-time. The fil-

ters compute all the statistics required to obtain maximum

likelihood estimates (MLE’s) of the model parameters via the

expectation maximization (EM) algorithm. The Kalman filter

is a special case of these general filters.

MLE’s of linear Gaussian models and other related time-

series models using the EM algorithm were studied in the

1980’s in [1] and [2] and more recently in the electrical

engineering literature in [4] and [5]. The EM algorithm is a

general iterative numerical algorithm for computing the MLE.

Each iteration consists of two steps: the expectation (E-step)

and the maximization (M-step). The E-step for linear Gaussian
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models involves computing the following two conditional

expectations based on all the observations:

1) the sum over time of the state;

2) the sum over time of the state covariance.

In all the existing literature on parameter estimation of linear

Gaussian models via the EM algorithm, the E-step is noncausal

involving fixed-interval smoothing via a Kalman smoother

(i.e., a forward pass and a backward pass).

In this paper we derive a filter-based EM algorithm for linear

Gaussian models. That is, the E-step is implemented using

filters (i.e., only a forward pass) rather than smoothers. The

main contribution of this paper is to show that these filters are

finite-dimensional. Few finite-dimensional filters are known,

so the result is of interest.

It is important to note that the filter-based EM algorithm

proposed here and the standard smoother-based EM algorithm

in [1], [2], [4], and [5] are off-line iterative algorithms. They

represent two different ways of computing the same condi-

tional expectations and consequently yield the same result.

However, the filter-based EM algorithm has the following

advantages.

1) The memory costs are significantly reduced compared

to the standard (smoother-based) EM algorithm.

2) The filters are decoupled and hence easy to implement

in parallel on a multiprocessor system.

3) The filter-based EM algorithm is at least twice as fast as

the standard smoother-based EM algorithm because no

forward–backward scheme is required.

Filter-based EM algorithms have recently been proposed for

hidden Markov models (HMM’s) in [9]. These HMM filters

are finite-dimensional because of the idempotent property of

the state indicator function of a finite state Markov chain.

In linear Gaussian models, unlike the HMM case, the state

indicator vector is no longer idempotent. Instead, the filters

derived in this paper are finite dimensional because of the

following two algebraic properties that hold at each time

instant.

1) The filtered density of the current time sum of the state

is given by an affine function in times the filtered state

density. The filtered state density is a Gaussian in with

mean and variance given by the Kalman filter equations.

2) The filtered density of the current time sum of the state

covariance is a quadratic in times the filtered state

density.

So the filtered density of the state sum is given in terms of

four sufficient statistics, namely the two coefficients of the
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affine function in and the Kalman mean and covariance.

Similarly, the filtered density of the covariance sum is given

by five sufficient statistics.

Actually this algebraic “closure” property holds for higher

order statistics as well: We prove that the filtered density of

the current time sum of the th-order statistic of the state is

a th-order polynomial in times the filtered state estimate.

So finite-dimensional filters can be derived for the time sum

of th-order statistics of the state. Of course, for the filtered

E-step we only use filters for the first and second order

statistics. Also for , the filters reduce to the Kalman filter.

Applications: The filter-based EM algorithm proposed in

this paper for linear Gaussian models can be applied to all

the applications where the standard EM algorithm has been

applied. In particular these include:

• multisensor signal enhancement algorithms for estimation

of speech signals in room acoustic environments [4];

• high-resolution localization of narrowband sources using

multiple sensors and direction of arrival estimation [7];

• linear predictive coding of speech (see [6, Ch. 6]);

• forecasting and prediction of the “shadow economy” in

market cycles using linear errors-in-variables models [2].

In all these applications the advantages of the filter-based EM

algorithm can be exploited.

This paper is organized as follows: In Section II we present

the EM algorithm for maximum likelihood estimation of the

parameters of a state-space linear Gaussian model to illustrate

the use of the finite-dimensional filters derived in this paper.

