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3 Instituto de Fı́sica Teórica, C-XVI, Universidad Autónoma de Madrid, E-28049-Madrid, Spain
4 IMAFF, CSIC, Calle de Serrano 113 bis, E-28006-Madrid, Spain
5 Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, Celestijnenlaan 200D
B-3001 Leuven, Belgium

Received 11 May 2001
Published 14 August 2001
Online at stacks.iop.org/CQG/17/3359

Abstract
We discuss a generalized form of IIA/IIB supergravity depending on all R–R
potentials C(p) (p = 0, 1, . . . , 9) as the effective field theory of type IIA/IIB
superstring theory. For the IIA case we explicitly break this R–R democracy to
either p � 3 or p � 5, which allows us to write a new bulk action that can be
coupled to N = 1 supersymmetric brane actions.

The case of eight-branes is studied in detail using the new bulk & brane
action. The supersymmetric negative-tension branes without matter excitations
can be viewed as orientifolds in the effective action. These D8-branes and
O8-planes are fundamental in type I′ string theory. A BPS eight-brane solution
is given which satisfies the jump conditions on the wall. It implies a quantization
of the mass parameter in string units. Also, we find a maximal distance between
the two walls, depending on the string coupling and the mass parameter. We
derive the same results via supersymmetric flow equations.

1. Introduction

The initial purpose of this work was to construct supersymmetric domain walls of string theory
inD = 10 which may shed some light on the stringy origin of the brane-world scenarios. In the
process of pursuing this goal we have realized that all descriptions of the effective field theory
of type I IA/B string theory available in the literature are inefficient for our purpose. This has
led us to introduce new versions of the effective supergravities corresponding to type IIA/B
string theory.

The standard IIA massless supergravity includes the C(1) and C(3) R–R potentials and
the corresponding G(2) and G(4) gauge-invariant R–R forms. Type IIB supergravity includes
the C(0), C(2) and C(4) R–R potentials and the corresponding G(1), G(3) and (self-dual) G(5)
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gauge-invariant R–R forms. On the other hand, string theory has all Dp-branes, odd and
even, including the exotic ones, like eight-branes in IIA and seven-branes in IIB theory. These
branes, of co-dimension 1 and 2, are special objects which are different in many respects from
the other BPS-extended objects like the p-branes with 0 � p � 6, which have co-dimension
greater than or equal to 3. The basic difference is in the behaviour of the form fields at large
distance, G(p+2) ∼ rp−8. For example, the G(10) R–R form of the eight-brane does not fall off
at infinity but takes a constant value there. It is believed that such extended objects cannot exist
independently but only in connection with orientifold planes [1]. However, the realization of
the total system in supergravity is rather obscure.

It was realized a while ago [2] that massive IIA supergravity, discovered by Romans [3],
was the key to understand the spacetime picture of the eight-branes, which are domain walls
in D = 10. A significant progress towards the understanding of the eight-brane solutions
was made in [4, 5], where the bulk supergravity solution was found. Also, in [5], the
description of the cosmological constant via a nine-form potential, based upon the work
of [6, 7], was discussed. In [8] a standard eight-brane action coupling to this nine-form
potential has been shown to be the appropriate source for the second Randall–Sundrum
scenario [9]. Solutions for the coupled bulk & brane action system automatically satisfy
the jump conditions and so they are consistent, at least from this point of view. A major
unsolved problem was to find an explicitly supersymmetric description of coupled bulk &
brane systems as in [10]. Such a description should allow us to find out some important
properties of the domain walls like the distance between the planes, the status of unbroken
supersymmetry in the bulk and on the brane, etc. We expect that realizing such a bulk & brane
construction will lead to a better insight into the fundamental nature of extended objects of
string theory.

The string backgrounds that we want to describe using an explicitly supersymmetric
bulk & brane action are one-dimensional orbifolds obtained by modding out the circle S1 by
a reflection Z2. The orbifold direction is the transverse direction of the branes that fill the
rest of the spacetime. Due to the orbifold S1/Z2 being a compact space, we cannot place a
single charged object (a D8-brane, say) in it, as we have to have at least two oppositely charged
objects. However, this kind of system cannot be in supersymmetric equilibrium unless their
tensions also have opposite signs. We are going to identify these negative-tension objects
with O8-planes and we will propose an O8-plane action to be coupled to the bulk supergravity
action. O8-planes can only sit at orbifold points because they require the spacetime to be mirror
symmetric in their transverse direction and, thus, they can sit in any of the two endpoints of
the segment S1/Z2. We are going to place the other (positive-tension, opposite R–R charge)
brane at the other endpoint. Clearly, we can, from the effective-action point of view, identify
the positive-tension brane as a combination of O8-planes and D8-branes with positive total
tension and the negative-tension brane as a combination of O8-planes and D8-branes with
negative total tension.

Our strategy will be to generalize the five-dimensional construction of the supersymmetric
bulk & brane action, proposed in [10]. The construction of [10] allowed us to find a super-
symmetric realization of the brane-world scenario of Randall and Sundrum [9]. We will repeat
the construction of [10] in D = 10 with the aim to get a better understanding of branes and
planes in string theory.

