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Abstract

In this paper, we prove some fixed point theorems for ψF-contractions in the

framework of quasi-metric spaces generalizing and improving several similar results

in metric spaces. At the same time, we consider iterated function systems consisting

of ψF-contractions on quasi-metric spaces, and we give some sufficient conditions

for the existence and uniqueness of their attractor which is, generally, a fractal. Some

illustrative examples are provided.
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1 Introduction

In the literature known by the authors, the quasi-metric (asymmetric) space notion can

be traced back to W.A. Wilson [1]. This is defined as metric space (X, d) but without the

symmetry requirement for d.

Quasi-metric spaces have numerous recent applications both in pure and appliedmath-

ematics, for example, in the questions of existence and uniqueness of Hamilton–Jacobi

equations [2], in rate-independent models for plasticity [3], shape-memory alloys [4],

models for material failure [5], automated taxonomy construction [6], and so on.

In quasi-metric spaces some concepts, such as convergence, continuity, compactness,

and completeness, are different from those in metric case. There are two notions for each

of them, namely forward and backward ones, since we have two topologies which are the

forward topology and the backward topology in quasi-metric spaces (see [7]). In the last

decades many authors studied these notions and properties in the settings of quasi-metric

spaces (see, e.g., [8–16] and the references therein).

Starting from the Banach contraction principle, which is a pivotal result of analysis,

many authors have provided several extensions of this result by considering more gen-

eral spaces and various types of contractions. Wardowski defined in [17] F-contraction

as a mapping T on a metric space (X, d) into itself such that τ + F(d(Tx,Ty)) ≤ F(d(x, y))

for all x, y ∈ X with Tx �= Ty, where τ > 0 and F : (0,∞) →R satisfies the following axioms:

(F1) F is increasing, (F2) F(t) → –∞ if and only if t ց 0, and (F3) limt→0 t
λF(t) = 0 for some

λ ∈ (0, 1). For such contractions, he obtained a classical fixed point result concerning the

existence and uniqueness of fixed point which is the limit of the Picard iterations. Putting
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certain concrete forms of F , Wardowski obtained other known types of contractions, in-

cluding Banach contraction for F(t) = ln t, and proved that F-contractions are really their

generalizations.

Next, some other generalizations of F-contractions have been studied by many authors.

In this respect, Secelean and Wardowski [18] introduced ψF-contractions as being self-

mappings T satisfying the inequality F(d(Tx,Ty)) ≤ ψ(F(d(x, y))) for all x, y ∈ X, Tx �= Ty,

whereψ : (–∞,μ)→ (–∞,μ) is increasing andψn(t)→ –∞ for all t ∈ (–∞,μ),μ = supF .

In the above mentioned paper, some fixed point results are given even if F does not satisfy

all conditions (F1)–(F3). Very recently, Nazama, Arshada, and Postolache [19] gave some

interesting results concerning coincidence and common fixed points for four mappings

satisfying certain F-contraction type conditions. For other generalizations and applica-

tions of F-contractions, one can also see [20] and [21].

Our first purpose in the present paper is to extend and improve the theory of ψF-

contractions in the settings of quasi-metric spaces (Sect. 3.1). Furthermore, we prove some

fixed point results (Theorems 3.1, 3.2, 3.3 and their corollaries) which generalize and im-

prove those from [17, 18, 22] and from many others in two directions: the first one is the

space where the contraction is defined, and in the second one the function F must satisfy

only condition (F1).

In order to do this, in Sect. 2 we define the quasi-metric space and next we state the

main concepts and properties in this space that will be used in the sequel, such as for-

ward topology, forward convergence, forward compactness, forward completeness, forward

boundedness, and so on, and analogs for backward.

The second goal of this paper is to survey, as an application, some fractals generated

in quasi-metric spaces. As it is well known, fractals theory is one of the modern and dy-

namic fields inmathematics with a spectacular development in recent decades due to their

applicability in various areas of science and technology.

In his famous paper [23] Hutchinson called Iterated Function Systems (for short IFS) a fi-

nite family of Banach contractions (ωk)Nk=1 on ametric spaceX and defined a set value func-

tion S on the class of all non-empty compact subsets of X into itself by S(B) =
⋃N

k=1 ωk(B);

he also proved that, if the metric space is complete, then S has a unique set fixed point A.

The set A is generally a fractal set called the attractor of the respective IFS. The IFSs are

the main generators of fractals. There is a current effort to extend Hutchinson’s classi-

cal framework for fractals to more general spaces and infinite IFSs or, more generally, to

multifunction systems.

For our purpose, we need some preliminary results concerning the Hausdorff–Pompeiu

metric in the framework of quasi-metric space (Sect. 3.2). Some sufficient completeness

conditions for the spaces of fractals are provided in Theorem 3.4.

Existence and uniqueness of the attractors of IFSs composed of ψF-contractions are

given in Sect. 4 whereTheorems 4.1, 4.2, 4.3, and 4.4 generalize and improve the analogous

results in metric spaces.

Some illustrative examples are given.

2 Preliminaries

Throughout this paper the symbols R, R+, and N denote the sets of all real numbers, pos-

itive real numbers, and positive integers, respectively. We also write R+ =R+ ∪ {∞}.
If ν,λ ∈R+, by “ν ≥ λ” we understand ν ≥ λ if λ ∈R+ and ν = ∞ otherwise.
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For amapping T : E → E, by Tn we denote the n-times composition of T , Tn+1 = T ◦Tn,

n ∈N.

2.1 Quasi-metric spaces

We consider X �= ∅.

Definition 2.1 Let d be a non-negative real-valued function on the product X × X and

consider the following axioms:

(M1) d(x,x) = 0, ∀x ∈ X ;

(M2) d(x, y) = 0⇒ x = y;

(M3) d(x, y) = d(y,x), ∀x, y ∈ X ;

(M4) d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈ X .

We call d pseudo-metric if it satisfies (M1), (M3), (M4); quasi-metric or asymmetric met-

ric if it satisfies (M1), (M2), (M4); quasi-pseudo-metric if it satisfies (M1) and (M4); and,

respectively,metric if all axioms (M1)–(M4) are satisfied.

Accordingly, the pair (X, d) is called a pseudo-metric, quasi-metric (asymmetric metric),

quasi-pseudo-metric, andmetric space, respectively.

Throughout the paper we denote by (X, d) a quasi-metric space unless otherwise stated.

Definition 2.2 The forward topology Tf induced by d is the topology generated by the

forward open balls Bf (x, ε) = {y ∈ X; d(x, y) < ε} for x ∈ X, ε > 0.

Likewise, the backward topology Tb induced by d is the topology generated by the back-

ward open balls Bb(y, ε) = {x ∈ X; d(x, y) < ε} for y ∈ X, ε > 0.

A set F ⊂ X is called f-closed (resp. b-closed) if ∁F ∈ Tf (resp. ∁F ∈ Tb).

Remark 2.1 If (X, d) is a quasi-metric space, then both Tf and Tb are T1-topologies; hence,

in the topological spaces (X,Tf ) and (X,Tb), the finite sets are closed.

In the following we present some usual examples of quasi-metric space.

Example 2.1 Let α > 0 and d :R×R →R+ ∪ {0} be defined by

d(x, y) :=

{

y – x, if y≥ x,

α(x – y), if y < x.

Then (R, d) is a quasi-metric space and both Tf and Tb are the usual topology on R.

More generally, if we consider an increasing function f :R→R and α > 0 and take

d(x, y) :=

{

f (y) – f (x), if y≥ x,

α(f (x) – f (y)), if y < x,

we obtain also a quasi-metric onR. If f is continuous, both Tf and Tb are the usual topology

on R.