In Section III, a measure change is given which facilitates easy

derivation of the filters. In Section IV, recursions are derived

for the filtered densities of the variables of interest. In Section

V, we derive the finite-dimensional filters. In Section VI a

general finite-dimensional filter is proposed. Section VII re-

expresses the filters to allow for singular state noise as long as

a certain controllability condition is satisfied. In Section VIII

an example of the filter-based EM algorithm for errors-in-

variables time-series is given. In Section IX we evaluate

the computational complexity of the filters and propose a

parallel implementation. Finally conclusions are presented in

Section X.

II. MLE OF GAUSSIAN STATE-SPACE MODELS

The aim of this section is to show how the finite-dimensional

filters derived in this paper arise in computing the maximum

likelihood parameter estimate of a linear Gaussian state-space

model via the EM algorithm. We first briefly review the EM

algorithm and describe the linear Gaussian state-space model.

The use of the EM algorithm to compute maximum likelihood

parameter estimates of the Gaussian state-space model is then

illustrated. Finally, the use of the finite-dimensional filters to

implement the filter-based EM algorithm is demonstrated. This

motivates the finite-dimensional filters derived in the rest of

the paper.

A. Review of the EM Algorithm

The EM algorithm is a widely used iterative numerical

algorithm for computing maximum likelihood parameter es-

timates of partially observed models such as linear Gaussian

state-space models, e.g., [2], [5] and HMM’s [11]. For such

models, direct computation of the MLE is difficult. The EM

algorithm has the appealing property that successive iterations

yield parameter estimates with nondecreasing values of the

likelihood function.

Suppose we have observations available,

where is a fixed positive integer. Let be

a family of probability measures on all absolutely

continuous with respect to a fixed probability measure .

The likelihood function for computing an estimate of the

parameter based on the information available in is

and the MLE is defined by

The EM algorithm is an iterative numerical method for com-

puting the MLE. Let be the initial parameter estimate. The

EM algorithm generates a sequence of parameter estimates

, as follows.

Each iteration of the EM algorithm consists of two steps.

Step 1) (E-step) Set and compute , where

Step 2) (M-step) Find .

Using Jensen’s inequality it can be shown (see [13, Th. 1]) that

the sequence of model estimates from the EM

algorithm are such that the sequence of likelihoods

is monotonically increasing with equality if and only

if .

Sufficient conditions for convergence of the EM algorithm

are given in [14]. We briefly summarize them and assume the

following.

1) The parameter space is a subset of some finite-

dimensional Euclidean space .

2) is compact for any

.

3) is continuous in and differentiable in the interior

of . (As a consequence of 1)–3), clearly is

bounded from above).

4) The function is continuous both in and .

Then by [14, Th. 2], the limit of the sequence of EM estimates

is a stationary point of . Also converges

monotonically to for some stationary point . To

make sure that is a maximum value of the likelihood, it is

necessary to try different initial values .

B. Gaussian State-Space Model

To derive the filters with maximum generality, in this paper

we consider a multi-input/multi-output linear Gaussian state-

space model with time-varying parameters and noise variances

as follows.
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All processes are defined on the probability space .

We shall consider the classical linear-Gaussian model for the

signal and observation processes. That is, for

assume that the state is observed indirectly via the vector

observations , where

(1)

(2)

Here is a -dimensional random vector. Also is a

Gaussian random variable with zero mean and covariance

matrix (of dimension ).

At time the noise in (1) is modeled by an

independent Gaussian random variable with zero mean and

covariance matrix . It is known [8] that such a Gaussian

random variable can be represented as where is an

-vector of independent random variables.

In (2), for each and is a vector of independent

random variables. The process is assumed to be

independent of . Assume that is a nonsingular

matrix.

Finally, is assumed independent of the processes and

.

Assumption 2.1: For the time being, assume that the

matrices are nonsingular and symmetric.

The case when is singular is discussed in Section VII.