In order to solve the discrepancy between the bulk actions with limited field content (lower-
rank R–R forms) and the wide range of brane actions that involve all the possible R–R forms,
we have constructed a new formulation of IIA/IIB supergravity up to quartic order in fermions.
In particular, the new formulation gives an easy control over the exotic G(0) and G(10) R–R
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forms associated with the mass and cosmological constant6 of the D = 10 supergravity. This
in turn allows a clear study of the D8–O8 system describing a pair of supersymmetric domain
walls which are fundamental objects of the type I′ string theory. The quantization of the mass
parameter and cosmological constant in stringy units are simple consequences of the theory.
Apart from being a tool to understand the supersymmetric domain walls we were interested
in, it can be expected that the new effective theories of D = 10 supersymmetry will have more
general applications in the future.

This paper is organized as follows. First, in section 2 we discuss the new formulations
of D = 10 supersymmetry in the bulk. In section 2.1 we give a democratic formulation
based upon a pseudo-action along the lines of [11]. This formulation is the one that treats
all R–R potentials in a unified way, leading to the same equations of motion as have been
encountered basically in the coupling to D-branes in [12]. For the supersymmetric case, this
field content and equations of motion follow also from the superspace formulation of [13,14].
However, only a pseudo-action is available, whose equations of motion are supplemented
by duality constraints. It allows for a unified IIA/IIB treatment and has no Chern–Simons
terms. The constraints do not follow from the action and have to be imposed by hand.
These generalize the self-duality condition that relates the components of the five-form field
strength G(5) of type IIB theory to a set of relations between all Hodge dual field strengths.
In IIB this self-duality prevents the construction of a proper action. The same is true in this
formulation with a pseudo-action and generalized self-duality equations, for both type IIA
and IIB. In the IIA case, different field strengths are related by the constraints and hence the
R–R democracy can be broken without paying a price. In the IIB theory, things are more
complicated. The self-duality of G(5) prevents a similar construction. To allow for a proper
action one has to resort to a non-covariant formulation [15] or the auxiliary fields of Pasti
et al. [16].

In section 2.2 we break the self-duality for type IIA, and in this way are able to obtain a
supersymmetric proper action with potentials C(p), p = 5, 7, 9. The duality relations of the
first formulation also do not allow us to obtain the generalization of the mechanism of [10],
involving the replacement of the mass parameter G(0) by a field G(0)(x). Indeed, to do so we
need an independent nine-form auxiliary field. In the democratic formulation, its field strength
G(10) is related to G(0) itself. In the formulation of section 2.2, the breaking of the self-duality,
allowing at the same time an action, also has the setting to allow for a varying G(0)(x). We
will also see that the democratic formulation does not preserve a suitable Z2 symmetry that
played an important role in the mechanism of [10], in case that the mass parameter is non-zero.
Therefore, it is the formulation of section 2.2 that we will use for the bulk & eight-brane
construction. A first version of this formulation was given in [5]. In section 2.3 we obtain
the string-frame version of the standard Romans’ massive IIA supergravity in which the self-
duality is also broken but potentials C(p) with p = 1, 3 are kept.

Next, in section 3 we discuss the supersymmetry on the brane. The mechanism is the same
for all branes, but only the action of one brane is added, such that this breaks the democracy.
The supersymmetric bulk & brane construction for the D8–O8 system is discussed in section 4.
We propose a supersymmetric action for the O8-planes, which, together with 32 D8-branes,
allows us to reinterpret the set of positive- and negative-tension branes as a combination of
O8-planes with D8-branes. In section 5 we give the eight-brane solution and calculate the
corresponding Killing spinors. As an application of our results, we discuss in section 6 the
quantization of mass and the parameter representing the cosmological constant corresponding

6 In this paper, by cosmological constant we will mean the square of the mass parameter of the type IIA supergravity.
Strictly speaking it is not a cosmological constant because in the Einstein frame it carries a dilaton factor.
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to this system. Also, critical distances are discussed. In section 7 we give the BPS action for
the domain wall and investigate the supersymmetric flow equations. Finally, in section 8 we
give a summary of our results and a discussion. There are two appendices. In Appendix A
we give our conventions. In Appendix B we discuss the world-sheet T-duality between the
different brane systems.

2. Supersymmetry in the bulk

The standard formulation of D = 10 IIA (massless [17–19] and massive [3]) and IIB [20, 21]
supergravity has the following field content:

IIA:
{
gµν, Bµν, φ, C

(1)
µ , C(3)

µνρ, ψµ, λ
}
,

IIB:
{
gµν, Bµν, φ, C

(0), C(2)
µν , C

(4)
µνρσ , ψµ, λ

}
.

(1)

In the IIA case, the massive theory contains an additional mass parameter G(0) = m. In
the IIB case, an extra self-duality condition is imposed on the field strength of the four-
form. It turns out that one can realize the N = 2 supersymmetry on the R–R gauge fields
of higher rank as well. These are usually incorporated via the duality relations. To treat
the R–R potentials democratically, we propose in the next section a new formulation based
upon a pseudo-action. This democratic formulation describes the dynamics of the bulk
supergravity in the most elegant way. However, it turns out that this formulation is not
well suited for our purposes. For the IIA case, we therefore give a different formulation
in section 2.2, where the constant mass parameter has been replaced by a field. The relation
of this formulation with the standard IIA supergravity (with the above field content) will be
discussed in section 2.3.

