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NEW FORMULATION FOR STRESS CALCULATION:
APPLICATION TO VISCOELASTIC FLOW
IN A T-JUNCTION

H. M. Matos1, M. A. Alves2, and P. J. Oliveira1
1Departamento de Engenharia Electromecânica, UMTP, Universidade da
Beira Interior, Covilhã, Portugal
2Departamento de Engenharia Quı́mica, CEFT, Faculdade de Engenharia da
Universidade do Porto, Porto, Portugal

In this study, a new formulation is proposed for the calculation of stress components at

control-volume faces, within the context of cell-centered finite-volume methods which have

the stress tensor as one of the main dependent variables. Test case results from calculations

with viscoelastic fluids flowing through a T-junction demonstrate the merits of the method.

Previous formulations for stress interpolation yielded results that would depend on the

time-step value employed, even when calculating steady-state problems. We have removed

this inconsistency by devising an improved method that gives results independent of the time

step and that in addition is more robust, with a wider range of allowable Deborah numbers.

A FENE-CR constitutive model is used to replicate the known viscoelastic nature of blood,

and results are given for varying fluid elasticities, at values of Reynolds number and

extraction ratio typical of hemodynamic applications.

1. INTRODUCTION

In the simulation of steady flows with time-marching algorithms, the choice of
the value of the time step (Dt) is important because it may be responsible for either
convergence or divergence of the iterative solution method. In general, the use of
small values for the time step facilitates the iterative convergence of the numerical
method, but the CPU time taken to achieve converged results tends to become much
longer. On the other hand, the choice of large values for the time step may be respon-
sible for the divergence of the numeric method. However, often the formulations to
calculate fluxes on nonstaggered grids are inconsistent, in the sense of providing
solutions that depend on Dt even when simulating steady flows, and the above simple
conclusions may not hold.
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In this article we are concerned with the computation of non-Newtonian flows
requiring solution of additional evolution equations for the extra stress tensor, the
so-called rheological equations of state. A key issue that arises when collocated
finite-volume methods are applied is the evaluation of stress components at the
control-volume faces, which are necessary for the approximation of the stress diver-
gence term in the momentum equation. Oliveira et al. [1, 2] have addressed this issue
and devised a method, inspired by the Rhie and Chow [3] interpolation for the con-
vective fluxes, which has been applied successfully in a number of subsequent studies
(e.g., Alves et al. [4]). They were not, however, concerned with the Dt dependence of
the method, because it was then thought that the increased complexity of the formu-
lation to avoid that problem would not compensate for the slight inconsistency.
When the formulations used for the interpolation of stresses and convective fluxes
at the control-volume faces are dependent on the time step employed, the choice
of this numerical parameter becomes even more important because, besides the pro-
blems of inconsistency and lack of algorithm robustness, the value of Dt cannot be
changed in a sequence of runs, or abrupt changes in the results may be provoked.

Dependence of a numerical solution on the time-step value, under steady-state
conditions, is related to two factors: the formulation followed for the calculation of
convective fluxes at control-volume faces, and the formulation for stress calculation
at the control-volume faces. The former has been studied by several authors, starting
with Majumdar [5] and Miller and Schmidt [6], who reported on the equivalent

NOMENCLATURE

aF, aP, a0 coefficients, central coefficient, sum

of neighbor coefficients

bli coefficients in stress equation that

multiply velocity differences

Bfi area components at cell face

De Deborah number

f(s) stress function in constitutive

equation

H channel height

H(u), H(s) neighbor contributions in algebraic

equations (momentum and stress)

L2 extensibility parameter in

constitutive equation

n, nþ 1 time levels

p pressure

Q volumetric flow rate

rx, ry mesh contraction=expansion ratios

(¼Dxiþ1=Dxi, Dyjþ1=Dyj)
Re Reynolds number

S source term

u, ui velocity vector and Cartesian

components

V cell volume

xi; x, y Cartesian coordinates

X, Y nondimensional coordinates

Dt time step

Dp pressure difference

[Dui]l velocity-component differences

along direction l

k relaxation time

q density

g viscosity coefficient

s, sij stress tensor and components

Superscripts
0 division by central coefficient

– arithmetic or linear averaging

˜ special cell face average

s stress equation

Subscripts

f cell face

F neighbor–cell center

i, j Cartesian coordinates

l, f direction, face direction

(along curvilinear coordinates)

L lengths of recirculation eddies

P cell center position

s, p, 0 solvent, polymer, total

(for viscosity)

1, 2, 3 T-junction inlet, main outlet, and

branch outlet, respectively
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problem of dependence on the underrelaxation parameter; Oliveira [7] and Issa and
Oliveira [8], and later Choi [9], dealt with the Dt dependence. An additional point
related to the fact that the original Rhie and Chow interpolation may still develop
the unphysical pressure checkerboard pattern when Dt is small was noticed by
Oliveira [7], who showed that the Dt-independent formulation offers also the
additional benefit of avoiding this problem; this point was later independently redis-
covered by Shen et al. [10] and Yu et al. [11]. Gu [12] and Choi [9] examined a similar
question related to rapidly changing source terms, whose effect should be included
in the face flux formulation; and recently Mencinger and Zun [13] revisited the
problem, proposing a more effective treatment. This latter article is recommended
reading, as it reviews the main aspects involved in evaluating face velocities on non-
staggered grids: Mencinger and Zun also dealt with source terms arising from curva-
ture and surface tension in free-surface flows, but it is worth mentioning that
treatment of source terms proportional to gradients of some variable were previously
correctly addressed by Kunz et al. [14] and by Oliveira and Issa [15]. Development of
new formulations, independent of the time-step value, for the interpolation of stres-
ses and convective flux at the control-volume faces is the scope of the present article.