Example 2.2 The function d :R×R→ R+ ∪ {0} defined by

d(x, y) :=

{

ey – ex, if y≥ x,

e–y – e–x, if y < x

is a quasi-metric. Both Tf and Tb are the usual topology on R.
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Example 2.3 Let (X, d) be a quasi-metric space and f : X → X be a mapping. Then the

function δ : X ×X →R+ ∪ {0} defined by

δ(x, y) := d
(

f (x), f (y)
)

, ∀x, y ∈ X

is a quasi-pseudo-metric. Further, δ is a quasi-metric if and only if f is injective.

Example 2.4 The function d :R×R→ R+ ∪ {0} defined by

d(x, y) :=

⎧

⎨

⎩

y – x, if y ≥ x,

1, if y < x

is a quasi-metric named Sorgenfrey quasi-metric. Here, Tf is the lower limit topology on

R and it is well known that Tf is not metrizable (see, e.g., [24]). At the same time Tb is the

upper limit topology.

Definition 2.3 A sequence (xn) forward converges (shortly f-converges) to x0 ∈ X (resp.

backward converges (b-converges) to x0 ∈ X) if it converges with respect to the topology Tf
(resp. Tb). Accordingly, (xn) f-converges (resp. b-converges) to x0 iff

d(x0,xn)→ 0, respectively d(xn,x0) → 0.

For f-convergence and b-convergence, we shall use the notations: xn
f

−→ x0 and xn
b

−→
x0, respectively.

Notice that the topology associated with a quasi-metric space is not generally Hausdorff

(see, e.g., [7, Ex. 5.7]). A sufficient condition under which this property holds is given in

the following proposition.

Proposition 2.1 If in the quasi-metric space (X, d) f-convergence implies b-convergence,

then the topological space (X,Tf ) is Hausdorff.

Proof Let us consider x �= y ∈ X. We claim that there is N ∈ N such that

Bf

(

x,
1

N

)

∩ Bf

(

y,
1

N

)

= ∅.

Indeed, on the contrary, for each n ∈ N, one can find zn ∈ X such that d(x, zn) <
1
n
and

d(y, zn) <
1
n
. Hence zn

f

−→ x, zn
f

−→ y and, by hypothesis, zn
b

−→ y. Consequently,

0 < d(x, y) ≤ d(x, zn) + d(zn, y) −→
n

0,

which is a contradiction. �

Definition 2.4 We say that the sequence (xn) ⊂ X is forward Cauchy (resp. backward

Cauchy) if, for each ε > 0, there exists N ∈N such that, for every m ≥ n≥ N , one has

d(xn,xm) < ε,
(

resp. d(xm,xn) < ε
)

.
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The quasi-metric space (X, d) is forward complete (resp. backward complete) if every

forward (resp. backward) Cauchy sequence is f-convergent (resp. b-convergent).

Definition 2.5 A set A ⊂ X is forward bounded (f-bounded), respectively backward

bounded (b-bounded), if there exists x ∈ X such that supy∈A d(x, y) < ∞, resp. there is y ∈ A

such that supx∈A d(x, y) < ∞. A is called bounded (fb-bounded) if it is both forward and

backward bounded, i.e., diamA = supx,y∈A d(x, y) <∞.

A is f-totally bounded if, for every ε > 0, there are x1,x2, . . . ,xn ∈ A such that A ⊂
⋃n

k=1 Bf (xk , ε). Analogously we define b-totally bounded set.

It is easy to verify that a set A ⊂ X is f-bounded if and only if, for every x ∈ X,

supy∈A d(x, y) < ∞. An analogous property holds for a b-bounded set.

It is also obvious that every f-totally (b-totally) bounded set is f-bounded (b-bounded).

Definition 2.6 A compact set in the topological space (X,Tf ), respectively in (X,Tb), is

called f-compact, resp. b-compact. We say K ⊂ X is f-sequentially (resp. b-sequentially)

compact if every sequence has a forward (resp. backward) convergent subsequence with

limit in K .

Theorem 2.1 ([11, Th. 4.8]) A quasi-metric space is f-compact (resp. b-compact) if and

only if it is f-complete (resp. b-complete) and f-totally (resp. b-totally) bounded.

Proposition2.2 ([14]) A sequentially f-compact quasi-pseudo-metric spaceX is f-compact

if and only if f-closure of {x} is f-compact for every x ∈ X. A similar assertion holds if we

consider “backward” instead of “forward”.

The proof of the following lemma is very similar to that in the metric case and hence it

will be omitted.

Lemma 2.1 An f-compact (b-compact) set in a quasi-metric space is f-sequentially (b-

sequentially) compact.

By Lemma 2.1, Remark 2.1, and Proposition 2.2, we obtain the following obvious result.

Corollary 2.1 In a quasi-metric space a set is f-compact (resp. b-compact) if and only if it

is f-sequentially (resp. b-sequentially) compact.

Proposition 2.3 If in the quasi-metric space (X, d) f-convergence implies b-convergence,

every f-compact set is b-totally bounded, so it is b-bounded.

Proof Let ∅ �= K ⊂ X be f-compact and assume by contradiction that there exists ε > 0

such that K cannot be covered by a finite number of backward open balls Bb(y, ε), y ∈ K .

Choose y1 ∈ K . Since K �⊂ Bb(y1, ε), one can find y2 ∈ K \ Bb(y1, ε). Inductively, as K �⊂
⋃n

i=1 Bb(yi, ε), we can take yn+1 ∈ K \
⋃n

i=1 Bb(yi, ε), and so on. In this way we obtain a

sequence (yn) ⊂ K such that

d(yn+1, yi) ≥ ε, ∀n ∈N,∀i ∈ {1, . . . ,n}. (2.1)
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According to Lemma 2.1, there exists a subsequence (ynk ) ⊂ (yn) such that ynk
f

−→
k

y ∈ K .

By hypothesis, one has also ynk
b

−→ y. Hence, there exists k0 ∈N such that d(y, ynk ) <
ε
2 and

d(ynk , y) <
ε
2 for every k ≥ k0. Consequently, using (2.1), we get

ε ≤ d(ynk+1, ynk )≤ d(ynk+1, y) + d(y, ynk ) < ε,

which is a contradiction. �

Definition 2.7 Let (X, d), (Y ,ρ) be two quasi-metric spaces. A mapping f : X → Y is said

to be ff-continuous at x ∈ X if and only if whenever xn
f

−→ x in (X, d) one has f (xn)
f

−→ f (x)

in (Y ,ρ). If Y =R we say that f is f-continuous at x ∈ X if R is endowed with the Euclidean

metric. We say that f is ff-continuous (f-continuous) if it is ff-continuous (f-continuous) at

every x ∈ X. Analogous statements hold for the other continuity concepts: fb-continuous,

bf-continuous, bb-continuous, b-continuous.

Proposition 2.4 If in the quasi-metric space (X, d) f-convergence implies b-convergence,

then the mapping (x, y) �→ d(x, y) is f-continuous.

Proof Let us consider two sequences (xn), (yn), xn
f

−→ x, yn
f

−→ y, and ε > 0. Then, by

hypothesis, we have xn
b

−→ x and yn
b

−→ y. Thus one can find N ∈N such that

n≥ N ⇒ d(x,xn) <
ε

2
, d(y, yn) <

ε

2
, d(xn,x) <

ε

2
, d(yn, y) <

ε

2
.

Hence, for every n≥ N ,

d(xn, yn) – d(x, y) ≤ d(xn,x) + d(y, yn) < ε

and

d(x, y) – d(xn, yn) ≤ d(x,xn) + d(yn, y) < ε.

Therefore

∣

∣d(xn, yn) – d(x, y)
∣

∣ < ε, ∀n≥ N . �

3 The results

3.1 ψF-Contractions in quasi-metric spaces

In this section we give some fixed point results in the setting of quasi-metric space which

generalize and improve some ones proved in metric spaces.