2.1. The democratic formulation

In order to explicitly introduce the democracy among the R–R potentials, we propose a pseudo-
action containing all potentials. Of course, this enlarges the number of degrees of freedom.
Since p- and (8 − p)-form potentials carry the same number of degrees of freedom, the
introduction of the dual potentials doubles the R–R sector. Including the highest potential
C(9) in IIA does not alter this, since it carries no degrees of freedom. This nine-form potential
can be seen as the potential dual to the constant mass parameter G(0) = m. The doubling of
number of degrees of freedom will be taken care of by a constraint, relating the lower- and
higher-rank potentials. This new formulation of supersymmetry is inspired by the bosonic
construction of [22], and, in the case of IIB supergravity, is related to the pseudo-action
construction of [11].

A pseudo-action [11] can be used as a mnemonic to derive the equations of motion. It
differs from a usual action in the sense that not all equations of motion follow from varying the
fields in the pseudo-action. To obtain the complete set of equations of motion, an additional
constraint has to be substituted by hand into the set of equations of motion that follow from the
pseudo-action. The constraint itself does not follow from the pseudo-action. The construction
we present here generalizes the pseudo-action construction of [11, 22] in the sense that our
construction (i) treats the IIA and IIB cases in a unified way, introducing all R–R potentials in
the pseudo-action, and (ii) describes also the massive IIA cases via a nine-form potential C(9)

and a constant mass parameter G(0) = m.
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Our pseudo-action has the following extended field content:

IIA:
{
gµν, Bµν, φ, C

(1)
µ , C(3)

µνρ, C
(5)
µ···ρ, C

(7)
µ···ρ, C

(9)
µ···ρ, ψµ, λ

}
,

IIB:
{
gµν, Bµν, φ, C

(0), C(2)
µν , C

(4)
µ···ρ, C

(6)
µ···ρ, C

(8)
µ···ρ, ψµ, λ

}
.

(2)

It is understood that in the IIA case the fermions contain both chiralities, while in the IIB case
they satisfy

�11ψµ = ψµ, �11λ = −λ. (3)

In that case they are doublets, and we suppress the corresponding index. The explicit form of
the pseudo-action is given by7

SPseudo = − 1

2κ2
10

∫
d10x

√−g

{
e−2φ

[
R

(
ω(e)

) − 4
(
∂φ

)2
+

1

2
H · H − 2∂µφχ(1)

µ + H · χ(3)

+ 2ψ̄µ�
µνρ∇νψρ − 2λ̄�µ∇µλ + 4λ̄�µν∇µψν

]

+
5,9/2∑

n=0,1/2

1

4
G(2n) · G(2n) +

1

2
G(2n) · !(2n)

}
+ quartic fermionic terms. (4)

It is understood that the summation in the above pseudo-action is over integers (n = 0, 1, . . . , 5)
in the IIA case and over half-integers (n = 1/2, 3/2, . . . , 9/2) in the IIB case. In the summation
range, we always first indicate the lowest value for the IIA case, before the one for the IIB
case. Furthermore,

1

2κ2
10

= g2

2κ2
= 2π

(2π#s)8
, (5)

where κ2 is the physical gravitational coupling, g is the string coupling constant and #s = √
α′

is the string length. For notational convenience we group all potentials and field strengths in
the formal sums

G =
5,9/2∑

n=0,1/2

G(2n), C =
5,9/2∑

n=1,1/2

C(2n−1). (6)

The bosonic field strengths are given by8

H = dB, G = dC − dB∧C + G(0)eB, (10)

7 We partly use the form notation. For our conventions, see Appendix A.
8 There is an alternative basis for the R–R potentials that we can call ‘A-basis’ and can be useful in certain contexts.
This basis is related to the ‘C-basis’ just defined by

A = C∧e−B, (7)

with the following gauge transformations

δA = dΛ − G(0)' − A∧d', (8)

and, in it, the above R–R field strengths are written as follows:

G =
(
dA + G(0)

)
∧eB. (9)

The two main properties of this basis are that, in it, the R–R potentials appear only in the field strengths through their
derivatives (field strengths) and the standard Wess–Zumino term of the Dp-brane actions does not contain the NS–NS
two-form B. In the type IIB action written in this basis, the invariance under constant shifts of the R–R scalar (axion)
is manifest. It is the existence of this basis that makes the Scherk–Schwarz generalized dimensional reduction of
reference [5].
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where it is understood that each equation involves only one term from the formal sums (6)
(only the relevant combinations are extracted). The corresponding Bianchi identities then read

dH = 0, dG − H ∧G = 0. (11)

In this section G(0) = m indicates the constant mass parameter of IIA supergravity. In the IIB
theory all equations should be read with vanishing G(0). The spin connection in the covariant
derivative ∇µ is given by its zehnbein part: ω ab

µ = ω ab
µ (e). The bosonic fields couple to the

fermions via the bilinears χ(1,3) and !(2n), which read:

χ(1)
µ = −2ψ̄ν�

νψµ − 2λ̄�ν�µψν,

χ(3)
µνρ = 1

2 ψ̄α�
[α�µνρ�

β]Pψβ + λ̄�µνρ
βPψβ − 1

2 λ̄P�µνρλ,

!(2n)
µ1···µ2n

= 1
2 e−φψ̄α�

[α�µ1···µ2n�
β]Pnψβ + 1

2 e−φλ̄�µ1···µ2n�
βPnψβ

− 1
4 e−φλ̄�[µ1···µ2n−1Pn�µ2n]λ.