The geometry chosen to test the independence of Dt for the several formula-
tions proposed is a two-dimensional, 90� bifurcation. Simulation of laminar flows
through bifurcations (e.g., [8, 16–19]) is of enormous practical importance, since
bifurcations are present in many situations with relevance for engineering and
human health. Examples of the latter occur in hemodynamic applications, such as
in the human circulatory system, where blood drains along successive bifurcations
and junctions of arteries and veins. Although the rheological behavior of blood
in the large vessels is adequately approximated by Newtonian or generalized
Newtonian models, it is known that blood exhibits non-Newtonian characteristics
when flowing in smaller-diameter vessels, which are enhanced under the unsteadiness
imposed by the heart beats; in particular, blood viscoelasticity then becomes
important [20]. For this reason, in the present work we will use two forms of the
finite-extensibility nonlinear dumbbell model [21] as an approximation to represent
blood behavior, and we will look into the influence of elasticity on viscoelastic flow
through a T-junction, for values of Reynolds number and extraction ratio typical of
the human circulatory system. A motivation for this study is that cardiovascular
diseases, such as atherosclerosis and thrombosis, are associated with complex flows
in the human circulatory system and are usually located near side branches of bifur-
cations and on the inner curvatures of arteries [22]. The study is thus a continuation
of a previous work [19], which was concerned with the behavior of steady and
unsteady laminar flow, with Newtonian and non-Newtonian inelastic fluids, for
the same test case.

The main objectives of this work are therefore (1) to develop new formulations
for the interpolation of stresses and convective flux at the control-volume faces that
will provide numerical solutions independent of the time-step size, and study the
robustness of these formulations in order to verify which are the best options to
use for Newtonian or non-Newtonian viscoelastic flow simulations; (2) to investi-
gate, by means of numerical simulations, steady laminar flow in a planar
two-dimensional T-junction with fluids that possess viscoelastic properties (with
characteristics adjusted to those of human blood).
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2. GOVERNING EQUATIONS

Incompressible and isothermal laminar flow of a polymeric solution is gov-
erned, as usual, by conservation equations for mass and linear momentum:

r � u ¼ 0 ð1Þ

q
Du

Dt
¼ �rpþr � sþr � ð2gsDÞ ð2Þ

where u is the velocity vector, p is the pressure, q is the fluid density, D¼
(ruþruT)=2 is the rate-of-strain tensor, and gs is the solvent viscosity. In this
study, the fluid density and the total viscosity g0¼gsþgp, where gp is the polymeric
viscosity contribution, are assumed constant.

Solution of Eq. (2) requires an additional equation for the evolution of the
non-Newtonian contribution to the extra stress tensor s. For that purpose, two rheo-
logical constitutive models derived from the finitely extendable nonlinear dumbbell
model (FENE [21]) are employed: the FENE-CR and the FENE-MCR constitutive
equations. In the FENE-CR model proposed by Chilcot and Rallison [23], the stress
tensor is expressed by

sþ k
s
r

f ðsÞ

0
@

1
A ¼ 2gpD ð3Þ

where k is the relaxation time of the fluid. The symbol r denotes Oldroyd’s
upper-convected derivative:

s
r

¼ Ds
Dt

� ðruT � sþ s � ruÞ ð4Þ

where the superscript T means the transposed tensor and Dð Þ=Dt �
qð Þ=qtþ u � rð Þ is the material derivative. In Eq. (3) the function of invariants of
s, f(s), is defined as

f ðsÞ ¼
L2 þ ðk=gpÞTrðsÞ

L2 � 3
ð5Þ

where L2 is the maximum extensibility of the dumbbells, a model parameter which is
kept constant in the simulations for both models (L2¼ 100), and Tr represents the
trace operator. If the additional simplification Df(s)=Dt� 0 is assumed in Eq. (3),
then the modified FENE-CR model is obtained (FENE-MCR), which was used
by Coates et al. [24] among others:

sþ k
f ðsÞ s

r

¼ 2gpD ð6Þ

Both the FENE-CR and FENE-MCR models give identical responses in
simple steady shear and elongational flows; the only differences between the two
models occur in transient flows and in strongly convective flows, where the term
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neglected in the FENE-MCR model (u � r(1=f)) may be significant. Those models,
and the form of the respective constitutive equations [Eqs. (3) and (6)], are typical
in non-Newtonian fluid mechanics of viscoelastic fluids, and more complex models
follow the same type of equation but with many additional terms. They serve well
the purpose of deriving better formulations for the stresses arising from the diver-
gence term in Eq. (2).

3. NUMERICAL METHOD

The differential equations of the previous section are discretized using the
finite-volume method [25, 26]. In the present implementation of the method [7], gen-
eral coordinates and indirect addressing for easy mapping of nonrectangular
domains are used together with nonstaggered meshes in which all variables are
stored at the centers of the control volumes. In order to ensure an adequate coupling
between the velocity and pressure fields in these types of meshes, we follow the
interpolation technique of Rhie and Chow [3] to evaluate the velocity components
at the cell faces, while the coupling between the stress and the velocity fields is
obtained using a somewhat similar procedure, which was described in [1, 2]. These
are the procedures we intend to improve in this study.