According to Ćirić [25], we will adapt some concepts to quasi-metric settings.

Definition 3.1 A self-map T on a quasi-metric space (X, d) is said to be fb-orbitally con-

tinuous at a point x0 ∈ X if, for every increasing sequence (nk)k ⊂N, Tnkx0
f

−→ u ∈ X im-

pliesTnk+1x0
b

−→ Tu.We say thatT is fb-orbitally continuous if it is fb-orbitally continuous

at every x ∈ X. In a similar way we can define ff-orbital continuity, bf-orbital continuity,

bb-orbital continuity, respectively. The space X is f-T-orbitally complete if every f-Cauchy

sequence of the form (Tnkx)k f-converges in X.
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It is obvious that if T is ff-continuous (resp. bb-continuous), then it is ff-orbitally (bb-

orbitally) continuous, and if the space is f-complete, then it is f-T-orbitally complete.

Lemma 3.1 ([26, L.3.2.a)]) Let F : R+ → R be an increasing map and (tn)n be a sequence

of positive real numbers such that F(tn) −→
n

–∞. Then tn −→
n

0.

In order to prove the next theorem, we need to adapt to our setting the following result

given in [27, Prop. 3].

Proposition 3.1 Let (xn) be a sequence of elements from the quasi-metric space (X, d) and

� be a subset of R+ such that R+ \ � is dense in R+. If d(xn,xn+1) −→
n

0 and (xn) is not

f-Cauchy, then there exist ε ∈ R+ \ �, n0 ∈ N, and sequences of positive integers (mk), (nk)

such that

(i) ∀k ∈N, k ≤ mk < nk , d(xmk
,xnk ) ≥ ε,

(ii) ∀k ≥ n0, nk ≥ mk + 2, d(xmk
,xnk–1) < ε,

(iii) d(xmk
,xnk ) −→

k
ε.

Proof SinceR+ \� is dense inR+ and (xn) is not f-Cauchy, it follows that there exists ε > 0

such that, for every k = 1, 2, . . . , one can findm,n ∈N, k ≤ m < n, such that d(xm,xn) ≥ ε.

For each k ∈N, we set

mk = min
{

m ∈N;∃n ∈N,k ≤ m < n, d(xm,xn) ≥ ε
}

,

nk = min
{

n ∈N;n >mk and d(xmk
,xn) ≥ ε

}

.

Hence (i) is satisfied.

As d(xn,xn+1) → 0, there is n0 ∈ N such that d(xnk ,xnk+1) < ε for all k ≥ n0. So, by the

choice ofmk and nk , for k ≥ n0 and nk ≥ mk + 2, one has d(xmk
,xnk–1) < ε, hence (ii).

Next,

ε ≤ d(xmk
,xnk ) ≤ d(xmk

,xnk–1) + d(xnk–1,xnk ) < ε + d(xnk–1,xnk )

for all k ≥ n0. Passing to the limit, we get limk d(xmk
,xnk ) = ε. �

Definition 3.2 Let (X, d) be a quasi-metric space and F : R+ → R be a function. A map-

ping T : X → X is said to be a forward F-contraction (resp. backward F-contraction) if

there exists τ > 0 such that

Tx �= Ty ⇒ τ + F
(

d(Tx,Ty)
)

≤ F
(

d(x, y)
)

(resp.

Tx �= Ty ⇒ τ + F
(

d(Tx,Ty)
)

≤ F
(

d(y,x)
))

.

We denote by F the class of all increasing mappings F :R+ → R and, for some μ ∈ R+,

by Ψμ the family of all increasing and continuous functions ψ : (–∞,μ) → R such that

ψ(t) < t for every t ∈ (–∞,μ) (various examples of such functionsψ can be found in [18]).

Notice that every mapping ψ ∈ Ψμ takes values in (–∞,μ).
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Lemma 3.2 If ψ ∈ Ψμ, then ψn(t)→ –∞ for all t ∈ (–∞,μ).

Proof Choose t ∈ R. From ψ(t) < t, one obtains ψ2(t) < ψ(t), and hence the sequence

(ψn(t)) is decreasing. Let l ∈ R ∪ {–∞} be its limit. If l ∈ R, by the continuity of ψ at l, it

follows l = limn ψn(t) = ψ(l) < l, which is a contradiction. Therefore l = –∞. �

For a given function F ∈F and μ ≥ supF , we will write Ψ instead of Ψμ.

Inspired by [18], we will generalize the concept F-contraction.

Definition 3.3 Let us consider a quasi-metric space (X, d) and two functions F ∈ F and

ψ ∈ Ψ . A mapping T : X → X is said to be a forward ψF-contraction (resp. backward

ψF-contraction) if

Tx �= Ty ⇒ F
(

d(Tx,Ty)
)

≤ ψ
(

F
(

d(x, y)
))

(3.1)

(resp.

Tx �= Ty ⇒ F
(

d(Tx,Ty)
)

≤ ψ
(

F
(

d(y,x)
)))

. (3.2)

Remark 3.1 If T is a backward ψF-contraction, then T2 is a forward ψ2F-contraction.

Proof The assertion comes obviously from the following inequalities:

F
(

d
(

T2x,T2y
))

≤ ψ
(

F
(

d(Ty,Tx)
))

≤ ψ2
(

F
(

d(x, y)
))

for all x, y ∈ X such that T2x �= T2y. �

It is obvious that every forward F-contraction (resp. backward F-contraction) is a for-

ward ψF-contraction (resp. backward ψF-contraction) by taking ψ(t) = t – τ .

Remark 3.2 If T : X → X is a forward (resp. backward) ψF-contraction, where F ∈ F ,

ψ ∈ Ψ , then

d(Tx,Ty) ≤ d(x, y)
(

resp. d(Tx,Ty) ≤ d(y,x)
)

, ∀x, y ∈ X (3.3)

hence T is ff (resp. bf )-continuous.

Proof Choose x, y ∈ X. If Tx = Ty, inequalities (3.3) are obvious. If Tx �= Ty, by (3.1) and

the property of ψ , one has

F
(

d(Tx,Ty)
)

≤ ψ
(

F
(

d(x, y)
))

< F
(

d(x, y)
)

.

So, F being increasing, the first inequality of (3.3) follows. For the second one, we proceed

analogously. �

Definition 3.4 A self-mapping T on a quasi-metric space (X, d) is said to be a forward

Picard operator, abbreviated f-P.O. if it has a unique fixed point ξ ∈ X and Tnx
f

−→ ξ for

every x ∈ X. In a similar way one can define backward Picard operator.
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Theorem 3.1 Let us consider F ∈ F and ψ ∈ Ψ . If T : X → X is a backward ψF-

contraction and the space is f-T-orbitally complete, then T is an f-P.O.

Proof Let x0 ∈ X and xn = Tnx0, n = 1, 2, . . . . If there exists n ∈ N such that Txn = xn, then

ξ = xn is a fixed point of T . Assume that xn+1 �= xn. Hence, by (M2), d(xn+1,xn) > 0 and

d(xn,xn+1) > 0 for all n≥ 1. Then, from (3.2), one has

F
(

d(xn,xn+1)
)

= F
(

d(Txn–1,Txn)
)

≤ ψ
(

F
(

d(xn,xn–1)
))

≤ ψ2
(

F
(

d(xn–2,xn–1)
))

≤ · · · ≤ ψn
(

F(γ )
)

,

where γ = max{d(x1,x0), d(x0,x1)}. Consequently, according to Lemma 3.2, limn F(d(xn,

xn+1)) = –∞ and so, by Lemma 3.1,

d(xn,xn+1) → 0. (3.4)

Analogously one can prove that

d(xn+1,xn) → 0. (3.5)

Arguing by contradiction, we assume that (xn) is not f-Cauchy. Let us denote by � the

set of discontinuities of F . Taking into account the monotonicity of F , the set � is at most

countable, so, as R+ \ � is dense in R+, we can apply Proposition 3.1. Thus, we obtain

ε ∈R+ \ � and sequences of positive integers (mk), (nk) such that

lim
k
d(xmk

,xnk ) = ε. (3.6)

We have

d(xmk
,xnk ) – d(xmk

,xmk+1) – d(xnk+1,xnk ) ≤ d(xmk+1,xnk+1) (3.7)

and

d(xmk–1,xnk–1) ≤ d(xmk–1,xmk
) + d(xmk

,xnk ) + d(xnk ,xnk–1). (3.8)

Since by (3.4), (3.5), and (3.6) one has

d(xmk
,xnk ) – d(xmk

,xmk+1) – d(xnk+1,xnk ) → ε > 0,

one can find K ∈N such that

d(xmk
,xnk ) – d(xmk

,xmk+1) – d(xnk+1,xnk ) > 0 (3.9)

for all k ≥ K .