(12)

We have used the following definitions:

P = �11 (IIA) or − σ 3 (IIB),

Pn = (�11)
n (IIA) or σ 1

(
n + 1

2 even
)
, iσ 2

(
n + 1

2 odd
)
(IIB). (13)

Note that the fermions satisfy

!(2n) = (−)Int[n]+1 + !(10−2n), (14)

due to the �-matrices identity (A.7).
Due to the appearance of all R–R potentials, the number of degrees of freedom in the R–R

sector has been doubled. Each R–R potential leads to a corresponding equation of motion:

d + (G(2n) + !(2n)) + H ∧ + (G(2n+2) + !(2n+2)) = 0. (15)

Now, one must relate the different potentials to get the correct number of degrees of freedom.
We therefore impose the duality relations

G(2n) + !(2n) = (−)Int[n] + G(10−2n), (16)

in the equations of motion that follow from the pseudo-action (4). It is in this sense that
the action (4) cannot be considered as a true action. Instead, it should be considered as a
mnemonic to obtain the full equations of motion of the theory. As usual, the Bianchi identities
and equations of motions of the dual potentials correspond to each other when employing the
duality relation. For the above reason, the democratic formulation can be viewed as self-dual,
since (16) places constraints relating the field content (2).

The pseudo-action (4) is invariant under supersymmetry provided we impose the duality
relations (16) after varying the action. The supersymmetry rules read (here given modulo cubic
fermion terms):

δεeµ
a = ε̄�aψµ,

δεψµ =
(
∂µ +

1

4

ωµ +

1

8
P 
Hµ

)
ε +

1

16
eφ

5,9/2∑
n=0,1/2

1

(2n)!

G(2n)�µPnε,

δεBµν = −2ε̄�[µPψν],

δεC
(2n−1)
µ1···µ2n−1

= −e−φε̄�[µ1···µ2n−2Pn

(
(2n − 1)ψµ2n−1] − 1

2
�µ2n−1]λ

)
(17)

+(n − 1)(2n − 1)C(2n−3)
[µ1···µ2n−3

δεBµ2n−2µ2n−1],

δελ =
(

∂φ +

1

12

HP

)
ε +

1

8
eφ

5,9/2∑
n=0,1/2

(−)2n 5 − 2n

(2n)!

G(2n)Pnε,

δεφ = 1
2 ε̄λ,
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where ε is a spinor similar to ψµ, i.e. in IIB: �11ε = ε. Note that for n half-integer (the IIB
case) these supersymmetry rules exactly reproduce the rules given in equation (1) of [23].

Second, the pseudo-action (4) is also invariant under the usual bosonic NS–NS and R–R
gauge symmetries with parameters ' and '(2n), respectively:

δ'B = d', δ'C = (dΛ − G(0)')∧eB, with Λ =
4,7/2∑

n=0,1/2

'(2n). (18)

Finally, there is a number of Z2-symmetries. However, in the IIA case these Z2-symmetries
are valid only for G(0) = m = 0. The world-sheet form of these symmetries is given in
Appendix B. Below we show how these symmetries of the action act on supergravity fields.
For both massless IIA and IIB there is a fermion-number symmetry (−)FL given by{

φ, gµν, Bµν

} → {
φ, gµν, Bµν

}
,{

C(2n−1)
µ1···µ2n−1

} → −{
C(2n−1)
µ1···µ2n−1

}
,{

ψµ, λ, ε
} → +P{

ψµ,−λ, ε
}

(IIA){
ψµ, λ, ε

} → +P{
ψµ, λ, ε

}
(IIB) (19)

In the IIB case there is an additional world-sheet parity symmetry . given by{
φ, gµν, Bµν

} → {
φ, gµν,−Bµν

}
,{

C(2n−1)
µ1···µ2n−1

} → (−)n+1/2
{
C(2n−1)
µ1···µ2n−1

}
,{

ψµ, λ, ε
} → σ 1

{
ψµ, λ, ε

}
. (20)

In the massless IIA case there is a similar I9.-symmetry involving an additional parity
transformation in the 9-direction. Writing µ = (µ, 9̇), the rules are given by

x 9̇ → −x 9̇,{
φ, gµ ν, Bµ ν

} → {
φ, gµ ν,−Bµν

}
,{

C(2n−1)
µ1···µ2n−1

} → (−)n+1
{
C(2n−1)
µ1···µ2n−1

}
,{

ψµ, λ, ε
} → +�9

{
ψµ,−λ, ε

}
. (21)

The parity of the fields with one or more indices in the 9̇-direction is given by the rule that
every index in the 9̇-direction gives an extra minus sign compared to the above rules.

In both IIA and IIB there is also the obvious symmetry of interchanging all fermions by
minus the fermions, leaving the bosons invariant.

The Z2-symmetries are used for the construction of superstring theories with 16
supercharges, see [24]. The factor (−)FL gives a projection to theE8 ×E8 heterotic superstring
(IIA) or the SO(32) heterotic superstring theory (IIB). . is used to reduce the IIB theory
to the SO(32) type I superstring, while the I9.-symmetry reduces the IIA theory to the
type I′ SO(16) × SO(16) superstring theory.

One might wonder at the advantages of the generalized pseudo-action (4) above the
standard supergravity formulation. At the cost of an extra duality relation we were able to
realize the R–R democracy in the action. Note that only kinetic terms are present; by allowing
for a larger field content, the Chern–Simons term is eliminated. Under T-duality all kinetic
terms are easily seen to transform into each other [25]. The same remark holds for the duality
constraints. This formulation is elegant and comprises all potentials. However, it is impossible
to construct a proper action in this formulation due to the doubling of the degrees of freedom.
Therefore, to add brane actions to the bulk system, the democratic formulation is not suitable.
This is due to two reasons. First, the I9. symmetry is valid only for G(0) = 0, but we will
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need this symmetry in our construction of the bulk & 8-brane system. Second, to describe a
charged domain wall, we would like to have opposite values for G(0) at the two sides of the
domain wall, i.e. we want to allow for a mass parameter that is only piecewise constant. The
R–R democracy has to be broken to accommodate an action and this will be discussed in the
following two sections.

