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Abstract

We present two new forms of the remainder in Taylor’s formula involving a general-
ization of the Taylor-Langrange formula. An asymptotic formula of the Taylor’s remainder
for real analytic functions is given as application.
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1. Introduction

Let us denote by ({c, d}) the open interval (min{c, d}, max{c, d}) ,
and by [{c, d}] the closed interval [min{c, d}, max{c, d}] for all c, d ∈ R
with c 6= d .

The most popular forms of remainder in Taylor’s formula are the
classical well known integral, Langrange’s and the Cauchy’s forms of
remainder. The Langrange’s and Cauchy’s forms are special cases of the
Schloemilch-Roeche’s remainder:

Theorem 1. Let a, b ∈ R such that a 6= b . Let f : [{a, b}] → R be a mapping,
such that f ∈ Cn([{a, b}]) , f (n+1) exists on ({a, b}) and f (n+1)(t) 6= 0 for

∗E-mail: kechrin@teilam.gr
†E-mail: nt.anastasiou@teilam.gr
‡E-mail: bkotsos@teilam.gr

——————————–
Journal of Interdisciplinary Mathematics
Vol. 9 (2006), No. 1, pp. 37–48
c© Taru Publications



38 A. I. KECHRINIOTIS, K. S. ANASTASIOU AND B. A. KOTSOS

all t ∈ ({a, b}) . Then for a positive integer p not greater than n + 1 , there is
one ξ ∈ ({a, b}) such that

Rn( f ; a, b) =
(b− a)p(b−ξ)n+1−p

n!p
f (n+1)(ξ) ,

where Rn( f ; a, b) := f (b)− n
∑

k=0

(b− a)k

k!
f (k)(a) .

Setting p = n + 1 in the previous form of remainder, we obtain the
Langrange’s remainder.

Rn( f ; a, b) =
(b− a)n+1

(n + 1)!
f (n+1)(ξ) , for some ξ ∈ ({a, b}) , (1.1)

while for p = 1 follows the Cauchy’s remainder

Rn( f ; a, b) =
(b− a)(b−ξ)n

n!
f (n+1)(ξ), for some ξ ∈ ({a, b}) .

Also, G.A. Anastassiou and S.S. Dragomir have given some new
bounds for their remainder [2].

Many other researchers have developed different forms of Taylor’s
remainder in order to improve the bounds of error. In the literature (see
for example [1], [4], [5], [6], [8], [9], [10]) many forms of the remainder in
the Taylor’s formula are given.

In this paper, we present a new form of remainder in Taylor’s
formula, namely:

Theorem 2. If g ∈ Cn+1([{a, b}]) , g(n+2) exists on ({a, b}) , g(n+1)(a) 6= 0 ,
and g(n+2)(t) 6= 0 for all t ∈ ({a, b}) , then there is a number ξ ∈ ({a, b})
such that

Rn(g, a; b) =
g(n+1)(a)(b− a)n+1

(n + 1)!

· (n + 2)g(n+1)(ξ) + (ξ − a)g(n+2)(ξ)
(n + 2)g(n+1)(ξ) + (ξ − b)g(n+2)(ξ)

. (1.2)

In many cases the remainder which is defined in (1.2) gives essentially
better bounds of error than all other known forms of remainder. With the
following example on the harmonic alternating series 1− 1

2
+

1
3
− . . . we

would like to show the significance of our form (1.2):
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For any integer n ≥ 1 the following estimation holds

n + 2
(n + 1)(2n + 3)

<

∣∣∣∣∣
∞
∑

k=n+1

(−1)k+1

k

∣∣∣∣∣ <
n + 3

(2n + 4)(n + 1)
. (1.3)

Remark 1. The main result of László Tóth and József Bukor in paper [7] is
the following inequality

1
2n + a

<

∣∣∣∣∣
∞
∑

k=n+1

(−1)k+1

k

∣∣∣∣∣ <
1

2n + 1
, (n ≥ 1) (1.4)

where a =
1

1− ln 2
− 2 ' 1.258891 . A simple calculation yields

1
2n + a

<

n + 2
(n + 1)(2n + 3)

for all n ≥ 2. Thus the lower bound in our estimation

(1.3) is sharper than in (1.4).

Also, another interesting application of the form of remainder in
Theorem 2 allow us to study the behavior of the Taylor’s remainder
Rn( f , a; b) as n → ∞ , for real analytic functions.