Using now (3.9), (3.7), (3.2), (3.8) and since F is increasing, it follows

F
(

d(xmk
,xnk ) – d(xmk

,xmk+1) – d(xnk+1,xnk )
)

≤ F
(

d(xmk+1,xnk+1)
)
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≤ ψ
(

F
(

d(xnk ,xmk
)
))

≤ ψ2
(

F
(

d(xmk–1,xnk–1)
))

≤ ψ2
(

F
(

d(xmk–1,xmk
) + d(xmk

,xnk ) + d(xnk ,xnk–1)
))

, ∀k ≥ K .

By letting k → ∞ in the above relations and using the continuity of F at ε, the continuity

of ψ , and relations (3.4), (3.5), and (3.6), one obtains

F(ε) ≤ ψ2
(

F(ε)
)

< F(ε),

which is a contradiction.

Consequently, (xn) is f-Cauchy so, by hypothesis, there exists ξ ∈ X such that xn
f

−→ ξ ,

that is, d(ξ ,xn) → 0. We will show that ξ is a fixed point for T .

From (3.2) and since F and ψ are increasing, clearly

d(Tx,Ty) ≤ d(y,x), ∀x, y ∈ X.

Hence we get

d(ξ ,Tξ )≤ d(ξ ,xn) + d(xn,Tξ ) = d(ξ ,xn) + d(Txn–1,Tξ ) ≤ d(ξ ,xn) + d(ξ ,xn–1).

By letting n→ ∞ in the previous relations, it follows d(ξ ,Tξ ) = 0 so, from (M2), Tξ = ξ .

In order to prove the uniqueness, assume by contradiction that there is η ∈ X, η �= ξ such

that Tη = η. Then Tη �= Tξ and

F
(

d(η, ξ )
)

= F
(

d(Tη,Tξ )
)

≤ ψ
(

F
(

d(ξ ,η)
))

= ψ
(

F
(

d(Tξ ,Tη)
))

≤ ψ2
(

F
(

d(η, ξ )
))

< F
(

d(η, ξ )
)

,

which is a contradiction.

The proof is complete. �

Corollary 3.1 Assume that the quasi-metric space (X, d) is f-complete, F ∈F and ψ ∈ Ψ .

If T : X → X is a backward ψF-contraction, then T is an f-P.O.

Remark 3.3 The above corollary generalizes and improves [13, Th. 2.2], where F(t) = ln t

and ψ(t) = t – τ , τ > 0.

Example 3.1 Let us consider X = [1,∞) and the mapping d : X ×X →R+ ∪ {0} given as

d(x, y) =

⎧

⎨

⎩

ln y – lnx, if y≥ x,
1
2 (lnx – ln y), if y < x.

We also define F : R+ → R, F(t) = 1
1–et , and ψ : (–∞, 0) → R, ψ(t) = t – λ

π
arccot t + λ –

1, where 0 ≤ λ < 1. Then d is a quasi-metric on X, F ∈ F , ψ ∈ Ψ and the mapping T :

X → X, Tx = x+1
x

is a backward ψF-contraction on (X, d), whereas it is not forward ψF-

contraction. Moreover, T is an f-P.O.
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Proof It is easy to check that d is a quasi-metric on X. One can also simply see that F and

ψ are increasing and supF = 0.

We first show (3.2). Since ψ(t)≥ t – 1, for all t < 0, it is enough to prove that

Tx �= Ty ⇒ F
(

d(Tx,Ty)
)

≤ F
(

d(y,x)
)

– 1. (3.10)

For this purpose, choose x, y ∈ X, x �= y.

If x < y, one has Tx > Ty so

d(y,x) = ln

√
y

√
x
, d(Tx,Ty) = ln

√
Tx

√
Ty

= ln

√

y(x + 1)
√

x(y + 1)
.

Hence

F
(

d(y,x)
)

– F
(

d(Tx,Ty)
)

=

√
x

√
x –

√
y
–

√

x(y + 1)
√

x(y + 1) –
√

y(x + 1)

=
√
xy(

√
y + 1 –

√
x + 1)

(
√
y –

√
x)(

√

y(x + 1) –
√

x(y + 1))
.

Some elementary computations lead to

√
xy

√
y –

√
x

≥ 1 and

√
y + 1 –

√
x + 1

√

y(x + 1) –
√

x(y + 1)
≥ 1.

Thus we obtain (3.10).

Assume that x > y. Then Tx < Ty and

d(y,x) = ln
x

y
, d(Tx,Ty) = ln

y + 1

x + 1
·
x

y
.

Consequently,

F
(

d(y,x)
)

– F
(

d(Tx,Ty)
)

=
y

y – x
–
y(x + 1)

y – x
=

xy

x – y
≥ 1

so (3.10) is verified.

We now prove thatT is not forwardψF-contraction. Assume by contradiction that (3.1)

holds. Then

Tx �= Ty ⇒ F
(

d(Tx,Ty)
)

≤ F
(

d(x, y)
)

–
λ

π
arccotd(x, y) + λ – 1,

that is,

F
(

d(x, y)
)

– F
(

d(Tx,Ty)
)

≥
λ

π
arccotd(x, y) + 1 – λ >

λ

π
·
π

2
+ 1 – λ = 1 –

λ

2
. (3.11)

Set y = 1. Then, for each x > y,

F
(

d(x, 1)
)

– F
(

d(Tx,T1)
)

=
1

1 –
√
x
–
x + 1

1 – x
=

√
x

√
x + 1

.
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Since limxց1

√
x√

x+1
= 1

2 and, by hypothesis, 1 – λ
2 > 1

2 , one can find x > 1 such that
√
x√

x+1
<

1 – λ
2 . This contradicts (3.11).

Therefore T is not forward ψF-contraction.

In order to prove the forward completeness of X, let (xn) be a forward Cauchy sequence

and fix ε > 0. Then there exists N ∈ N such that d(xn,xm) <
ε
2 for every m ≥ n ≥ N . It is

easy to see that this sequence is forward bounded. Since the topology induced by d is the

Euclidean one, this implies forward convergence of a subsequence (xnk ) to some x ∈ X.

Choose k ∈ N so that nk ≥ N and d(x,xnk ) <
ε
2 . Then, for n≥ nk ≥ N , one has

d(x,xn) ≤ d(x,xnk ) + d(xnk ,xn) < ε

so xn
f

−→ x. Consequently (X, d) is forward complete.

The final conclusion now follows from Corollary 3.1. �

Notice that some examples of forward ψF-contractions can be found in Example 4.1.

Corollary 3.2 If (X, d) is f-complete and f-convergence implies b-convergence, then every

forward ψF-contraction T : X → X is an f-P.O., where F ∈F , ψ ∈ Ψ .