Remark: We assume to be a covariance matrix and

hence symmetric for notational convenience. The results in

this paper also hold for nonsymmetric , simply by replacing

by and by below.

C. EM Algorithm for MLE of Gaussian State-Space Model

The aim of this subsection is to illustrate the use of the EM

algorithm for computing the MLE of a Gaussian state-space

model. Our main focus in this paper involves computation

of the E-step. Hence, to keep the exposition simple, we omit

issues of identifiability and consistency of the MLE. These are

well known and can be found for example in [10, Ch. 7].

Consider the following time-invariant version of the linear

Gaussian state-space model (1), (2)

(3)

(4)

where denotes the parameter vector belonging to some

compact space . Let denote the true model. We

also assume other regularity conditions (see [10, Ch. 7]) on

and including identifiability of so that the

MLE is strongly consistent, i.e.,

converges almost surely to the true model . For simplicity

and in order to illustrate our main ideas, in this subsection we

assume the parameterization . An errors-

in-variables model with a different parameterization is given

in Section VIII.

Suppose we wish to compute the MLE of the parameter

of (3), (4) given the observation sequence

. We now illustrate the use of the EM algorithm

outlined in Section II-A to compute the MLE of .

Step 1—E-Step: It is easily seen (see the Appendix or [4],

[7], [2], or [1]) that for the model (3), (4)

(5)

where denotes the parameter

estimate at the th iteration and the term does not

involve .

Step 2—M-Step: To implement the M-step, i.e., compute

, simply set the derivatives

. This yields (using the identity

for any nonsingular matrix ) the updated parameter

estimate as

where

(6)

The above system (6) gives the EM parameter estimates

at each iteration for the linear Gaussian model (3), (4).

System (6) is well known. Indeed, versions of (6) with

different parameterizations have appeared in several papers,

e.g., [1], [2], [4], and [7]. Furthermore, since in (5)

is continuous in and , as mentioned in Section II-A, the

EM algorithm converges to a stationary point in the likelihood

surface—see [2] for details.

Our main focus in this paper is the computation of the

various conditional expectations in (5), and hence (6), which

are required for implementing each iteration of the EM al-

gorithm. It is well known that these conditional expectations

can be computed via a Kalman smoother. Such an approach is

termed the smoother-based EM algorithm and is described in
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[1], [2], [4], and [7]. For example, consider the computation of

in (5) and (6). Defining

, we have

Now and are merely the

smoothed state and covariance estimates computed via a fixed-

interval Kalman smoother.

D. Filter-Based EM Algorithm

The main contribution of this paper is to show how the

various conditional expectations in (5), and hence (6), can be

computed using causal filters instead of smoothers. Thus we

derive a filter-based EM algorithm. For example, we derive

finite-dimensional filters for , i.e., recursions

for . Clearly at time

, the filtered estimate is exactly what

is required in the EM algorithm. Note that both the filter-

based and smoother-based EM algorithms compute the same

quantities and are off-line iterative algorithms. However, the

filter-based EM algorithm has several advantages over the

smoother-based EM algorithm as mentioned in Section I.

More specifically, defining the matrices

(7)

the EM parameter estimates (6) at the th iteration can

be re-expressed as

(8)

where for , and are

defined, respectively, as

(9)

E. Summary of Main Results

The rest of this paper focuses on deriving recursive finite-

dimensional filters for computing and

at time We assume the general time-varying

signal model (1), (2). For convenience, in the sequel, we write

as , i.e., omit the subscript .

The final form of finite-dimensional filters are summarized

in Theorem 7.4, which is the main result of the paper. The

theorem holds even if the assumption that is invertible is

relaxed as long as the system (1), (2) is uniformly completely

controllable (i.e., Definition 7.1 holds).