The paper is organized as follows: In Section 2, we prove the
Theorem 2 and the inequality (1.3) (see Example 1) and give one more
example. The Section 3 is devoted to the study of asymptotic behavior of
Taylor’s remainder for real analytic functions as well as to the behavior
of ξ in the Langrange’s form of remainder (1.1). The obtained results are
applied to real exponential polynomials. In the last section we present
another form of remainder in Taylor’s formula, which in some cases gives
essentially better bounds of error than the Langrange’s form.

2. Proof of Theorem 2 and examples

For our purpose, we need the following generalization of Taylor’s
formula [3, Theorem 5.20, p. 113]:

Theorem 3. If f (n) , g(n) are continuous on [{a, b}] , and f (n+1) , g(n+1) exist
on ({a, b}) , and if g(n+1)(t) 6= 0 for any t ∈ ({a, b}) , then there is a number
ξ ∈ ({a, b}) such that

Rn( f ; a, b)
Rn(g; a, b)

=
f (n+1)(ξ)
g(n+1)(ξ)

.

Theorem 3 is very useful for the achievement of new forms of the
remainder in Taylor’s formula by suitable choice of the functions f and g .

The next Lemma 1 is an application of Theorem 3.
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Lemma 1. Let m, n be positive integers. If g(m+n) is continuous on [{a, b}] ,
g(m+n+1) exists on ({a, b}) and g(m+n+1)(t) 6= 0 for all t ∈ ({a, b}) , then
there is a number ξ ∈ ({a, b}) such that

Rn(g; a, b)
Rn+m(g; a, b)

((ξ − a)mg(ξ))(m+n+1)

(b− a)mg(m+n+1)(ξ)
.

Proof. Let f be a function defined on [{a, b}] by

f (x) = (x− a)mg(x) . (2.1)

According to Theorem 3 there is a number ξ ∈ ({a, b}) such that

Rn+m( f ; a, b)
Rn+m(g; a, b)

=
f (n+m+1)(ξ)
g(n+m+1)(ξ)

. (2.2)

Using Leibnitz derivative formula on (2.1), we calculate

f (k)(a) = 0 , for 0 < k < m , (2.3)

and

f (k)(a) =
k!

(k−m)!
gk−m(a) , for m ≤ k ≤ n + m + 1 . (2.4)

Using (2.1), (2.3), (2.4) in (2.2), we obtain

(b−a)mg(b)− m+n
∑

k=m

(b−a)k

(k−m)!
g(k−m)(a)

Rn+m(g; a, b)
=

((ξ − a)mg(ξ))(n+m+1)

g(n+m+1)(ξ)
.

Substituting k−m = j , we obtain

(b− a)m

(
g(b)− n

∑
j=0

(b− a) j

j!
g( j)(a)

)

Rn+m(g; a, b)
=

((ξ − a)mg(ξ))(n+m+1)

g(n+m+1)(ξ)
,

which proves Lemma 1. ¤

Proof of Theorem 2. Clearly the function g satisfies the assumptions of
Lemma 1 with m = 1. Thus, according to Lemma 1, there is a ξ in ({a, b})
such that

Rn(g; a, b)
Rn+1(g; a, b)

=
((ξ − a)g(ξ))(n+2)

(b− a)g(n+2)(ξ)
.

Using the Leibnitz derivative formula in the numerator on the right
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part fraction, we take

Rn(g; a, b)
Rn+1(g; a, b)

=
(n + 2)g(n+1)(ξ) + (ξ − a)g(n+2)(ξ)

(b− a)g(n+2)(ξ)
.

This can be written

((n + 2)g(n+1)(ξ) + (ξ − a)g(n+2)(ξ))Rn+1(g; a, b)

=

(
Rn+1(g; a, b)− (b− a)n+1g(n+1)(a)

(n + 1)!

)
(b− a)g(n+2)(ξ) ,

or equivalently

((n + 2)g(n+1)(ξ) + (ξ − b)g(n+2)(ξ))Rn+1(g; a, b)

=
(b− a)n+2g(n+1)(a)

(n + 1)!
g(n+2)(ξ) . (2.5)

According to the assumptions of this theorem, we conclude that the right
part of (2.5) is non zero. Consequently

(n + 2)g(n+1)(ξ) + (ξ − b)g(n+2)(ξ) 6= 0 . (2.6)

Now, from (2.5), follows

((n + 2)g(n+1)(ξ) + (ξ − b)g(n+2)(ξ))

(
Rn(g; a, b) +

(b− a)n+1g(n+1)(a)
(n + 1)!