Proof Obvious. �

Remark 3.4 The above corollary generalizes and improves [13, Th. 2.1], where F(t) = ln t

and ψ(t) = t – τ , τ > 0.

Theorem 3.2 Let us consider F ∈ F , ψ ∈ Ψ and a backward ψF-contraction T : X → X.

If there exists x0 ∈ X such that the sequence (Tnx0) is f-convergent, then T is an f-P.O.

Proof Let ξ ∈ X be such that limn d(ξ ,Tnx0) = 0. Then

d(ξ ,Tξ )≤ d
(

ξ ,Tnx0
)

+ d
(

Tnx0,Tξ
)

≤ d
(

ξ ,Tnx0
)

+ d
(

ξ ,Tn–1x0
)

→ 0,

and so Tξ = ξ .

Choose y0 ∈ X. If there is n ∈ N such that Tny0 = Tnx0, then Tny0
f

−→ ξ . Otherwise one

has

F
(

d
(

Tnx0,T
ny0

))

≤ ψ
(

F
(

d
(

Tn–1y0,T
n–1x0

)))

≤ · · · ≤ ψn
(

F(γ )
)

−→
n

–∞,

where γ = max{d(x0, y0), d(y0,x0)}. So, by Lemma 3.1, d(Tnx0,Tny0) → 0. Thus

d
(

ξ ,Tny0
)

≤ d
(

ξ ,Tnx0
)

+ d
(

Tnx0,T
ny0

)

→ 0.

Consequently, Tny0
f

−→ ξ .

For the uniqueness of the fixed point of T , we proceed as in Theorem 3.1. �

Theorem 3.3 Take any F ∈ F and ψ ∈ Ψ . Assume that T : X → X is a forward ψF-

contraction and the space is forward T-orbitally complete. If one of the following sentences

holds:

(a) T is fb-orbitally continuous;
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(b) the space (X, d) is Hausdorff;

(c) in the space (X, d) f-convergence implies b-convergence;

then T is an f-P.O.

Proof Set x0 ∈ X and xn = Tnx0, n = 1, 2, . . . . For the Cauchyness and uniqueness, we can

proceed in the same manner as in the proof of Theorem 3.1.

In case (a), as xn = Tnx0
f

−→ ξ one has Txn = Tn+1x0
b

−→ Tξ , that is, d(Txn,Tξ ) → 0.

Hence,

d(ξ ,Tξ )≤ d(ξ ,xn+1) + d(Txn,Tξ ) → 0

so Tξ = ξ .

In case (b), using (3.1), we have d(Tξ ,xn) = d(Tξ ,Txn–1) ≤ d(ξ ,xn–1) for all n≥ 1, there-

fore xn
f

−→ Tξ . The space being Hausdorff, we get Tξ = ξ .

In case (c) the conclusion follows from (b) and Proposition 2.1. �

3.2 Space of fractals

The concept “space of fractals” was introduced by Barnsley in his famous book [28] to

denote the class of all non-empty compact subsets of a metric space endowed with the

Hausdorff–Pompeiu metric. For completeness we will describe some basic concepts and

results in the settings of quasi-metric spaces even though some of proofs are similar to

those in metric spaces.

Let us denote by Pf (X), respectively Pb(X), Pfb(X), the family of all non-empty and f-

bounded, respectively b-bounded, fb-bounded, subsets of the quasi-metric space (X, d).

We also denote, for every A,B ∈Pb(X),

D(A,B) := sup
x∈A

inf
y∈B

d(x, y) and h(A,B) := max
{

D(A,B),D(B,A)
}

. (3.12)

Remark 3.5 The conditionA,B b-bounded in definition of D is necessary to have D(A,B) <

∞. This inequality is not true if we suppose that A,B are f-bounded.

Proof Indeed, assume that A �= ∅ is b-bounded and ∅ �= B ⊂ X. Arguing by contradiction,

assume that

D(A,B) = sup
x∈A

inf
y∈B

d(x, y) = ∞.

Hence, for each n = 1, 2, . . . , one can find xn ∈ A such that infy∈B d(xn, y) ≥ n. So d(xn, y) ≥ n

for all n ∈ N and all y ∈ B. Therefore, for some y ∈ B, we have supx∈A d(x, y) = ∞ contra-

dicting the b-boundedness of A.

In order to prove the second part of the statement, we give a contra-example. In the

quasi-metric space (R, d) from Example 2.4, the sets A = (–∞,a] and B = {b}, a,b ∈ R, are

f-closed and f-bounded. However D(A,B) = ∞.

Indeed, it is clear that A and B are f-closed and B is f-bounded. Since supy∈A d(a, y) = 1,

it follows that A is f-bounded. Next,

D(A,B) = sup
x∈A

inf
y∈B

d(x, y) = sup
x∈A

d(x,b) = sup
x∈A

(b – x) = ∞. �
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In the following some basic properties of the functions D and h are highlighted.

Proposition 3.2 The following assertions hold:

(a) A⊂ B ⇒ D(A,B) = 0; in particular D(A,A) = 0 for all A ∈Pb(X);

(b) D(A,B) = 0⇒ A⊂ B, where the bar means the closure in the topological space

(X,Tf );

(c) D(A,C) ≤ D(A,B) + D(B,C) for all A,B,C ∈Pb(X);

(d) D(A,B) = D(A,B) for all A,B ∈Pb(X);

(e) D(
⋃

i∈ℑ Ai,
⋃

i∈ℑ Bi) ≤ supi∈ℑ D(Ai,Bi) for every family of sets (Ai), (Bi) such that
⋃

i∈ℑ Ai and
⋃

i∈ℑ Bi are b-bounded.

Proof (a) If A ⊂ B and x ∈ A, then infy∈B d(x, y) = 0 because x ∈ B and d(x,x) = 0. Hence

supx∈A infy∈A d(x, y) = 0.

(b)Assume thatA,B ∈Pb(X), supx∈A infy∈B d(x, y) = 0. Choose x ∈ A. Then infy∈B d(x, y) =

0, so, for each n ∈N, there is yn ∈ B such that d(x, yn) <
1
n
. Thus yn

f

−→ x, that is, x ∈ B.

(c) For x ∈ A, z ∈ C, one has

d(x, z) ≤ d(x, y) + d(y, z), ∀y ∈ B.

So

inf
z∈C

d(x, z) ≤ inf
z∈C

(

d(x, y) + d(y, z)
)

= d(x, y) + inf
z∈C

d(y, z), ∀y ∈ B

⇒ inf
z∈C

d(x, z) ≤ inf
y∈B

(

d(x, y) + inf
z∈C

d(y, z)
)

≤ inf
y∈B

d(x, y) + sup
y∈B

inf
z∈C

d(y, z) = inf
y∈B

d(x, y) + D(B,C).

Since x is arbitrarily chosen, we get the inequality from the statement.

(d) Let us consider A,B ∈ Pb(X). From (a) it follows D(A,A) = 0 and D(B,B) = 0 be-

cause A ⊂ A and B ⊂ B. We will show that D(A,A) = 0. Indeed, on the contrary, one can

find λ > 0 such that D(A,A) = supx∈A infy∈A d(x, y) > λ. Then there exists x ∈ A such that

infy∈A d(x, y) > λ, so

d(x, y) > λ, ∀y ∈ A. (3.13)

Next, there is a sequence (xn) ⊂ A such that xn
f

−→ x, that is, d(x,xn) → 0 which contra-

dicts (3.13). Thus D(A,A) = 0. Analogously we can prove that D(B,B) = 0.

Using now (c) and the previous equalities, one has

D(A,B)≤ D(A,A) + D(A,B) + D(B,B) = D(A,B),

D(A,B) ≤ D(A,A) + D(A,B) + D(B,B) = D(A,B),

consequently D(A,B) = D(A,B).