For the time-invariant state-space model (3), (4), the

filter-based EM algorithm for computing the MLE

can be summarized as follows: Choose

an initial parameter estimate . At each EM iteration

compute the estimate , according to (8). The

elements of the matrices and in (8)

are computed as follows (see Theorem 5.4):

The terms and above are, respectively, the conditional

mean and covariance of the state given . These are

computed recursively for using the well-

known Kalman filter (Theorem 5.1). More importantly, as

shown in Theorem 7.4, the terms , etc., in the

above equation are sufficient statistics of finite-dimensional

filters for computing and .

They are recursively computed for according

to Theorem 7.4.

The above method for computing the E-step only uses

filters—thus we have a filter-based EM algorithm. Another

example of a filter-based EM algorithm, for an errors-in-

variables model (77), (78), is given by (80) in Section VIII.

III. MEASURE CHANGE CONSTRUCTION AND DYNAMICS

The aim of this section is to introduce a measure transfor-

mation that simplifies the derivation of the filters.

We shall adapt the techniques in [11] and show how the

dynamics (1) and (2) can be modeled starting with an initial

reference probability measure .

Suppose on a probability space we are given

two sequences of independent, identically distributed random

variables . Under the probability measure

, the are a sequence of independent -dimensional

random variables, and the are a sequence of

independent -dimensional random variables. Here,

(respectively, ) represents the (respectively, )

identity matrix.

For and , write

(10)
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Define the sigma-fields

(11)

Thus is the complete filtration generated by the and

sequences and is the complete filtration generated by the

observations.

For any matrix , let denote its determinant.

Write

and for

(12)

For set

A new probability measure can be defined on by

setting the restriction of the Radon–Nikodym derivative of

with respect to

Definition 3.1: For define

For define

(13)

Lemma 3.2: Under the measure and are sequences

of independent and random variables,

respectively.

The proof appears in the Appendix.

Remark: Note that under the probability measure , (1) and

(2) hold. represents the “real world” dynamics. However,

is a much nicer measure with which to work.

IV. RECURSIVE ESTIMATES

Let denote the unit column vectors in with 1

in the th and th position, respectively. Let be the unit

column vector in with 1 in the th position.

For and , define the scalar

processes

(14)

where denotes the inner product. Note that these are

merely the elements of the matrices and

.

Our aim is to derive finite-dimensional recursive filters for

and , that is, to compute

and recursively. As shown in Section II,

these filtered quantities are required in the filter-based EM

algorithm for estimating the parameters.

In order to derive the filters, in this section we derive

recursive expressions for the unnormalized densities of

and under the probability measure

.

A. Recursive Filtered Densities

Let and be the unnormalized

(measure valued) densities

(15)

Then for any measurable “test” function

(16)

The following theorem gives recursive expressions for the

and . The recursions are derived under the measure

where and are independent sequences

of random variables.

Theorem 4.1: For , the unnormalized densities

and defined in (15) are given by the

following recursions:

(17)

(18)

(19)
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(20)

(21)

Proof: We prove (18). The proof of (19)–(21) and (17)

are very similar and hence omitted.

Since , using (12) it

follows that we have (22), as shown at the bottom of the page,

where the second equality follows from the independence of

the ’s and ’s under .

Since is an arbitrary Borel test function, equating the

right-hand side (RHS) of (16) with (22) proves (18).

Remarks:

1) By virtue of (17), we can rewrite (18) and (21) as

(23)

(24)

2) The above theorem does not require and to be

Gaussian. The recursions (17), (18), and (21) hold for

arbitrary densities and as long as is strictly

positive. We use the Gaussian assumption to derive the

finite-dimensional filters in Section V.

3) Initial conditions: Note that at , the following holds

for any arbitrary Borel test function :

(25)

Equating (15) and (25) yields

(26)

Similarly the initial conditions for and

are

(27)

V. FINITE-DIMENSIONAL FILTERS

In this section finite-dimensional filters are derived for

and defined in (14). In particular,

we characterize the densities and in terms

of a finite number of sufficient statistics. Then recursions are

derived for these statistics.