2.2. The dual formulation of IIA

We will present here the new dual formulation with action, available for the IIA case only. A
proper action will be constructed in this formulation. It is this formulation that we will apply
in our construction of the bulk and brane system. We will call this the dual formulation and
explain why in the next subsection.

The independent fields in this formulation are{
eaµ, Bµν, φ,G

(0), G(2)
µν ,G

(4)
µ1···µ4

, A(5)
µ1···µ5

, A(7)
µ1···µ7

, A(9)
µ1···µ9

, ψµ, λ
}
. (22)

The bulk action reads

Sbulk = − 1

2κ2
10

∫
d10x

√−g
{

e−2φ
[
R

(
ω(e)

) − 4
(
∂φ

)2
+ 1

2H · H − 2∂µφχ(1)
µ + H · χ(3)

+ 2ψ̄µ�
µνρ∇νψρ − 2λ̄�µ∇µλ + 4λ̄�µν∇µψν

]
+

∑
n=0,1,2

1
2G

(2n) · G(2n) + G(2n) · !(2n)

− +
[

1
2G

(4)G(4)B − 1
2G

(2)G(4)B2 + 1
6G

(2)2B3 + 1
6G

(0)G(4)B3 − 1
8G

(0)G(2)B4

+ 1
40G

(0)2B5 + e−BGd(A(5) − A(7) + A(9))
]}

+ quartic fermionic terms, (23)

where all ∧’s have been omitted in the last two lines. In the last term a projection on the 10-form
is understood. Here G is defined as in (6) but where G(0), G(2) and G(4) are now independent
fields (which we will call black boxes) and are no longer given by (10). Note that their Bianchi
identities are imposed by the Lagrange multipliers A(9), A(7) and A(5). The NS–NS three-form
field strength is given by (10).

The symmetries of the action are similar to those of the democratic formulation with some
small changes. In the supersymmetry transformations of gravitino and gaugino, the sums now
extend only over n = 0, 1, 2:

δεeµ
a = ε̄�aψµ,

δεψµ =
(
∂µ +

1

4

ωµ +

1

8
�11 
Hµ

)
ε +

1

8
eφ

∑
n=0,1,2

1

(2n)!

G(2n)�µ(�11)

nε,

δεBµν = −2ε̄�[µ�11ψν],

δελ =
(

∂φ − 1

12
�11 
H

)
ε +

1

4
eφ

∑
n=0,1,2

5 − 2n

(2n)!

G(2n)(�11)

nε, (24)

δεφ = 1
2 ε̄λ,

δεA = e−B∧E,

δεG = dE + G∧δεB − H ∧E,

with E(2n−1)
µ1···µ2n−1

≡ −e−φε̄�[µ1···µ2n−2(�11)
n
(
(2n − 1)ψµ2n−1] − 1

2�µ2n−1]λ
)
.

The transformation of the black boxes G follow from the requirement that e−BG transforms
into a total derivative. Here the formal sums

A =
5∑

n=1

A(2n−1), E =
5∑

n=1

E(2n−1), G =
5∑

n=0

G(2n), (25)
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have been used. Note that the first formal sum in (25) contains fields A(1) and A(3) that do
not occur in the action. The same applies to G, which contains the extra fields G(6), G(8) and
G(10). Although these fields do not occur in the action, one can nevertheless show that the
supersymmetry algebra is realized on them. To do so, one must use the supersymmetry rules
of (25) and the equations of motion that follow from the action (23).

The gauge symmetries with parameters ' and '(2n) are

δ'B = d', δ'A = dΛ − G(0)' − d'∧A,
δ'G = d'∧

(
G − eB∧(dA + G(0))

)
+ eB∧'∧dG(0).

(26)

Note that, with respect to the R–R gauge symmetry, the A potentials transform as a total
derivative while the black boxes are invariant.

Finally, there are Z2-symmetries, (−)FL and I9., which leave the action invariant. In
contrast to the democratic formulation, these two Z2-symmetries are valid symmetries even
for G(0) 
= 0. The (−)FL -symmetry is given by{

φ, gµν, Bµν

} → {
φ, gµν, Bµν

}
,{

G(2n)
µ1···µ2n

, A(2n−1)
µ1···µ2n−1

} → −{
G(2n)

µ1···µ2n
, A(2n−1)

µ1···µ2n−1

}
,{

ψµ, λ, ε
} → +�11

{
ψµ,−λ, ε

}
, (27)

while the second I9.-symmetry reads:

x9 → −x9,{
φ, gµ ν, Bµ ν

} → {
φ, gµ ν,−Bµν

}
,{

G(2n)
µ1···µ2n

, A(2n−1)
µ1···µ2n−1

} → (−)n+1
{
G(2n)

µ1···µ2n
, A(2n−1)

µ1···µ2n−1

}
,{

ψµ, λ, ε
} → +�9

{
ψµ,−λ, ε

}
. (28)

2.3. The standard formulation of IIA

Our dual action (23) can be reduced to the string-frame version of the standard formulation of
massive IIA supergravity (originally written in Einstein frame in [3]). Here we will show how
to go from one formulation to the other.