)

=
(b− a)n+2g(n+1)(a)

(n + 1)!
g(n+2)(ξ) ,

or equivalently

((n + 2)g(n+1)(ξ) + (ξ − b)g(n+2)(ξ))Rn(g; a, b)

=
(b− a)n+2gn+1(a)

(n + 1)!
(((n + 2)g(n+1)(ξ) + (ξ − a)g(n+2)(ξ)) .

From this, and from (2.6), follows the conclusion. ¤

With the next two examples, we want to show that the Taylor’s
remainder of the Theorem 2 in many cases gives essentially finer bounds
of error than the Langrange’s remainder.

Example 1. Applying Theorem 2 to g(x) = ln(1 + x) , −1 < x , x 6= 0, we
find out easily that there is at least one ξ ∈ ({0, x}) such that

Rn(g; 0, x) := ln(1 + x)−
n

∑
k=1

(−1)k−1xk

k
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=
(−1)nxn+1

k + 1
· n + 2 +ξ

(n + 2)(x + 1) +ξ − x
.

Therefore, easily we obtain, the following asymptotic formula

|Rn(g; 0, x)| ∼ |x|n+1

(n + 1)(x + 1)
, as n → ∞ ,

and the following estimation

(n + 2)|x|n+1

((n + 1)x + n + 2)(n + 1)
<

∣∣∣∣∣
∞
∑

k=n+1

(−1)k+1xk

k

∣∣∣∣∣

<
(n + 2 + x)|x|n+1

((n + 2)(x + 1))(n + 1)
. (2.7)

Thus the difference of bounds of estimation (2.7) is

A :=
|x|n+3

(n + 2)(n(x + 1) + x + 2)(x + 1)
,

while the corresponding difference by using the Langrange’s form of
remainder is

B :=
|(1 + x)n+1 − 1| |x|n+1

(n + 1)(1 + x)n+1 .

It is obvious that A is essentially smaller than B . Now, setting x = 1 in
(2.7) we obtain inequality (1.3).

Example 2. Applying Theorem 2 to g(x) = (1 + x)s , s /∈ Z , x 6= −1,
x 6= 0, then there is one ξ ∈ ({0, x}) such that

Rn(g; 0, x) := (1 + x)s −
n

∑
k=0

s(s− 1) . . . (s− k + 1)xk

k!

=
s(s− 1) . . . (s− n)(n + 2 +ξ(s + 1))xn+1

(n + 1)!(n + 2 +ξ(s + 1) + x(n + 1− s))
.

From this, we obtain the following asymptotic formula

Rn(g; 0, x) ∼ s(s− 1) . . . (s− n)xn+1

(n + 1)!(1 + x)
, as n → ∞ ,

and for all n > s , the following estimation

|s(s− 1) . . . (s− n)| (n + 2 + x(s + 1))|x|n+1

(x + 1)(n + 2)
|x|n+1

(n + 1)!

≤
∣∣∣∣∣(1 + x)s −

n

∑
k=0

s(s− 1) . . . (s− k + 1)xk

k!

∣∣∣∣∣
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≤ |s(s− 1) . . . (s− n)| (n + 2)
(n + 2)(x + 1)− x− s

· |x|
n+1

(n + 1)!
.

It is obvious that the previous estimation is better than the corresponding,
which is obtained by using the Langrange’s form of remainder.

3. The Taylor’s remainder of real analytic functions

In this section, we will study the asymptotic behavior of Langrange’s
remainder in (1.1) as n → ∞ , for real analytic functions

Theorem 4. If the radius of convergence of the Maclaurin’s series expansion of a
function g is infinite, and there is a positive integer n0 , such that g(n)(t) 6= 0
for all integers n ≥ n0 and all t ∈ [{a, b}] , then

Rn(g; a, b) ∼ g(n+1)(a)(b− a)n+1

(n + 1)!
.

Proof. Let t be any number in [{a, b}] . Then the radius of convergence of
the Taylor’s series expansion of g about t ,

g(x) =
∞
∑

n=0

(x− t)n

n!
g(n)(t) ,

is infinite, and hence, according to D’Alembert’s formula for the radius of
convergence, is valid

lim
n→∞

g(n+1)(t)
(n + 1)g(n)(t)

= 0 .