(22)
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Define the conditional mean and conditional covariance

matrix of , respectively, as and

.

The linearity of (1) and (2) implies that is an

unnormalized normal density with mean and variance given

by the well-known Kalman filter equations.

Theorem 5.1 (Kalman Filter): For is an

unnormalized Gaussian density of the form

where . The mean and covariance

are given via the Kalman filter equations

(28)

(29)

Here is an -vector and

is a symmetric matrix. Also is

a symmetric matrix defined as

(30)

Proof: See [11].

Due to the presence of the quadratic term ,

the density in (23) is not Gaussian. Is it possible to

characterize the density in terms of a finite number

of sufficient statistics? The answer is “yes.” As will be

proved below, it is possible to express as a quadratic

expression in multiplied by for all . The important

conclusion then is that by updating the coefficients of the

quadratic expression, together with the Kalman filter above, we

have finite-dimensional filters for computing . A similar

result also holds for and .

Theorems 5.2 and 5.3 that follow derive finite-dimensional

sufficient statistics for the densities and

. To simplify the notation, we define

(31)

Theorem 5.2: At time , the density [initialized

according to (27)] is completely defined by the five statistics

and as follows:

(32)

where and is

a symmetric matrix with elements

.

Furthermore, and are

given by the following recursions:

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

where denotes the trace of a matrix, is defined in (30),

and are obtained from the Kalman filter (28) and (29).

Proof: We only prove the theorem for ; the proofs

for are very similar and hence omitted.

We prove (32) by induction.

From (27), at time is of the form (32) with

and .

For convenience we drop the superscripts in

and Assume that (32) holds at time . Then

at time , using (32) and the recursion (23) it follows that

(42)

Let us concentrate on the first term on the RHS which we

shall denote as

(43)
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where is defined in (30)

(44)

Completing the “square” in the exponential term in (43) yields

(45)

Now consider the integral in (45)

(46)

since the term is an unnormalized Gaussian density in

with normalization constant . (Here

denotes the expected value of the Gaussian random variable

.) So

(47)

(48)

Therefore from (45)–(48) and (42) it follows that

(49)

Substituting for (which is affine in ) in (49) yields

where and are given by (33)–(35).

The proof of the following theorem is very similar and hence

omitted.

Theorem 5.3: The density is completely determined

by the four statistics and

as follows:

(50)

where are given by the following

recursions:

(51)

(52)

where and are defined in (31).

Having characterized the densities

and by their finite sufficient statistics, we now derive

finite-dimensional filters for and .

Theorem 5.4: Finite-dimensional filters for

and are given by

(53)

(54)

Proof: Using the abstract Bayes rule (81) it follows that

(55)

where the constant . But since is an

unnormalized density, from (32)

(56)

Substituting in (55) proves the theorem.

The proof of (54) is similar and hence omitted.

VI. GENERAL FILTER FOR HIGHER ORDER MOMENTS

Theorem 5.4 gives finite-dimensional filters for the time sum

of the states and time sum of the square of the states .

In this section we show that finite-dimensional filters exist for

the time sum of any arbitrary integral power of the states.

Assumption 6.1: For notational simplicity, in this section

we assume that the state and observation processes are scalar

valued, i.e., in (1) and (2).

Let be the time sum of the th power of the state1

(57)

Our aim is to derive a finite-dimensional filter for .

1These new definitions for in (57) and in (58) are only used in
this section.
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Define the unnormalized density

.

Our first step is to obtain a recursion for .

By using a proof very similar to Theorem 4.1, we can show

(58)

Our task now is to characterize in terms of finite

sufficient statistics. Recall that for , the Kalman filter

state and covariance are sufficient statistics as shown in

Theorem 5.1. Also for and , Theorems 5.3 and 5.2 give

finite-dimensional sufficient statistics. We now show that

can be characterized in terms of finite-dimensional statistics

for any .