The diffusive and the pressure gradient terms in the governing equations are
represented by central differences (second-order accuracy), while the convective
terms are approximated by the high-resolution scheme CUBISTA of Alves et al.
[27]. This scheme possesses good accuracy (third-order accuracy in space for smooth
flow) complemented with improved characteristics regarding iterative convergence in
viscoelastic flows, as demonstrated in [27].

The solution algorithm is based on the SIMPLEC [28] a well-known version of
the pressure-correction methodology for dealing with the coupling of the velocity and
pressure fields in order to verify the continuity equation. Convergence of the iterative,
time-marching process is obtained when the normalized residuals of all variables are
less than 10�8. The choice of such a small value is justified by the fact that we want to
make sure the solutions are independent of the time step, and that cannot be guaran-
teed with the usual stopping tolerance for the normalized residuals (of about 10�4),
especially when elasticity is appreciable (Deborah numbers above De� 1).

As mentioned in the Introduction, several formulations may be devised for the
calculation of the convective fluxes and stresses at the control-volume faces. For
future convenience we will designate the formulations for calculation of convective
fluxes at the faces of control volumes by formulations of type F, and those for the
stress calculation at the faces of control volumes by formulations of type T. The final
formulation used in practice is a combination of these two types, F and T.

3.1. Formulations for the Convective Fluxes (Type F )

For the calculation of convective fluxes, two formulations were employed. The
first (F1) was used in previous simulations and leads to solutions that are dependent
of the value of the time step Dt, for both Newtonian and non-Newtonian flows. The
second formulation for the convective fluxes calculation (F2) was proposed in [7]
(see also [8]) and promotes steady-state solutions that do not depend on Dt.
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The two formulations for the convective fluxes calculation differ in how the velocity
components at the control-volume faces are obtained from the discretized momen-
tum equation (see Figure 1):

aPuP ¼ HðuÞ � B Dpþ qVP

Dt
unP ð7Þ

where up is the velocity at the center of the cell P, HðuÞ ¼
P

aFuF þ Su, where the
index F is related to the neighboring cells of P, and Su represents source terms other
than the pressure gradient, B is a superficial area, Dp is a difference of pressures across
the cell, V is the volume of the cell, and un is the velocity at the present time level (iter-
ation). Since the inertial term is retained in Eq. (2), being discretized with a simple, full
implicit Euler scheme when the interest is to obtain steady-state solutions, the central
coefficient in Eq. (7) is given by aP¼ a0þ qVP=Dt, where a0¼

P
aF contains the usual

convective and diffusive contributions. For simplicity of presentation, we do not
include the Cartesian index to denote the velocity component in Eq. (7) and the other
equations in this subsection; on general curvilinear grids the discretized pressure
gradient term, for example, should be written as B Dp ¼

P
l Bli½Dp�Pl , with l¼ 1, 2, 3

for the three directions. Further notation is clarified in Figure 1.

3.1.1. Flux formulation F1. We follow the technique suggested by Rhie and
Chow [3] and, instead of determining the face velocity from arithmetic averaging
(denoted here with overbar) of Eq. (7),

aPuP ¼ HðuÞ � B Dpþ qV
Dt

un ð8Þ

we write an equation similar to this except that the term related to the pressure
gradient is obtained directly at the face of the control volume:

aP eufuf ¼ HðuÞ � Bf
gDpfDpf þ

qV
Dt

un ð9Þ

Figure 1. Two-dimensional scheme of a general control volume P and its neighbor cell F across face f with

additional notation.
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The index f refers to conditions at the control-volume face, and the tilde denotes the
particular ‘‘Rhie and Chow’’ type of interpolation defined by Eq. (9); the pressure
difference calculated at the face is gDpfDpf ¼ pF � pP, where F is the neighbor cell across
face f, whose area is Bf (see Figure 1). Subtracting Eq. (8) from Eq. (9), we obtain the
equation for the control-volume face velocity, eufuf :

eufuf ¼ apup � Bf
gDpfDpf þ BDp
ap

ð10Þ

Since ap ¼ ða0 þ qV=DtÞ, the velocity at the control-volume face will in general
depend on the particular value of the time step (Dt), thus explaining the time-step
dependence registered for this formulation. Some authors (e.g., Ferziger and Peric
[26], p. 202) argue that the terms in Dt in Eq. (10) that bring in the inconsistency
are of the order of the discretization error, and so the dependence of the solution
on Dt (or underrelaxation parameter) is not important. Others (e.g., Majumdar
[5]) have addressed this issue and devised formulations that avoid this inconsistency.
One such formulation is explained next.