Consider the field equations for the A(5), A(7) and A(9) potentials given by

d(e−B∧G) = 0. (29)

The most general solutions can be written in the form

e−B∧G = dA + Gflux, (30)

or, explicitly,

G(0) = G
(0)
flux, G(2) = dA(1) + G(0)B + G

(2)
flux,

G(4) = dA(3) + G(2)∧B − 1
2G

(0)B∧B + G
(4)
flux. (31)

The Gflux are cohomological solutions. If there is full ten-dimensional Lorentz symmetry, then
only G

(0)
flux can be non-zero and is a constant, which is the mass parameter m in the theory of

Romans. We will generally consider this situation. However, before proceeding, we can remark
that we could consider that constant fluxes G(2)

flux and G
(4)
flux are present in our configuration in

addition to m and only four-dimensional Lorentz symmetry is preserved (e.g. [26, 27]). See
section 8 for more comments.

From now on we restrict ourselves to

G
(0)
flux = m, G

(2)
flux = G

(4)
flux = 0. (32)
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Substituting these solutions in the bulk action (23), we obtain a theory without black boxes but
with a mass parameter and a one- and a three-form. Note that this is the same field content (1)
as the massive theory of Romans. A close inspection of the action reveals that, in fact, we are
dealing with the standard Romans theory written in the A-basis introduced in (7).

Note that, as we have already remarked, A = C∧e−B is exactly the combination that occurs
in the Wess–Zumino terms of D-brane actions, with the world-volume fields set equal to zero.

In the C-basis, the standard formulation has the action

Sbulk = − 1

2κ2
10

∫
d10x

√−g
{

e−2φ
[
R

(
ω(e)

) − 4
(
∂φ

)2
+ 1

2H · H − 2∂µφχ(1)
µ + H · χ(3)

+ 2ψ̄µ�
µνρ∇νψρ − 2λ̄�µ∇µλ + 4λ̄�µν∇µψν

]
+

∑
n=0,1,2

1
2G

(2n) · G(2n) + G(2n) · !(2n)

− +
[

1
2dC

(3)dC(3)B + 1
6G

(0)dC(3)B3 + 1
40G

(0)2B5
]}

+ quartic fermionic terms, (33)

where all ∧’s have been omitted in the last line. Here all field strengths G(2n) are given by (10)
and G(0) is constant. Note that the six Chern–Simons terms in (23) can be written in only
three terms when the G(2n)’s are field strengths. The standard IIA action is invariant under the
N = 2 supersymmetry rules:

δεeµ
a = ε̄�aψµ,

δεψµ =
(
∂µ +

1

4

ωµ +

1

8
�11 
Hµ

)
ε +

1

8
eφ

∑
n=0,1,2

1

(2n)!

G(2n)�µ(�11)

nε,

δεBµν = −2ε̄�[µ�11ψν],

δεC
(2n−1)
µ1···µ2n−1

= −e−φε̄�[µ1···µ2n−2(�11)
n
(
(2n − 1)ψµ2n−1] − 1

2
�µ2n−1]λ

)
(34)

+ (n − 1)(2n − 1)C(2n−3)
[µ1···µ2n−3

δεBµ2n−2µ2n−1],

δελ =
(

∂φ +

1

12

H�11

)
ε +

1

4
eφ

∑
n=0,1,2

5 − 2n

(2n)!

G(2n)(�11)

nε,

δεφ = 1
2 ε̄λ,

and the gauge transformations (18). Also the Z2-symmetries (19) and (21) are valid but only
for vanishing mass.

The dual formulation of section 2.2 can thus be converted to the standard formulation.
But it is also possible to revert this: Romans’ theory can be used to derive (23). To do so,
one must perform the first step in the dualization of the one- and three-form. That is, the field
strengths are promoted to black boxes and their Bianchi identities are imposed by Lagrange
multipliers, considering G(0) as a zero-form field strength. The full dualization then implies
the elimination of the black boxes by solving their equations of motion. Performing only the
first step leads to the action (23). It is for this reason that we call it the dual formulation.

Thus, we have three different formulations of one theory at our disposal. The democratic
formulation comprises all potentials but cannot be used to add brane actions since it has no
proper action. The standard formulation does have a proper action, containing C(1) and C(3),
and thus is suitable for the zero- and two-branes. The dual action has the dual potentials
A(5), A(7) and A(9), accommodating for the four-, six- and eight-branes. With the latter two
formulations we have set the stage for the addition of brane actions of any (even) dimension
as long as we do not simultaneously add higher- and lower-dimensional branes.
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3. Supersymmetry on the brane

Having established supersymmetry in the bulk, we now turn to supersymmetry on the brane. As
mentioned in the introduction, our main interest is in one-dimensional orbifold constructions
with eight-branes at the orbifold points. Using the techniques of the three-brane on the orbifold
in five dimensions [10], we want to construct an orientifold using a Z2-symmetry of the bulk
action. On the fixed points we insert brane actions, which will turn out to be invariant under
the reduced (N = 1) supersymmetry. For the moment, we will not restrict to domain walls (in
this case eight-branes) since our brane analysis is similar for orientifolds of lower dimension.
In section 2 we have seen that our bulk action possesses a number of symmetries, among which
a parity operation. To construct an orientifold, the relevant Z2-symmetry must contain parity
operations in the transverse directions. Furthermore, in order to construct a charged domain
wall, we want for a p-brane the (p + 1)-form R–R potential to be even. For the eight-brane the
I9. symmetry satisfies the desired properties. For the other p-branes, it would seem natural
to use the Z2-symmetry

I9,8,...,p+1. ≡ (I9.)(I8.) · · · (Ip+1.), (35)

where Iq. is the transformation (21) with 9 replaced by q, and Iq and . commute. However,
for some p-branes (p = 2, 3, 6, 7) the corresponding C((p+1)) R–R potential is odd under this
Z2-symmetry. To obtain the correct parity, one must include an extra (−)FL transformation in
these cases, which also follows from T-duality [28], see Appendix B. For each p-brane this
leads to the Z2-symmetry indicated in table 1.