Now, since the function g satisfies the assumptions of Theorem 2, we can
use the form of Rn(g; a, b) , which is given in Theorem 2. Thus

lim
n→∞

Rn(g; a, b)
g(n+1)(a)(b− a)n+1

(n + 1)!

= lim
n→∞

1 + (ξ − a)
g(n+2)(ξ)

(n + 2)g(n+1)(ξ)

1 + (ξ − b)
g(n+2)(ξ)

(n + 2)g(n+1)(ξ)

= 1 . ¤

Theorem 4 gives us the motivation to search the behavior of ξ in the
Langrange’s form of the remainder in Taylor’s formula (1.1):

Theorem 5. Let f : [{a, b}] → R be a mapping with the assumptions of
Theorem 1. Moreover if f (n+2) ∈ Cn+2([{a, b}]) , and f (n+2)(x) 6= 0 for all
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x ∈ [{a, b}] , then holds

|ξ − a| ≤ |b− a|
n + 2

max
x∈[{a,b}]

| f n+2(x)|
min

x∈[{a,b}]
| f n+2(x)| . (3.1)

Proof. From (1.1), we have

Rn+1( f , a; b) =
(b− a)n+1( f (n+1)(ξ)− f (n+1)(a))

(n + 1)!
. (3.2)

In (3.2), we apply the mean value theorem to f (n+1)(ξ) :

There is a number ρ in ({a,ξ}) such that

Rn+1( f , a; b) = (ξ − a) f (n+2)(ρ)
(b− a)n+1

(n + 1)!
. (3.3)

On the other hand, by the Taylor-Langrange formula, we have that for
some σ ∈ ({a, b})

Rn+1( f , a; b) =
(b− a)(n+2) f (n+2)(σ)

(n + 2)!
. (3.4)

Combining (3.3) with (3.4), we obtain

(ξ − a) f (n+2)(ρ) =
b− a
n + 2

f (n+2)(σ) ,

and since f (n+2)(x) 6= 0 for all x ∈ [{a, b}] , we get (3.1). ¤

Now, let us denote by L[{a,b}] the set of all functions f ∈ C∞([{a, b}])
with the assumptions:

There is one positive integer n0 such that f (n)(x) 6= 0 for all n ≥ n0

and all x ∈ [{a, b}] , and

lim
n→∞

max{| f (n)(a)|, | f (n)(b)|}
min{| f (n)(a)|, | f (n)(b)|} = 0 .

Corollary 1. Let f ∈ L[{a,b}] , and ξ be as in Theorem 5. Then ξ → a as
n → ∞ .

Proof. Using Theorem 5 we get immediately the conclusion. ¤

Remark 2. Let

P(x) =
m

∑
k=1

ckeλkx
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(ck ∈ R/{0} , λk ∈ R , with λ1 < λ2 < . . . < λm) be any real exponential
polynomial. Then we have

P(n)(x) =
m

∑
k=1

λn
k ckeλkx

= λn
m

(
cmeλmx +

m−1

∑
k=1

(
λk
λm

)n
cλeλkx

)
.

Thus,

|P(n)(x)| ≥ |λm|n
(
|cm|eλmx −

m−1

∑
k=1

∣∣∣∣
λk
λm

∣∣∣∣
n
|cλ|eλkx

)

> |λm|n
(
|cm|eλmx −

∣∣∣∣
λm−1

λm

∣∣∣∣
n m−1

∑
k=1

|cλ|eλkx

)
.

Then, it is straight forward to verify that for all n ≥ n0 and all x ∈ [{a, b}] ,
holds

P(n)(x) 6= 0 ,

where

n0 :=




ln
max

x∈[a,b]

m
∑

k=1
|ck|eλkx

|cm|min{eλma, eλmb}
ln

∣∣∣∣
λm

λm−1

∣∣∣∣




.

So, according to Theorem 5, we have that

Rn(P; a, b) ∼ P(n+1)(a)(b− a)n+1

(n + 1)!
.

Further, a simple calculation yields

lim
n→∞

max{|P(n)(a)|, | f (n)(b)|
n min{| f (n)(a)|, | f (n)(b)| = lim

n→∞
max{eλma, eλmb}

n min{eλma, eλmb}
= 0 .