(e) Choose x ∈
⋃

i∈ℑ Ai. There is ix ∈ ℑ such that x ∈ Aix . We have

inf
y∈

⋃

i∈ℑ Bi
d(x, y) ≤ inf

y∈Bix
d(x, y) ≤ D(Aix ,Bix ) ≤ sup

i∈ℑ
D(Ai,Bi).

Thus, supx∈
⋃

i∈ℑ Ai
infy∈

⋃

i∈ℑ Bi ≤ supi∈ℑ D(Ai,Bi). �
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According to the previous proposition, we can easily obtain the following properties

for h.

Corollary 3.3 The following assertions hold:

(a) h(A,B) = 0⇔ A = B;

(b) h(A,C) ≤ h(A,B) + h(B,C) for all A,B,C ∈P(X);

(c) h(A,B) = h(A,B) for all A,B ∈Pb(X);

(d) h(
⋃

i∈ℑ Ai,
⋃

i∈ℑ Bi) = h(
⋃

i∈ℑ Ai,
⋃

i∈ℑ Bi) ≤ supi∈ℑ h(Ai,Bi) for every family of sets

(Ai), (Bi) such that
⋃

i∈ℑ Ai and
⋃

i∈ℑ Bi are b-bounded.

In view of the aforesaid, the function h is a pseudo-metric on Pb(X). Furthermore, if we

denote by Cf (X) the class of all non-empty, b-bounded, and f-closed subsets of X, then the

mapping h is a metric on Cf (X) called f-Hausdorff–Pompeiu metric.

For A,B ∈Pf (X), let us denote D(A,B) = supx∈A infy∈B d(y,x) and

h1(A,B) = max
{

D(A,B),D(B,A)
}

,

h2(A,B) = max
{

D(A,B),D(B,A)
}

,

h3(A,B) = max
{

D(A,B),D(B,A)
}

.

In a similar manner as in Proposition 3.2 one can prove analogous properties for D.

Denoting by Cb(X) the class of all non-empty, f-bounded, and b-closed subsets of X, it

follows that h1 and h2 are quasi-metrics on Cf (X) ∩ Cb(X) called fb-Hausdorff–Pompeiu

and bf-Hausdorff–Pompeiu quasi-metric, respectively. Likewise h3 is a metric on Cb(X),

named b-Hausdorff–Pompeiu metric (for a some approach in this setting, see also [9]).

For simplicity, we will work in the sequel only with h.

We denote by Kf (X) the family of all non-empty f-compact subsets of X.

If in the quasi-metric space (X, d) f-convergence implies b-convergence, we have seen

(Proposition 2.1) that (X,Tf ) is Hausdorff. Hence it is well known that in this space every

compact set is f-closed. Thus, according to Proposition 2.3, we conclude that Kf (X) ⊂
Cf (X).

Definition 3.5 In the above settings, the metric space (Kf (X),h) is called fractals space.

Lemma 3.3 Assume that the quasi-metric space (X, d) is f-complete and (Fn) is a decreas-

ing sequence of non-empty f-closed subsets of X. Then
⋂∞

n=1 Fn �= ∅.

Proof For each n = 1, 2, . . . , set λn := diam(Fn) = supx,y∈F d(x, y) ∈ R+ ∪ {∞}. Since (Fn) is

decreasing, it follows that (λn) decreases to a limit λ ∈R+ ∪ {∞}.
If λ > 0, then clearly

⋂∞
n=1 Fn �= ∅.

Assume that λ = 0 and, for each n ∈ N, choose xn ∈ Fn. Then, for ε > 0, one can find

N ∈ N such that diam(FN ) < ε. Since (Fn) is decreasing, xn ∈ FN for all n ≥ N . Hence,

for every m > n ≥ N , we have d(xn,xm) ≤ diam(FN ) < ε. Consequently the sequence (xn)

is f-Cauchy so, the space being f-complete, it is convergent. Let x ∈ X be its limit. Now,

since, for every n ∈ N, (xk)k≥n ⊂ Fn and Fn is f-closed, it follows that x ∈ Fn. Accordingly,

x ∈
⋂∞

n=1 Fn completing the proof. �
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Notice that a Cantor type theorem for characterization of completeness in quasi-metric

spaces can be found in [16, Th. 10]. The above result is appropriate to our purpose.

Lemma 3.4 Let (An) be a Cauchy sequence in the metric space (Cf (X),h) and A :=
⋂∞

k=1

⋃

n≥k An. Then A ∈ Cf (X).

If, in addition, f-convergence is equivalent to b-convergence and (An) ⊂ Kf (X), then A ∈
Kf (X).

Proof According to Lemma 3.3, we have A �= ∅. Clearly A is f-closed.

In order to prove the b-boundedness of A, fix ε > 0. There exists N ∈N such that

h(An,Am) < ε, ∀m,n≥ N . (3.14)

We claim that D(A,AN ) ≤ ε. Indeed, by (3.14) and Proposition 3.2(d), (e), one has

D(A,AN ) ≤ D

(

⋃

n≥N

An,AN

)

= D

(

⋃

n≥N

An,AN

)

≤ sup
n≥N

D(An,AN ) ≤ ε.

That is, supx∈A infy∈AN
d(x, y) ≤ ε so, for each x ∈ A, there is y ∈ AN such that d(x, y) ≤ ε.

AsAN is b-bounded, for some z ∈ X, one has supy∈AN
d(y, z) < ∞. Hence, for every x ∈ A,

there exists y ∈ AN such that

d(x, z) ≤ d(x, y) + d(y, z) ≤ ε + d(y, z).

Therefore supx∈A d(x, z) ≤ ε + supy∈AN
d(y, z) < ∞, so A is b-bounded.

For the second assertion of the statement, assume that f-convergence is equivalent to

b-convergence and (An) is a Cauchy sequence in (Kf (X),h). Proceeding as above, for some

ε > 0, there existsN ∈N such that, for each x ∈ A, one can find y ∈ AN such that d(x, y) < ε
2 .

We will prove that A is f-sequentially compact. For this purpose, let (xn) ⊂ A. Then, as

before, for n = 1, 2, . . . , there exists yn ∈ AN such that

d(xn, yn) <
ε

2
. (3.15)

Since, by Lemma 2.1, AN is f-sequentially compact, there exists a subsequence (ynk )k and

y ∈ AN such that ynk
f

−→ y so, from hypothesis, ynk
b

−→ y. Therefore one can find K ∈ N

such that

d(ynk , y) <
ε

2
, ∀k ≥ K . (3.16)

We conclude from (3.15) and (3.16) that

d(xnk , y) ≤ d(xnk , ynk ) + d(ynk , y) < ε

for every k ≥ K for which nk ≥ N . Thus xnk
b

−→ y. By hypothesis, one has xnk
f

−→ y, which

proves thatA is f-sequentially compact. The conclusion now follows fromCorollary 2.1.�
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Theorem 3.4 If (X, d) is f-complete and f-convergence implies b-convergence, then (Cf (X),

h) is complete. If, in addition, b-convergence implies f-convergence, then (Kf (X),h) is com-

plete.

Proof Let (An) ⊂ Cf (X), respectively (An) ⊂ Kf (X), be a Cauchy sequence in the space

(Cf (X),h), respectively (Kf (X),h), and set A :=
⋂∞

k=1

⋃

n≥k An.

By Lemma 3.4 A ∈ Cf (X), respectively A ∈Kf (X).

We intend to prove that An → A with respect to the f-Hausdorff–Pompeiu metric.

Fix ε > 0. There exists N(ε) ∈N such that

h(An,Am) <
ε

2
, ∀m,n≥ N(ε). (3.17)

We proceed to show that

h(A,Am) ≤ ε, ∀m≥ N(ε). (3.18)

The proof of this fact will be divided into two steps.

Step I D(A,Am) ≤ ε
3 for allm ≥ N(ε).