3.1.2. Flux formulation F2. Regarding its derivation, formulation F2 has
just a small difference compared to formulation F1. Instead of using Eq. (9) to define
the face velocity eufuf , we define it by

ap eufuf ¼ HðuÞ � Bf
gDpfDpf þ

qV
Dt

eunfunf ð11Þ

where the face velocity calculated at the present time level eunfunf is now also obtained by
Rhie and Chow’s technique. This slight modification was proposed by Oliveira [7],
and it is sufficient to guarantee Dt-independent solutions, contrary to what was
claimed by Yu et al. [29]; the proposals to avoid Dt dependence later reported in
[9, 10, 29, 30] follow the same type of ideas as [7, 8]. In the same way as before,
by subtracting Eq. (8) from Eq. (11), we obtain the equation for the velocity at
the control-volume faces, eufuf :

eufuf ¼ apup � Bf
gDpfDpf þ BDpþ qV

Dt

� � eunfunf � qV
Dt u

n

a0 þ ðqVDt Þ
� � ð12Þ

In this case it is easy to verify that when a steady state is reached, the value of the
velocity at the control-volume faces eufuf will not depend on the time step value Dt. In
fact, when the iterative process has converged to steady state, velocities will no longer
change and we have eufuf ¼ eunfunf and uP ¼ unP; thus the terms in Eq. (12) containing Dt will
mutually cancel out, leaving just the steady state expression for the face velocity,

eufuf 1 ¼ a0up � Bf
gDpfDpf þ BDp
a0

ð13Þ

which is free of anyDt dependence. As alluded to above, the proposals of [9–12, 29, 30]
are essentially equivalent to this formulation except in details. One difference worth
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mentioning is that most authors prefer to work with linear interpolation of velocity
itself, an intensive property, while we interpolate momentum, the quantity which is
in fact conserved; since momentum is an extensive property, the interpolations
denoted with overbars in the previous equations must be arithmetic averages (even
for nonuniform mesh spacing).

3.2. Formulations for the Stress Calculation (Type T )

For the calculation of stress at the control-volume faces, we discuss three
formulations; one of them is a new formulation devised in order to obtain results
independent of the time step and provide a more robust algorithm.

In any case, the cell-face stresses are obtained by a suitable interpolation of the
discretized equations for cell-center stresses. Any spatial discretization scheme
applied to either Eq. (3) or Eq. (6), together with the temporal implicit Euler scheme,
ends up with linearized algebraic equations of the form (see [1] for details)

asPsijP ¼ HsðsijÞ þ
X3
l¼1

ðbli½Duj�l þ blj ½Dui�lÞ þ
kef VP

Dt
snijP ð14Þ

where

asP ¼ as0 þ Vþ kef V
Dt

as0 ¼
X

asF Hs ¼
X

asFsijF þ Ss

bli ¼ gpBli þ kef
X
k

Blkski kef ¼
k

f ðsÞ
ð15Þ

The coefficients of the stress equations asF contain only convective influences, and the
source term Ss contains contributions not accounted for by the other source terms
written explicitly in Eq. (14), which are the time-dependent term and all
velocity-gradient terms in the constitutive equations. These latter terms are included
in the bli terms of Eq. (14), where the velocity differences at cell center are evaluated

with linearly interpolated velocities, ½Dui�l ¼ ulþi � ul�i (l¼ 1, 2, 3 is any of the three
general coordinate directions; lþ (l�) is the cell face lying on the positive (negative)
l direction; see Figure 1).

3.2.1. Stress formulation T1. In this formulation the expressions for the
cell-face stress calculation are obtained from linear interpolation of the discretized
stress constitutive equation, Eq. (14), except for the terms proportional to velocity
differences straddling the face, which are evaluated directly at the face. This pro-
cedure is described in detail in [2] and guarantees that decoupling problems between
stress and velocity fields will not exist. Formulation T1 is expressed by Eq. (16) and
by the auxiliary relationships of Eq. (17), where the prime notation designates in
general a division by the central coefficient of the discretized stress equation.

ð esijsijÞf ¼ ðsijÞf þ fðebb0fi ½Duj�f þ ebb0fj ½Dui�f Þ � ðb0fi½Duj�f þ b0fj ½Dui�f Þg ð16Þ
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where

b0fi ¼
gpBfi þ kef

P
k Bfkski

asP
and eb0fib0fi ¼

�
gpBfi þ kef

P
k Bfkski

�
f

Vf ðasP=VPÞ
ð17Þ

In these equations, Bfi is the i component of the cell face area aligned with the direc-
tion f, VP and Vf are the volumes of the cell centered at P and at the face f. The
superscript (�) is used to denote the special Rhie and Chow type of interpolation
devised by [2] for the stresses, while the overline (–) corresponds here to linear inter-
polation [/f ¼ wf/F þ ð1� wf Þ/P where wf is a geometric weighting factor
wf¼DsP=(DsPþDsF), with s representing a local coordinate]. As the central coef-
ficient asP is given by asP ¼ kef VP=Dtþ VP þ as0 (cf. Eq. (15)), this formulation for
the stress calculation will produce results that, when converged (stationary solution),
will depend on the value of the time step Dt. The formulation defined by Eq. (16) is
thus somewhat ‘‘inconsistent,’’ in the sense discussed before for the face velocity [cf.
Eq. (12)], because the terms containing Dt do not cancel out mutually under steady
flow conditions and a Dt dependence will persist.