Therefore, P ∈ L[{a,b}] . So, according to Corollary 1 we have that ξ → a

as n → ∞ , where ξ is defined via Rn(P; a, b) =
P(n+1)(ξ)(b− 1)n+1

(n + l)!
.
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4. Another form of the Taylor’s remainder

Using Theorem 3 we find out another form of the Taylor’s remainder:

Theorem 6. Let a ∈ R , r ∈ R+ , and let f be a function differentiable of order
n + 1 on the open interval (a− r, a + r) . Then, for any b ∈ (a− r, a + r) with
b 6= a , there is at least one ξ ∈ ({a, b}) such that

Rn( f ; a, b) =
(b− a)n+1

(n + 1)!

(
1− |ξ − a|

r

)n+2

(
1− |b− a|

r

) f (n+1)(ξ) . (4.1)

Proof. We consider the mapping g(x) =
(

1− x− a
r

)−1
defined on

(a − r, a + r) . Then, for all non negative integers k , a simple calculation
yields

g(k)(x) =
k!
rk

(
1− x− a

r

)−(k+1)
,

and hence

Rn(g; a, b) =

( ∞
∑
k=0

(
x− a

r

)k
)
−

(
n

∑
k=0

(
x− a

r

)k
)

=
(

x− a
r

)n+1 1

1− x− a
r

.

Applying Lemma 1 to g(x) =
(

1− x− a
r

)−1
, and using the above

formulas, we have, that there exists one ξ ∈ ({a, b}) such that

Rn( f ; a, b) =
(b− a)n+1

(
1− ξ − a

r

)n+2
f (n+1)(ξ)

(
1− b− a

r

)
(n + 1)!

.

Therefore, for any b with a < b < a + r , there is a number ξ ∈ (a, b) such
that

Rn( f ; a, b) =
(b− a)n+1

(
1− |ξ − a|

r

)n+2
f (n+1)(ξ)

(
1− |b− a|

r

)
(n + 1)!

.
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Now, we consider the mapping g(x) =
(

1 +
x− a

r

)−1
defined on

(a− r, a + r) . It can be verified that for any k ∈ N , holds

g(k)(x) = (−1)k k!
rk

(
1 +

x− a
r

)−(k+1)
,

and

Rn(g; a, b) =

( ∞
∑
k=0

(−1)k
(

x− a
r

)k
)
−

(
n

∑
k=0

(−1)k
(

x− a
r

)k
)

= (−1)n+1
(

x− a
r

)n+1 1

1− x− a
r

.

Applying Lemma 1 to g(x) =
(

1 +
x− a

r

)−1
and repeating the above

steps we obtain, that there exists one ξ ∈ ({a, b}) , such that

Rn( f ; a, b) =
(b− a)n+1

(
1 +

ξ − a
r

)n+2
f (n+1)(ξ)

(
1 +

b− a
r

)
(n + 1)!

.

Therefore, for any b with a− r < b < a , b 6= a , there is one ξ ∈ (a− r, a)
such that

Rn( f ; a, b) =
(b− a)n+1

(
1− |ξ − a|

r

)n+2
f (n+1)(ξ)

(
1− |b− a|

r

)
(n + 1)!

.

Finally, for any b ∈ (a− r, a + r) with b 6= a there is one ξ ∈ ({a, b}) such
that

Rn( f ; a, b) =
(b− a)n+1

(
1− |ξ − a|

r

)n+2
f (n+1)(ξ)

(
1− |b− a|

r

)
(n + 1)!

. ¤

Remark 3. Let a, b, r, f be as in Theorem 6. Suppose that the
mapping fn+1 : (a − r, a + r) → R defined via fn+1(x) :=(

1− |x− a|
r

)n+2
| f (n+1)(x)| is increasing and bounded on ({a, b}) . Then
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from (4.1) easily we get the following estimation

|Rn( f ; a, b)|≤
(b−a)n+1

(
1− |b− a|

r

)n+1

(n + 1)!
sup

x∈(a,b)
| f (n+1)(x)| . (4.2)

Moreover, from the assumption b ∈ (a − r, a + r) , we have 0 < 1 −
|b− a|

r
< 1. Therefore the estimation (4.2) gives essentially better

bounds of error than the corresponding, which are resulting by using the
Langrange’s form of remainder.
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