Theorem 6.2: At time , the density in (58) is com-

pletely defined by the statistics

and as follows:

(59)

where

(60)

and (61), as shown at the bottom of the page.

Proof: As in Theorem 5.2, we give an inductive proof.

At and thus satisfies (59).

Assume that (59) holds at time . Then at time using

similar arguments to Theorem 5.2, it follows that

(62)

The first term on the RHS of the above equation is

(63)

The integral in the above equation is

(64)

Now recall from (47) that is affine in

(65)

Also is independent of . Indeed, ([12, p.

111])

if is odd,

if is even,

if

(66)

Thus

(67)

Equation (67) is of the form (59) with

given by (60).

VII. SINGULAR STATE NOISE

The filters derived in Theorems 5.1, 5.2, and 5.3 have one

major problem: They require to be invertible. In practice

(e.g., see Section VIII), is often not invertible.

In this section, we will use a simple transformation that

expresses the filters in the terms of the inverse of the predicted

Kalman covariance matrix. This inverse exists even if is

singular as long as a certain uniform controllability condition

holds. Both the uniform controllability condition and the

transformation we use are well known in the Kalman filter

literature [15, Ch. 7].

if is even,

if is odd,

if

(61)
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First define the Kalman predicted state estimate

and the predicted state covariance

. It is straightforward

to show that

(68)

where denotes the filtered state covariance at time

[see (29)].

Our first step is to provide a sufficient condition for

to be nonsingular.

Definition 7.1 [15, Ch. 7]: The state-space model (1), (2)

is said to be uniformly completely controllable if there exist a

positive integer and positive constants such that

for all (69)

Here

(70)

if

if
(71)

Lemma 7.2: If the dynamical system (1), (2) is uniformly

completely controllable and then and

are positive definite matrices (and hence nonsingular) for all

.

Proof: See [15, p. 238, Lemma 7.3].

Our aim now is to re-express the filters in Section V in terms

of . The following lemma will be used in the sequel.

Lemma 7.3: Assume exists. Then with and

defined in (30) and (31), respectively

(72)

(73)

Furthermore, the Kalman filter (28), (29) can be expressed in

“standard” form as

(74)

Proof: Straightforward use of the matrix inversion

lemma on (30) yields

(75)

Substituting (68) in (75) proves (72).

To prove (73), first note that

because from (68). So

To prove (74), consider the Kalman filter equations (28) and

(29). Using Lemma 7.3 on (29) gives

(76)

Using the matrix inversion lemma on (76) and applying (73) to

the first term on the RHS of (28) yields the “standard” Kalman

filter equations.

Applying the above lemma to the filters derived in

Section V, we now express them in terms of instead

of . As shown below, the advantage of doing so is that

no longer needs to be invertible, as long as the uniformly

controllability condition in Definition 7.1 holds.

The following theorem gives the finite-dimensional filters

for and defined in (14) and is the

main result of this paper.

Theorem 7.4: Consider the linear dynamical system (1) and

(2) with not necessarily invertible. Assume that the system

is uniformly completely controllable, i.e., (69) holds. Then at

time , with given by (72) and defined in (73), the

following hold.

1) The density [defined in (15)] is an unnormalized

Gaussian density with mean and covariance

. These are recursively computed via the

standard Kalman filter equations (74).

2) The density [defined in (15) and initialized

according to (27)] is completely defined by the five

statistics and as follows:

where

is a symmetric matrix with elements

. These statistics are recursively

computed by (33)–(41).

3) The density [defined in (15)] is completely

determined by the four statistics as follows:

where . These statistics are

recursively computed via (51), (52).

Finally, finite-dimensional filters for and [de-

fined in (14)] in terms of the above statistics are given by (53)

and (54).

Proof: It only remains to show that subject to the uniform

complete controllability condition (69), the filtering equations
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(33)–(41) and (51), (52) in Theorem 7.4 hold even if the

matrices are singular. The proof of this is as follows: If

is singular, then do the following.