3.2.2. Stress formulation T2. The second formulation is a new proposal
devised during the course of the present work, resulting from a simplification of for-
mulation T1 described previously, with the objective of obtaining results that are
independent of the time-step value. After a number of numerical experiments with
several possible formulations which we shall omit here for the sake of conciseness,
we arrived at the following ‘‘optimized’’ expression for the stress calculation:

ð esijsijÞf ¼ ðsijÞf þ
1

ð1þ as0=VÞ

�
1

Vf
ðgpBfi½Duj�f þ gpBfj½Dui�f Þ

� 1

V
ðgpBfi½Duj�f þ gpBfj½Dui�f Þ

�
ð18Þ

A ‘‘formal’’ derivation leading to Eq. (18) would start by rewriting Eq. (14) as

V 1þ as0
V

� �
sijP ¼ gp

X3
l¼1

ðBli½Duj�l þ Blj½Dui�lÞ þHsðsijÞ

þ kef
X3
l¼1

ðTli½Duj�l þ Tlj½Dui�lÞ þ
kef VP

Dt
ðsnijP � sijPÞ ð19Þ

where the traction vector is defined by Tli¼
P

kBlkski. Now, after division of (19) by
the cell volume in order to end up with intensive properties (stresses instead of
forces), the face stress is defined by linear interpolation (overbar) of all terms on
the right-hand side, except those in the first summation for the direction of the face
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l¼ f, that is,

�
1þ as0

V

�
ð esijsijÞf ¼ gp

Vf
ðBfi½Duj�f þ Bfj ½Dui�f Þ

þ gp

X2
l 6¼f

1

V
ðBli½Duj�l þ Blj ½Dui�lÞ þ

1

V
HsðsijÞ

þ
X3
l¼1

kef
V

ðTli½Duj�l þ Tlj ½Dui�lÞ þ
kef
Dt

ðsnijP � sijPÞ ð20Þ

Finally, the incremental formulation (18) is obtained after applying linear
interpolation to Eq. (14) and subtracting the resulting equation from Eq. (20) given
above.

A few comments are necessary in order to provide some justification for this
choice. In relation to formulation T1 defined by Eq. (16), two points are noteworthy:

1. The local time derivative term of the constitutive equation, qsij=qt, was linearly
interpolated, thus being effectively removed from the final expression for the face
stress, which does not contain any terms in Dt; note that in Eqs. (16) and (17),
terms in Dt are contained in the coefficient asP.

2. The rotation=deformation terms of the upper-convected derivative [the term
between parenthesis in Eq. (4)] were also removed from the definition of the spe-
cial interpolation for the stresses at the cell faceð esijsijÞf .

Point 1 has the immediate consequence that the results become independent of
the time step employed in the computations. Point 2 is justifiable on the basis that
turning off a strong influence of viscoelasticity (note that the term removed is mul-
tiplied by the relaxation time of the fluid) results in a notable improvement in
numerical stability, as Section 5 will demonstrate. Note that in the definition of
the face stress, as explained above, linear interpolation from cell centers to cell faces
is applied to all terms except those that are proportional to velocity gradients gpru,
which are evaluated directly at the cell face in the spirit of Rhie and Chow. In the
Left-hand side of the discretized equation (14), only the convective contribution
(proportional to as0) and the term in s [the first term in Eqs. (3) and (6)] are subject
to the Rhie and Chow treatment. The central coefficient in the equation used to
define the face stresses [the denominator in Eq. (18)] needs to be ‘‘large’’ to promote
stability, and the inclusion of the latter term is justified in order to obtain a formu-
lation that is valid for Newtonian calculations.

3.2.3. Stress formulation T3. The last formulation consists of a drastic
simplification in which the stress components at the control-volume faces are
obtained simply by linear interpolation of stresses at the neighboring control
volumes. This formulation is thus defined by

ð esijsijÞf ¼ ðsijÞf ð21Þ
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3.3. Global Formulations Used in Practice

By combining the formulations for fluxes of Section 3.1 with the formulations
for the face stresses of Section 3.2, we would end up with a large number of global
formulations to be tested. In practice, only a few of them offer interesting results in
terms of Dt independence and robustness, and we shall concentrate on these. In
Table 1 we summarize the designation of the formulations effectively tested in the
current work and provide the respective theoretical time-step dependence.

The objective of the work was not to test various rheological models, and
therefore, as a matter of simplicity, most simulations carried out for the assessment
of the various formulations indicated in Table 1 will use the FENE-MCR model; the
new, modified formulation is the exception, and both rheological models, FENE-CR
and FENE-MCR, will be included in the assessment.

4. GEOMETRY, COMPUTATIONAL MESHES, AND ACCURACY TESTS

The numerical simulations were done under conditions similar to those of
Khodadadi et al. [17], with a T geometry (Figure 2) having a constant, rectangular
cross-sectional area, where the height of the channels is H¼ 0.01m. Owing to the
topology of the geometry, the computational mesh to map the calculation domain
was generated by blocks. In the present work the mesh was prepared from six struc-
tured blocks (B1–B6), as represented in Figure 2, and the coordinate axes are
centered in the bifurcation zone (block B2).

Boundary conditions encompassed one inlet, two outlets, and solid walls. Flow
inlet is through the left face of block 1 (B1) at x¼� 3.5H, where a parabolic velocity
profile is imposed having an average velocity of u1¼ 0.0745m=s. Outlets are located
at x¼ 22.5H (in block B5) and y¼ 20.5H (in block B6), where conditions of vanish-
ing axial variation were imposed for all quantities (i.e., q=qx¼ 0 in the horizontal
duct and q=qy¼ 0 in the vertical duct), except pressure, for which a constant gradient
was assumed, and the boundary value obtained by linear extrapolation from inside.
Outlet channel lengths are sufficiently long to avoid flow disturbances in the junction
region for the Reynolds number and extraction ratio tested, with L2¼ 22H and
L3¼ 20H as in [19]. The remaining boundary faces of the geometry correspond to
solid walls, where the no-slip boundary condition is imposed and the stresses are
obtained from local analytical expressions.