Table 1. The Z2-symmetries used in the orientifold construction of an Op-plane. The T-duality
transformation from IIA to IIB in the lower dimension induces, each time, a factor of (−)FL .

p IIB IIA

9 . —
8 — I9.

7 (−)FL I9,8. —
6 — (−)FL I9,8,7.

5 I9,8,...,6. —
4 — I9,8,...,5.

3 (−)FL I9,8,...,4. —
2 — (−)FL I9,8,...,3.

1 I9,8,...,2. —
0 — I9,8,...,1.

Thus, the correct Z2-symmetry for a general IIA Op-plane is given by

((−)FL)p/2I9,8,...,p+1.. (36)

The effect of this Z2-symmetry on the bulk fields reads (the underlined indices refer to the
world-volume directions, i.e. µ = (µ, p + 1, . . . , 9):{

xp+1, . . . , x9
} → −{

xp+1, . . . , x9
}
,{

φ, gµ ν, Bµ ν

} → {
φ, gµ ν,−Bµν

}
,{

A(5)
µ1···µ5

, A(9)
µ1···µ9

,G(2)
µ ν

} → (−)p/2
{
A(5)
µ1···µ5

, A(9)
µ1···µ9

,G(2)
µ ν

}
,{

A(7)
µ1···µ7

,G(0), G(4)
µ1···µ4

} → (−)(p/2)+1
{
A(7)
µ1···µ7

,G(0), G(4)
µ1···µ4

}
,{

ψµ, ε
} → −α�p+1···9(−�11)

p/2
{
ψµ, ε

}
,{

λ
} → +α�p+1···9(+�11)

p/2
{
λ
}
,

(37)
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and, for fields with other indices, there is an extra minus sign for each replacement of a world-
volume index µ by an index in a transverse direction. We have left open the possibility of
combining the symmetry with the sign change of all fermions. This possibility introduces a
numberα = ±1 in the above rules. This symmetry will be used for the orientifold construction.

For this purpose, we choose spacetime to be Mp+1 × T 9−p with radii Rµ̄ of the torus that
may depend on the world-volume coordinates. All fields satisfy

5(xµ̄) = 5(xµ̄ + 2πRµ̄), (38)

with µ̄ = (p + 1, . . . , 9). We only keep fields that are even under the appropriate parity
symmetry (36). In the bulk this relates fields at xµ̄ and −xµ̄. At the fixed point of the
orientifolds, however, this relation is local and projects out half the fields. This means that
we are left with only N = 1 supersymmetry on the fixed points, where the branes will be
inserted. Consider, for example, a nine-dimensional orientifold. The projection truncates our
bulkN = 2 supersymmetry toN = 1 on the brane; only half of the 32 components of ε are even
under (37). The original field content, a D = 10, (128 + 128), N = 2 supergravity multiplet,
gets truncated on the brane to a reducible D = 9, (64 + 64), N = 1 theory consisting of a
supergravity plus a vector multiplet. One may further restrict to a constant torus. This particular
choice of spacetime then projects out anN = 1 (8+8) vector multiplet (containing e9̇

9), leaving
us with the irreducibleD = 9, (56+56),N = 1 supergravity multiplet. Similar truncations are
possible in lower-dimensional orientifolds, on which the (64 + 64) N = 1 theory also consists
of a number of multiplets.

We propose the p-brane action (p = 0, 2, 4, 6, 8) to be proportional to

Lp = −e−φ
√−g(p+1) − α 1

(p+1) !ε
(p+1)C(p+1),

with ε(p+1)C(p+1) ≡ ε(p+1)
µ0···µp

C(p+1)µ0···µp , (39)

with ε
(p+1) µ0···µp = ε

(10) µ0···µp
˙p+1···9̇, which follows from eµ

ā = 0 (being odd). Here the
underlined indices are (p + 1)-dimensional and refer to the world-volume. The parameter α
is the same that appears in (37) and takes the values α = +1 for branes, which are defined to
have tension and charge with the same sign in our conventions, and α = −1 for anti-branes,
which are defined to have tension and charge of opposite signs. Note that, due to the vanishing
of B on the brane, the potentials C(p+1) and A(p+1) are equal. The p-brane action can easily
be shown to be invariant under the appropriate N = 1 supersymmetry:

δεLp = −e−φ
√−g(p+1)ε̄

(
1 − α�p+1···9(�11)

p/2
)
�µ

(
ψµ − 1

18�µλ
)
. (40)

The above variation vanishes due to the projection under (37) that selects branes or anti-branes
depending on the sign of α (+1 or −1, respectively). In the following discussions, we will
assume α = 1 but the other case just amounts to replacing branes by anti-branes.