1) Add noise to each component of . This

is done by replacing in (1) with the nonsingular

matrix where . Denote the

resulting state process as .

2) Define as in (68) with replaced by .

Express the filters in terms of as in Theorem 7.4.

3) As .

4) Then using the bounded conditional convergence the-

orem ([16, p. 214]), the conditional estimates of

, and converge to the con-

ditional estimates of , and ,

respectively.

VIII. EXAMPLE: MLE OF

ERRORS-IN-VARIABLES TIME SERIES

We now illustrate the use of the filtered EM algorithm to

estimate the parameters of the errors-in-variables time series

example considered in [2] and [4].

Consider the scalar valued AR( ) process ,

defined as

(77)

where is a white Gaussian process. Assume that is

observed indirectly via the scalar process

(78)

where is a white Gaussian process independent of .

The aim is to compute the MLE of the parameter vector

using the filter-based EM algorithm.

We first re-express (77) and (78) in state-space form (3), (4)

with

...

Using a similar procedure to (5), it can be shown [2], [4], [5]

that the E-step yields

(79)

where does not involve .

The M-step yields [2], [4], [5]

... symmetric
. . .

...

...

(80)

where and are defined in (9) and computed using

(53), (54) together with the finite-dimensional recursive filters

in Theorem 7.4.

Proving that the EM algorithm converges to a stationary

point on the likelihood surface requires verification of the

conditions stated on Section II-A. If and are assumed

known, these conditions are straightforward to verify. Other-

wise, it is necessary to ensure that these variances are strictly

positive (kept away from zero); see [2] or [14] for details.

Strong consistency of the MLE under the conditions that

lies in a compact set and that the roots of

lie inside the unit circle (i.e., stationarity) is proved

in [10, Ch. 7].

Similar parameterized models are used in [1] and [7] and

can be estimated via the filter-based EM algorithm presented

in this paper.

IX. PARALLEL IMPLEMENTATION OF FILTERS

In this section we discuss the computational complexity of

the new filters and the resulting filter-based EM algorithm.

In particular, we describe why the filter-based algorithm is

suitable for parallel implementation and propose a systolic

processor implementation of the algorithm.

A. Sequential Complexity

We evaluate the computational cost and memory require-

ments of the filter-based algorithm and compare them with

the standard smoother-based EM algorithm.

Computational Cost: The filter-based E-step requires com-

putation at each time of , and

for all pairs .

• : Consider the RHS of the update (33). The fol-

lowing are the computational cost for each pair at

each time-instant .

Second term: multiplications (inner product of

two -vectors).
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Third term: multiplications (matrix vector mul-

tiplication).

Fourth term: multiplications (matrix vector

multiplication).

Since there are pairs, the total complexity at

each time instant is .

• Similarly the total complexity for evaluating for

all pairs is multiplications.

• Evaluating for each pair requires multiplica-

tion of a fixed number of matrices. This involves

complexity. So the total complexity for all

pairs is at each time instant.

In comparison, the Kalman smoother-based E-step in [2] and

[4] requires complexity at each time instant to compute

, and for all pairs

.

Thus the computational cost of the filter-based EM algo-

rithm on a sequential machine is higher than that of the

smoother-based EM algorithm.

Memory Requirements: In the filter-based EM algorithm,

only the filtered variables at each time instant need to be stored

to compute the variables at the next time instant. They can then

be discarded. The memory required in each iteration is

and is independent of the number of observations .

In comparison, the Kalman smoother-based EM algorithm in

[2] and [4] requires memory per EM iteration since

all the Kalman filter covariance matrices

need to be stored before smoothed covariance matrices can

be computed; see [2, (2.12)]. This also involves significant

memory read–write overhead costs.

B. Parallel Implementation on Systolic Array Architecture

The following properties of the filter-based EM algorithm

make it suitable for vector-processor or systolic-processor

implementation.