Following Khodadadi et al. [17], the flow rate ratio was set at b�Q3=Q1¼ 0.7,
where Q1, Q2, and Q3 are, respectively, the volumetric flow rates at the inlet, the
main branch outlet, and the secondary branch outlet, as represented in Figure 2.
Imposition of the flow rate ratio b constitutes an additional boundary condition

Table 1. Summary of the formulations tested

Formulation name

Formulation for the

convective fluxes

Formulation for

the cell-face stress

Time-step

dependence

Standard F2 T1 Yes

Modified F2 T2 No

Linear interpolation F2 T3 No
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in bifurcation flows that must be applied to guarantee a unique solution to the
governing equations. Simulations were carried out for a Newtonian fluid and three
viscoelastic fluids with Deborah numbers equal to 1, 2.5, and 5. The controlling
parameters are the Reynolds and the Deborah numbers, defined as

Re ¼ qu1H
g0

¼ 102 De ¼ ku1
H

ð22Þ

with fluid density q¼ 1,150 kg=m3 and viscosity g0¼ 0.0084 Pa � s. In the case of the
viscoelastic fluids, the ratio between solvent viscosity and total viscosity is 0.80, giv-
ing a solvent viscosity gs¼ 0.0067 Pa � s and a polymeric viscosity gp¼ 0.0017 Pa � s.

The mesh is orthogonal but nonuniform, with increased concentration of cells
near the bifurcation zone, where the stress gradients are expected to be higher. A
study of mesh convergence was based on three meshes having progressive degrees
of refinement. The coarsest mesh M1 has 3,200 control volumes, while the most
refined mesh M3 has 51,200 control volumes. In Table 2 we summarize the charac-
teristics of the intermediate mesh M2, with 12,800 control volumes, which is the base
mesh in this study because it provides adequate numerical accuracy. In order to have
consistent mesh refinement, the most refined mesh is obtained from the previous
mesh by doubling the number of cells along each direction and using the square root
of the corresponding expansion=contraction ratios inside each bock. With these con-
ditions, Richardson extrapolation technique can be applied directly, allowing calcu-
lation of the order of convergence of the method (p) and estimation of a more
accurate solution on the basis of the values obtained on meshes with three different

Figure 2. Schematic representation of the test section with illustrative streamline pattern (De¼ 0).
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refinement levels. The order of convergence of the method is given by [26]

p ¼ log ð/2h � /4hÞ=ð/h � /2hÞ½ �
log 2

ð23Þ

where / is a representative solution functional and 4h, 2h, and h are, respectively, the
characteristic spacing of meshes M1, M2, and M3 (their Dxmin). A more accurate,
extrapolated solution can be obtained through the expression [26]

/extr � /h þ eh ¼ /h þ
/h � /2h

2p � 1
ð24Þ

where eh is the estimated error on the most refined mesh (M3).
In Table 3, we summarize the discretization errors on the three meshes for

the calculation of the horizontal and vertical recirculation lengths, using the
modified formulation and the FENE-MCR constitutive model, for two cases:
De¼ 0 (Newtonian) and De¼ 2.5 (viscoelastic). A more accurate solution is also
given, estimated by extrapolation, and the order of convergence obtained with
Richardson’s technique is also provided. From the results in Table 3 we can verify
that the solution on the intermediate mesh M2 is close to the reference solution
obtained using Richardson’s extrapolation technique. We have therefore chosen
mesh M2 for the remaining simulations of the present work, in detriment of mesh
M3 due to the high CPU times involved with this most refined mesh.

Table 2. Main characteristics of the intermediate mesh M2

Block Number of cells NX�NY Size X Size Y rx ry

B1 40� 40 � 3.5!� 0.5 � 0.5!þ0.5 0.95260 1.00000

B2 40� 40 � 0.5!þ0.5 � 0.5!þ0.5 1.00000 1.00000

B3 100� 40 0.5! 12.5 � 0.5!þ0.5 1.02657 1.00000

B4 40� 100 � 0.5!þ0.5 0.5! 10.5 1.00000 1.02385

B5 20� 40 12.5! 22.5 � 0.5!þ0.5 1.06413 1.00000

B6 40� 20 � 0.5!þ0.5 10.5! 20.5 1.00000 1.06413

Table 3. Summary of the errors obtained with the various meshes using the Modified formulation

De¼ 0 De¼ 2.5

XL YL XL YL

Mesh M1 1.52410 1.90309 1.49743 1.73787

Mesh M2 1.53367 1.95232 1.47461 1.88648

Mesh M3 1.53475 1.96689 1.46957 1.94449

p 3.15 1.76 2.18 1.36

/extr 1.53489 1.97301 1.46814 1.98163

e4h (M1) 0.70% 3.54% 1.99% 12.3%

e2h (M2) 0.079% 1.05% 0.44% 4.80%

eh (M3) 0.0091% 0.31% 0.097% 1.87%
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5. RESULTS AND DISCUSSION

All results are given under nondimensional form, using as length scale the
channels height H (Y¼ y=H and X¼ x=H), as velocity scale the average velocity
of the inlet flow (u1), as stress scale the value of the wall shear stress at the inlet under
fully developed steady flow (sw1¼ 6g0u1=H), and as time scale the ratio H=u1.
Results related to the numerical formulations, namely, the Dt dependence and algor-
ithm robustness, are discussed first (Section 5.1), and then the physical aspects of the
results for viscoelastic flow in the T-junction are addressed (Section 5.2), in parti-
cular, the influence of elasticity on the size and intensity of the eddies and the stress
fields.