According to Proposition 3.2(d), (e), and (3.17), we have

D(A,Am) ≤ D

(

⋃

n≥N(ε)

An,Am

)

= D

(

⋃

n≥N(ε)

An,Am

)

≤ sup
n≥N(ε)

D(An,Am) ≤
ε

3
.

Step II D(Am,A) ≤ ε for allm ≥ N(ε).

Choose m ≥ N(ε) and y ∈ Am. For each k = 0, 1, 2, . . . , let nk := N( ε

2k
). We construct the

sequence (ynk )k as follows: yn0 := y. Assume that we have yni ∈ Ani , i = 1, . . . ,k – 1. Next,

taking ε

2k–1
instead of ε, relation (3.17) becomes

h(Ank–1 ,Ank ) <
ε

3 · 2k–1
.

As ynk–1 ∈ Ank–1 , one can find ynk ∈ Ank such that

d(ynk–1 , ynk ) <
ε

3 · 2k–1
. (3.19)

Notice that (ynk ) is f-Cauchy because, for everym > k, one has using (3.19)

d(ynk , ynm ) ≤ d(ynk , ynk+1 ) + d(ynk+1 , ynk+2 ) + · · · + d(ynm–1 , ynm )

<
ε

3 · 2k
+

ε

3 · 2k+1
+ · · · +

ε

3 · 2m–1
<

ε

3 · 2k–1
.

The space (X, d) being f-complete, it follows that there exists x ∈ X such that ynk
f

−→ x.

Now, since ynk ∈ Ank ⊂
⋃

n≥k An, one deduces that x ∈
⋃

n≥k An for all k ≥ 1, thus x ∈ A.

As, by hypothesis, ynk
b

−→ x, we get K ∈ N such that d(ynk ,x) <
ε
3 for all k ≥ K . Conse-

quently,

d(y,x) ≤ d(yn0 , ynk ) + d(ynk ,x) <
ε

3
+

ε

3 · 2
+ · · · +

ε

3 · 2k–1
+

ε

3
< ε.
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From this, y being arbitrarily chosen, we conclude that

D(Am,A) = sup
y∈Am

inf
x∈A

d(y,x) ≤ ε.

Inequality (3.18) now follows from Step I and Step II. The proof is complete. �

4 Application. Iterated function systems

In the following we adapt [26, Lemma 4.1] to our setting.

Lemma 4.1 Assume that in the quasi-metric space (X, d) f-convergence implies b-conver-

gence, and let F ∈ F , ψ ∈ Ψ and ω : X → X be a forward ψF-contraction. Then the map-

ping A �→ ω(A) is a ψF-contraction from (Kf (X),h) into itself. If, in addition, F is continu-

ous, then the mapping A �→ ω(A) is a ψF-contraction from (Cf (X),h) into itself.

Proof Choose A,B ∈Kf (X) such that h(ω(A),ω(B)) > 0. Assume that

h
(

ω(A),ω(B)
)

= D
(

ω(A),ω(B)
)

= sup
x∈A

inf
y∈B

d
(

ω(x),ω(y)
)

> 0. (4.1)

By hypothesis,

F
(

d
(

ω(x),ω(y)
))

≤ ψ
(

F
(

d(x, y)
))

, ∀x, y ∈ X,ω(x) �= ω(y).

According to Proposition 2.4 and Remark 3.2, the mappings d and ψ are continuous.

So, since the set A is compact, one can find a ∈ A such that

D
(

ω(A),ω(B)
)

= inf
y∈B

d
(

ω(a),ω(y)
)

> 0,

hence d(ω(a),ω(y)) > 0 for all y ∈ B. Therefore, for every y ∈ B,

F
(

D
(

ω(A),ω(B)
))

= F
(

inf
y∈B

d
(

ω(a),ω(y)
)

)

≤ F
(

d
(

ω(a),ω(y)
))

≤ ψ
(

F
(

d(a, y)
))

,

that is,

F
(

h
(

ω(A),ω(B)
))

≤ ψ
(

F
(

d(a, y)
))

, ∀y ∈ B. (4.2)

Let b ∈ B be such that d(a,b) = infy∈B d(a, y). Then, by (4.2) and since F and ψ are in-

creasing, one obtains

F
(

h
(

ω(A),ω(B)
))

≤ ψ
(

F
(

d(a,b)
))

= ψ
(

F
(

inf
y∈B

d(a, y)
))

≤ ψ
(

F
(

sup
x∈A

inf
y∈B

d(x, y)
))

= ψ(F
(

D(A,B)
)

≤ ψ
(

F
(

h(A,B)
))

.

Consequently, F(h(ω(A),ω(B)))≤ ψ(F(h(A,B))).
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For the second part of the statement, we first notice that from the definition of ψ we

haveψ(t) < t for all t ∈ (–∞,μ),μ = supF ; henceψ(M) is b-bounded for every b-bounded

set B ⊂ X. Next, assume that A,B ∈ Cf (X) are such that h(ω(A),ω(B)) = D(ω(A),ω(B)) > 0.

Then, by the continuity of F , ψ , and d, taking into account that F and ψ are increasing,

we get, using Corollary 3.3(c),

F
(

h
(

ω(A),ω(B)
))

= F
(

h
(

ω(A),ω(B)
))

= F
(

D
(

ω(A),ω(B)
))

= F
(

sup
x∈A

inf
y∈B

d
(

ω(x),ω(y)
)

)

= sup
x∈A

inf
y∈B

F
(

d
(

ω(x),ω(y)
))

≤ sup
x∈A

inf
y∈B

ψ
(

F
(

d(x, y)
))

= ψ
(

F
(

sup
x∈A

inf
y∈B

d(x, y)
))

= ψ
(

F
(

D(A,B)
))

≤ ψ
(

F
(

h(A,B)
))

. �

Definition 4.1 A family of self-mappings (ωk)Nk=1 on a quasi-metric space (X, d) is called

Iterated Function System (IFS for short). We say that the set map S : Cf (X) → Cf (X) de-

fined by S(B) :=
⋃N

k=1 ωn(B) is the Hutchinson or the fractal operator associated with the

respective IFS. If there exists a unique set A ∈ Cf (X) such that S(A) = A, then A is called

the attractor of the IFS.

Remark 4.1 If (ωk)Nk=1 is an IFS consisting of ψF-contractions on the Hausdorff quasi-

metric space (X, d) (in particular f-convergence implies b-convergence, see Proposi-

tion 2.1), then S(B) =
⋃N

k=1 ωk(B) for every B ∈ Kf (X). Indeed, B being f-compact and ωk

continuous, it follows that ωk(B) is f-compact, hence f-closed.

Theorem 4.1 Assume that in the quasi-metric space (X, d) f-convergence implies b-

convergence and consider the IFS (ωk)Nk=1, where, for each k = 1, . . . ,N , ωk : X → X is a

forward ψkF-contraction, ψk ∈ Ψ , F ∈ F . If F is continuous, then S is a ψF-contraction

in Cf (X) for some ψ ∈ Ψ . If (X, d) is f-complete, then the IFS (ωk)Nk=1 has a unique attrac-

tor A ∈ Cf (X) which is approximated in the f-Hausdorff–Pompeiu metric by the sequence

(Sn(B)) for every B ∈ Cf (X).

Proof Set μ = supF and ψ : (–∞,μ)→R, ψ = max1≤k≤N ψk . Clearly ψ ∈ Ψ .

Choose A,B ∈Kf (X) such that h(S(A),S(B)) > 0. By Corollary 3.3(d), we get

0 < h
(

S(A),S(B)
)

≤ max
1≤k≤K

h
(

ωk(A),ωk(B)
)

= h
(

ωk0 (A),ωk0 (B)
)

for some k0 ∈ {1, . . . ,N}. Next, according to Lemma 4.1, one obtains

F
(

h
(

S(A),S(B)
))

≤ F
(

h
(

ωk0 (A),ωk0 (B)
))

≤ ψk0

(

F
(

h(A,B)
))

≤ ψ
(

F
(

h(A,B)
))

,

so S is a ψF-contraction.