1) The computation of and for

each pair is independent of and

for any other pair for all time

So all the components of these variables

can be computed in parallel on processors.

Similarly computation of all components of and

are mutually independent and can be done in parallel.

2) The recursions for and do not

explicitly involve the observations. They only involve

the Kalman filter variables, . Notice

that only arises in the term . This

term arises in (33), (34), (36), (37), (39), (40), and

(51) and only needs to be computed once for each time .

Moreover, only involves (and so ) which

itself is independent of the observations and can be computed

off-line for a given parameter set . Similarly the term

arises in (34), (35), (37)–(41), and (52) and

can be computed off-line for a given .

All the processor blocks used above are required to do a

synchronous matrix vector multiplication at every time instant

. Now an matrix can be multiplied by a vector

in time units on a processor systolic array; see [17, pp.

216–220] for details. (Also it can also be done in unit time

on processors).

If is the time required for this matrix-vector multiplication,

then for a -point data sequence, the filter-based EM algorithm

requires a total of time units per EM iteration. In com-

parison, a parallel implementation of the forward–backward

smoother-based EM algorithm requires time units per

EM iteration because we need a minimum of time units

to compute the forward variables and another units for the

backward variables. For large and a large number of EM

iterations, this saving in time is quite considerable.

In addition, unlike the filter-based EM algorithm which has

negligible memory requirements, the forward–backward algo-

rithm of the smoother-based EM requires significant memory

read–write overhead costs requiring memory locations to

be accessed for the stored forward variables while computing

the backward variables.

Finally, the filter-based EM algorithm can be easily imple-

mented in a single instruction multiple data (SIMD) mode on

a supercomputer in the vectorization mode or the Connection

Machine using FORTRAN 8X. Typically with , we

need a total matrix vector multiplications per time

instant. That is we need a total of 10 000 processor units

on a Connection Machine, which typically has

processors.

X. CONCLUSIONS AND FUTURE WORK

We have presented a new class of finite-dimensional filters

for linear Gauss–Markov models that includes the Kalman

filter as a special case. These filters were then used to derive a

filter-based expectation maximization algorithm for computing

MLE’s of the parameters.

It is possible to derive the filters in continuous-time using

similar techniques. This is the subject of a companion paper

[18].

It is of interest to apply the results in this paper to recursive

parameter estimation. A recursive version of the smoother-

based EM algorithm which approximates the smoothed es-

timates at each time instant by filtered estimates has been

proposed by [3] and used for parameter estimation of errors-

in-variables models in [4] and [5]. It would be interesting to

derive a recursive EM algorithm based on the filter-based EM

algorithm developed in this paper. Also the convergence of

such a stochastic approximation algorithm and its application

in adaptive control could be studied.

APPENDIX A

PROOF OF LEMMA 3.2

Proof: Suppose and are arbi-

trary measurable “test” functions. Then with (respectively,

) denoting expectation under (respectively, )

(81)

using a version of Bayes’ theorem [11].
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(83)

Now is measurable, therefore

However

(82)

Notice that the inner conditional expectation is

Hence

Consequently, we have (83), as shown at the top of the page.

The inner conditional expectation in (83) is

Denoting the above expression is

which is independent of all ,

that is, it is independent of . Therefore

and the lemma is proved.

APPENDIX B

DERIVATION OF IN (5)

Consider the time-invariant state-space model given by

(3), (4) with denoting a possible set of

parameters.

It has been shown in Section III how starting from a measure

under which the and are independent and normal,

one can construct the measure , such that under

, the and sequences satisfy the dynamics (1)

and (2). In fact

Suppose is a second set of parameters. Then

To change from, say, one set of parameters to we must

introduce the densities

where

The parameters of our model will be changed from to if

we set

In this case

where does not involve any of the parameters .
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Then evaluating for a fixed

positive integer yields (5).
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