5.1. Assessment of Dt Dependence

Figures 3 and 4 give the predicted results for the lengths of the recirculating
eddies formed along the x and y directions, obtained from velocity profiles parallel
to the horizontal (Y¼� 0.5) and vertical (X¼� 0.5) walls, for the various formula-
tions and fluids considered. These figures illustrate the possible dependence of the
numerical solution on the time-step values. It is emphasized that the time steps Dt
are nondimensional (scaled with H=u1), and for the Newtonian case iterative conver-
gence can be achieved for quite large values of Dt (up to Dt� 5), a feature that may
be explained by the fully implicit nature of the solution algorithm.

Figure 3. Variation of the horizontal recirculation length with time-step size for the formulations tested.
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For the Newtonian case (De¼ 0), Figures 3 and 4 demonstrate that both the
horizontal (XL) and vertical (YL) recirculation lengths are independent of the Dt
employed, an expected outcome since the flux formulation F2 [Eq. (12)] is, theoreti-
cally, invariant with respect to Dt. No formulation reveals any limitation in terms of
Dt, a sign of robustness of the algorithm implementation, and simulations at higher
Dt are not shown due to the considerable CPU times involved. Formulations Stan-
dard and Modified (with either the CR or MCR rheological models) yield identical
results, as expected since the Modified formulation for the Newtonian case (k¼ 0)
simplifies, giving an equation identical to that for the Standard formulation under
the same conditions: Contrast Eqs. (16) and (17) with Eq. (18), after setting k¼ 0
and using the definition of asP from Eq. (15). We note that the Newtonian conditions
are simulated by setting gs¼ 0, gp¼g0, and k¼ 0.

For the viscoelastic cases, Figures 3 and 4 show recirculation lengths versus Dt
for three Deborah numbers, and it is possible to observe some Dt dependence of the
results with the Standard formulation; only for Dt tending to zero do the XL and YL

values tend to those predicted by the other formulations. Although the differences
between the extreme values predicted by the Standard formulation for the various
Dt are not that significant, being around 0.07% for XL and 0.2% for YL, it is still
a nuisance that is circumvented by the improved new formulation of Eq. (18). An
additional problem with the Standard formulation illustrated in these plots is that
convergence is only guaranteed for a small range of Dt: 0<Dt< 0.023. Both the
Modified and the Linear Interpolation formulations provide results independent

Figure 4. Variation of the vertical recirculation length with time-step size for the formulations tested.
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of Dt, as expected theoretically, and are able to provide results (that is, to achieve
iterative convergence) for a much wider range of time-step sizes: 0<Dt<Dtmax;
the maximum allowable time step (Dtmax) diminishes with Deborah number. This
is not unexpected, since viscoelastic flows are notoriously difficult to simulate suc-
cessfully (e.g., [24]), especially when singular points are present within the flow
domain (as the two corners at the entrance to the side branch in the T-junction
geometry) and the elasticity level, measured by De, is enhanced. For the
highest-elasticity case shown, De¼ 5, the Modified and Linear Interpolation formu-
lations converge up to identical time-step values, Dtmax¼ 0.17, and the maximum
variation between the vortex lengths predicted by those formulations is just
0.022% at De¼ 1 and 0.011% at De¼ 2.5.

Differences between the XL and YL values predicted by the two constitutive
models are slightly larger, as observed from Figures 3 and 4 for the MCR and CR
models (both cases with the Modified formulation), but are still small on account
of the similitude between those models: 0.14% in XL and 0.11% in YL at De¼ 1; these
rise to 0.12% in XL and 0.31% in YL at De¼ 5. A distinguishing feature between the
constitutive models is that the convergence range, in terms of Dt values for which
iterative converged solutions can be achieved, is smaller for the CR and tends to
become narrower as De is increased: at De¼ 2.5, convergence is possible in the range
0.03	Dt	 0.13; at De¼ 3.8, convergence was possible only for Dt� 0.08; and at lar-
ger De, numerical solutions for the CR model can no longer be achieved. Such
deterioration of robustness with the CR model and the increased inability to obtain
converged numerical results deserves further investigation in future studies.

A measure of robustness is provided by analyzing the number of iterations for
convergence, which is roughly proportional to the computer times, as a function of
the time-step size employed in the respective computations. These plots are shown in
Figure 5 for the Newtonian case (De¼ 0) and one viscoelastic case (De¼ 1). The
left-side plot, for the Newtonian flow, reveals the great difficulty of the Linear
Interpolation formulation to obtain a ‘‘converged’’ numerical solution: The number
of iterations required is much greater than for the other formulations, especially
when the latter work close to the optimum time-step point corresponding to a
minimum of iterations: Dtopt� 0.15.

Figure 5. Variation of the number of iterations with time-step size for all formulations tested (De¼ 0 and

De¼ 1).
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For the viscoelastic flow case, Figure 5 shows that the total number of itera-
tions necessary to obtain a numerical solution with the various formulations is simi-
lar, for all tested values of Dt, except the Standard formulation, which diverges at
rather small Dt. We have observed similar behavior for other cases with differing
values of Deborah number. Minimum values of the number of iterations occur at
approximately Dt� 0.15, for all Deborah numbers studied, including the Newtonian
case mentioned above. This value of Dt corresponds to a local Courant number
(c¼ u1Dt=Dxmin) of about c� 6, once again reflecting the benefits of the implicit
algorithm, allowing Courant numbers greater than unity and hence faster conver-
gence to steady state.