The last assertion follows from Theorem 3.4 and Corollary 3.2. �

Theorem 4.2 We consider an IFS (ωk)Nk=1 composed by forward Fk-contractions, Fk ∈ F ,

Fk continuous, k = 1, . . . ,N , on the quasi-metric space (X, d) where f-convergence implies
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b-convergence. Then there is F ∈F such that S is an F-contraction on Cf (X). Furthermore,

if the space is f-complete, then the IFS has a unique attractor in Cf (X) approximated by

(Sn(B)) for every B ∈ Cf (X).

Proof By hypothesis, for each k = 1, . . . ,N , there is τk > 0 such that

ωk(x) �= ωk(y) ⇒ τk + Fk
(

d
(

ωk(x),ωk(y)
))

≤ Fk
(

d(x, y)
)

.

We set F := F1 + · · · + FN and τ := min1≤k≤N τk . Clearly F ∈F .

Let A,B ∈ Cf (X) be such that h(S(A),S(B)) > 0. One can find k0 ∈ {1, . . . ,N} such that

0 < h
(

S(A),S(B)
)

≤ max
1≤k≤K

h
(

ωk(A),ωk(B)
)

= h
(

ωk0 (A),ωk0 (B)
)

.

Now, using Lemma 4.1 and (3.3), we get

τ + F
(

h
(

S(A),S(B)
))

= τ +
N

∑

k=1

Fk
(

h
(

S(A),S(B)
))

≤ τk0 + Fk0
(

h
(

ωk0 (A),ωk0 (B)
))

+
∑

k �=k0

Fk
(

h
(

ωk0 (A),ωk0 (B)
))

≤ Fk0
(

h(A,B)
)

+
∑

k �=k0

Fk
(

h(A,B)
)

= F
(

h(A,B)
)

.

By Theorem 3.4 and Corollary 3.2 the rest of assertions follow. �

Analogous theorems to Theorems 4.1 and 4.2 can be formulated by replacing the space

Cf (X) with Kf (X), the proofs being similar.

Theorem 4.3 Let (X, d) be a quasi-metric space where f-convergence is equivalent to b-

convergence and consider the IFS (ωk)Nk=1 composed by forward ψkF-contractions, ψk ∈ Ψ ,

F ∈ F . Then S is a ψF-contraction in Kf (X) for some ψ ∈ Ψ . If (X, d) is f-complete, then

the IFS (ωk)Nk=1 has a unique attractor inKf (X) which is approximated in the f-Hausdorff–

Pompeiu metric by the sequence (Sn(B)) for every B ∈Kf (X).

The following example is an application of each of Theorems 4.1 and 4.3.

Example 4.1 Let us consider X = [1,∞), the quasi-metric d : X ×X →R+ ∪ {0} given by

d(x, y) =

⎧

⎨

⎩

ln y – lnx, if y≥ x,
1
3 (lnx – ln y), if y < x

and the mapping F : R+ → R, F(t) = 1
1–et . For N ∈ N and each k = 1, 2, . . . ,N , let us also

define ωk : X → X and ψk : (–∞, 0) →R by

ωk(x) =
2kx

kx + 1
, ψk(t) =

3
√
t3 – 1/k3.
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Then ωk is a forward ψkF-contraction for all k = 1, . . . ,N . Furthermore, the IFS (ωk)Nk=1
has a unique attractor A ∈ Kf (X) ⊂ Cf (X) which is approximated with respect to the f-

Hausdorff–Pompeiu metric by the sequence (S(B)) for every B ∈ Cf (X).

Proof It is easy to check the following properties: in the space (X, d) f-convergence is

equivalent to b-convergence,Kf (X)⊂ Cf (X), F ∈F , F is continuous, supF = 0 and ψk ∈ Ψ

for every k = 1, . . . ,N . In the same manner as in Example 3.1 we can prove that (X, d) is

f-complete; hence, by Theorem 3.4, the spaces (Kf (X),h), (Cf (X),h) are complete.

In order to apply Theorem 4.1, respectively Theorem 4.3, it remains to prove that ωk is

a forward ψkF-contraction for each k = 1, . . . ,N .

For this purpose, choose k ∈ {1, . . . ,N} and x, y ∈ X, x �= y. Notice that ωk is an increasing

map. Two cases can occur.

Case I: x < y. In this case

d(x, y) = ln
y

x
, d

(

ωk(x),ωk(y)
)

= ln
y(kx + 1)

x(ky + 1)
, F

(

d(x, y)
)

=
x

x – y
,

F
(

d
(

ωk(x),ωk(y)
))

=
x(ky + 1)

x – y
, ψk

(

F
(

d(x, y)
))

=
3
√

k3x3 – (x – y)3

k(x – y)
.

Then

F
(

d
(

ωk(x),ωk(y)
))

≤ ψk

(

F
(

d(x, y)
))

⇔ 3
√

k3x3 – (x – y)3 ≤ kx(ky + 1)

⇔ ·· · ⇔ 0≤
(

k3 – 1
)

y3 + 3xy(y – x) + x3 + 3k2y2 + 3ky + 1,

where we omitted some elementary computations.

Case II: x > y. Then

d(x, y) = ln
3
√
x

3
√
y
, d

(

ωk(x),ωk(y)
)

= ln
3
√

x(ky + 1)
3
√

y(kx + 1)
, F

(

d(x, y)
)

=
3
√
y

3
√
y – 3

√
x
,

F
(

d
(

ωk(x),ωk(y)
))

=
3
√

y(kx + 1)
3
√

y(kx + 1) – 3
√

x(ky + 1)
,

ψk

(

F
(

d(x, y)
))

=

3
√

k3y – ( 3
√
y – 3

√
x)3

k( 3
√
y – 3

√
x)

.

Hence

F
(

d
(

ωk(x),ωk(y)
))

≤ ψk

(

F
(

d(x, y)
))

⇔
k3y – ( 3

√
y – 3

√
x)3

k3( 3
√
x – 3

√
y)3

≤
y(kx + 1)

( 3
√

x(ky + 1) – 3
√

y(kx + 1))3
.

The above inequality will result obviously from the following two relations:

k3y –
(

3
√
y – 3

√
x
)3 ≤ k3y(kx + 1) (4.3)
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and

3
√

x(ky + 1) – 3
√

y(kx + 1) ≤ 3
√
x – 3

√
y. (4.4)

Indeed, inequality (4.3) is equivalent to

0≤ 3 3
√
xy

(

3
√
x – 3

√
y
)

+
(

k4y – 1
)

x + y,

which is obvious.

Now, we multiply inequality (4.4) by 1
3√xy

and next we use the substitutions a = 1
3√x
, b =

1
3√y
. Then a < b and one has

3
√
k + b3 – b ≤ 3

√
k + a3 – a,

which is clear because the mapping t �→ 3
√
k + t3 – t is decreasing. �

Theorem 4.4 We consider an IFS (ωk)Nk=1 composed by forward Fk-contractions, Fk ∈ F ,

k = 1, . . . ,N , on the quasi-metric space (X, d) where f-convergence is equivalent to b-

convergence. Then there is F ∈ F such that S is an F-contraction on Kf (X). Furthermore,

if the space is f-complete, then the IFS has a unique attractor approximated by (Sn(B)) for

every B ∈Kf (X).

Remark 4.2 The previous theorem improves [26, Th. 4.1] where the supplementary condi-

tion that the functions gk := maxj Fj – Fk must be increasing for all k = 1, . . . ,N is imposed.
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