Figure 5 also shows that, contrary to the Newtonian case, the Linear Interp-
olation formulation does not seem to degrade the convergence rates. However, its
use can be problematic because it may produce physically unrealistic solutions (with
zigzag variation profiles) as reported in [1], and it is therefore not recommended in
spite of its simplicity.

5.2. Influence of Elasticity on the Bifurcation Flow

Figure 6 depicts the evolution of the size of the horizontal and vertical recircu-
lation eddies as a function of the Deborah number, for the formulations that are
independent of the time-step value (Dt). Those eddies are illustrated in the inset of
Figure 2, which shows the flow streamlines predicted with the Modified formulation
for the Newtonian case (De¼ 0). The two recirculation zones formed in the main and
secondary channels are reduced by about 5–6% (c.f. Figure 6) when the fluid is
endowed with viscoelastic properties, at identical values of Reynolds number
(Re¼ 102) and extraction ratio (b¼ 0.7).

From streamline plots for increasing De, not shown here for conciseness, we
can determine the minimum and maximum values of the stream function w
(u¼ qw=qy, v¼�qw=qx), which occur at the central points of the two recirculation
zones. Those values are related to the proportion of flow rate that recirculates inside
each recirculation bubble, and the variation of these recirculation intensities with the
Deborah number is shown in Figure 7, for the several formulations.

Figure 6. Variation of the horizontal (left) and vertical (right) recirculation lengths with Deborah number.
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Figures 6 and 7 provide the main quantitative data obtained from the simula-
tions, and from their analysis it is verified that both the length (YL) and the flow rate
inside the vertical recirculation (wV¼wmax� 1) tend to decrease with an increase of
Deborah number. Hence, the eddy in the side branch exhibits the usual suppression
of vortex activity brought about by elasticity in expansion flows [31]. On the other
hand, the horizontal recirculation presents a different and more complex behavior:
The length of the recirculation (XL) initially decreases quickly with an increase of
Deborah number, but then, after attaining a certain minimum size at De� 1, there
is an upturn and the vortex starts increasing with De, before decreasing again later,
for De& 3, at a slower rate. The variation of the flow inside this recirculation
presents nonmonotonic behavior too, akin to the XL-versus-De variation, presenting
an initial abrupt decrease with Deborah number, followed by a gradual increase up to
De� 3.5 and a slow decrease later. Such difference between the influence of elasticity
on the horizontal and vertical bubbles, in terms of both their size and strength, are
related to the extra degree of freedom introduced by the movable separation point of
the horizontal recirculation. At a middle range of Deborah numbers (De� 1� 3),
the point of flow separation slides upstream, allowing the recirculation in the main
channel to increase in both size and intensity.

Figure 8 shows contour plots of the shear stress field in the bifurcation zone.
This figure is for predictions corresponding to De¼ 1 obtained with the Modified

Figure 7. Variation of vortex intensity in the horizontal and vertical recirculation bubbles.

Figure 8. Contours of the shear stress component in the bifurcation zone for De¼ 1.
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formulation and the MCR constitutive model. It may be observed from Figure 8 that
the shear stresses inside the recirculation zones are generally very low, thus inducing
the possibility in corresponding blood flow of wall adhesion of platelets, red cells,
and lipoids, which in turn may result in the formation of atherosclerotic plaques
and thrombi. On the other hand, the zoomed detail in the right plot of Figure 8
shows the existence of very high (in modulus) shear stresses in localized regions close
to the reentrant corner (X¼Y¼þ0.5) and also at the wall in front of the vertical
recirculation eddy and before the horizontal recirculation eddy (Figure 8, left), where
the endothelium of the arteries may be damaged, thus eventually triggering vascular
disease (mechanism discussed by, e.g., [22]).

6. CONCLUSIONS

Numerical simulations were conducted for flow in a two-dimensional bifurca-
tion with Newtonian and non-Newtonian fluids in order to test several existing and a
newly developed formulation for the stress calculation at control volume faces.
These cell-face stresses are important to evaluate the forces acting on each control
volume, as a consequence of the stress-divergence term in the momentum equations,
and the new formulation produces results that are independent of the time-step value
used.

The results obtained in this study show that the proposed Modified formu-
lation, using the FENE-MCR constitutive equation, is the most versatile formu-
lation, for both Newtonian and non-Newtonian viscoelastic flows. For all, except
the Standard formulation, it was possible to obtain steady solutions independent of
the time step used, in agreement with theoretical analysis. In the case of the viscoelas-
tic flows, the formulation with Linear stress interpolation presented good results but,
for the Newtonian flow case, it exhibits non-negligible convergence difficulties.

The existence of high shear stresses was confirmed in the reentrant corners of the
bifurcation, as well as the existence of low shear stresses in the recirculation zones.

The new formulation proposed here for viscoelastic flows turned out to be less
versatile when applied in conjunction with the FENE-CR constitutive model than
with the MCR model; however, we think that the problems observed at high De
are most probably due to the onset of an elastic instability, typical of high-De flows.
Discrimination between rheological models was not the main objective of the present
study, and therefore that issue will be further investigated in the future. Nevertheless,
the Modified formulation proposed here is clearly more robust than the previous
Standard formulation and provides Dt-independent numerical solutions, thus repre-
senting an important improvement in viscoelastic flow computations.
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