By truncating our theory we are able to construct a brane action that consists only of
bosons and yet is separately supersymmetric. We can then introduce source terms for the
various potentials. In general, there are 29−p fixed points. The compactness of the transverse
space implies that the total charge must vanish. Thus, the total action reads:

L = Lbulk + kpLp8p, with

8p ≡ (
δ(xp+1) − δ(xp+1 − πRp+1)

) · · · (δ(x9) − δ(x9 − πR9)
)
, (41)

where the branes at all fixed points have a tension and a charge proportional to ±kp, a parameter
of dimension 1/[length]p+1. Since anti-branes do not satisfy the supersymmetry condition (40),
we need both positive- and negative-tension branes to accomplish vanishing total charge. As
explained in the introduction, we interpret the negative-tension branes as O-planes.
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The equations of motion following from (41) induce a δ-function in the Bianchi identity
of the (8 −p)-form field strength. In general, an elegant solution is difficult to find, but in one
special case the situation simplifies. This is the eight-brane case and will be discussed in the
next section.

However, let us first notice another possibility. With the above choice of spacetime,
Mp+1 × (T 9−p/Z2), one can place the branes only at the fixed points without breaking all
supersymmetry. However, making the identification

xµ̄ ∼ −xµ̄, (42)

the projection under (37) would be local everywhere. The odd fields would not only vanish
on the fixed points but in all spacetime. Thus, the action (39) would be invariant everywhere
and the branes would be allowed in between the fixed points. Note that not only on the fixed
points but also in the bulk, only N = 1 supersymmetry would survive the modding out of the
Z2-symmetry. We will not consider this choice of spacetime.

4. Supersymmetry of the D8–O8 system

Mimicking the set-up of the five-dimensional case, we have now set the stage to add eight-
brane actions. Replacing the mass parameter by a field G(0) at the cost of a nine-form A(9),
our bulk action has two Z2-symmetries. The one involving parity will be used to truncate our
N = 2 theory to N = 1 on the fixed points. The addition of brane actions will modify the
equation of motion of the nine-form: G(0) only has to be constant between the branes.

First we choose our spacetime to be M9 × S1. All fields satisfy 5(x9) = 5(x9 + 2πR),
with R = R(xµ) as the radius of S1. Furthermore, the fields can be split up into even and
odd under I9.. Modding out this Z2-symmetry, the odd fields vanish on the fixed points
x9 = 0 and x9 = πR ≡ −πR of the orientifold, where we will put the branes. Using the
parity symmetry, and taking a constant radius for the circle, the D = 10, (128 + 128), N = 2
supergravity multiplet gets truncated on the brane to a reducible D = 9, (56 + 56), N = 1
supergravity (see section 3).

We start with the nine-dimensional eight-brane action placed at x9 = 0:

(SD8)x9=0 = µ8

∫
d10x L8δ(x

9) = −τ8gs

∫
d10x{e−φ

√−g(9) + α 1
9!ε

(9)C(9)}δ(x9), (43)

with ε(9)µ0···µ8 ≡ ε(10)µ0···µ89̇ and
√−g(9) = √−g(10), where we use that e 9

µ = 0 (being odd).
The overall constant µ8 is related to the ‘physical’ tension τ8 as follows:

µ8 = τ8gs = 2π

(2π#s)9
. (44)

The underlined indices are nine-dimensional in this section.
In this paper we assume that there is no matter on the branes. Thus, we describe the vacuum

solution of the D-brane system, switching off the excitations on the branes. As discussed in the
introduction, for the total charge to vanish while maintaining supersymmetric equilibrium, one
needs negative-tension branes rather than anti-branes. We associate the negative-tension branes
to orientifold(O)-planes. We suggest the following action of the supersymmetric O8-plane at
x9 = 0:

(SO8)x9=0 = 16τ8gs

∫
d10x{e−φ

√−g(9) + α 1
9!ε

(9)C(9)}δ(x9). (45)

Each plane has a charge −16 and thus we may associate this object with 16 negative-tension
D8-branes without matter. Both brane and plane actions satisfy the supersymmetry condition
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(40). We would like to stress that supersymmetry of the brane action tells us to always use
the same value of α, the relative sign between the kinetic and the WZ term independently
of the sign in front of the total brane action. Thus, we are left with only D-branes and
O-planes.

There are two ways to interpret our complete effective action. In the first picture it consists
of the bulk and branes with positive and negative tensions. In the alternative picture we have
two O-planes as well as a number of D-branes at each plane.

(i) First picture: positive- and negative-tension branes. In analogy with the
supersymmetric RS construction in D = 5 [10], we may first consider the complete action for
the IIA theory in the bulk with 2k coincident positive-tension branes placed at x9 = 0 and 2k
coincident negative-tension branes placed at x9 = πR:

S1 = Sbulk + 2k(SD8)x9=0 − 2k(SD8)x9=πR. (46)

Here k is an arbitrary integer. We take 2k branes with positive tension and 2k branes with
negative tension to have a simple relation of this picture with the orientifold construction where
one counts branes and their images, so that the total number is even.

(ii) Alternative interpretation: planes & branes. Following [4], we consider O8-planes
at the fixed points x9 = 0 and x9 = πR = −πR and they carry the eight-brane charge
of −16 each. The theory of type IIA supergravity under orientifold truncation would be
inconsistent unless an SO(32) gauge multiplet appears in the theory. This means that between
these O-planes we have to place 32 D8-branes. This is the effective action of type I′ string
theory. It is T-dual to type I string theory, which is obtained by modding the IIB theory with
the Z2-symmetry .; see (20). This also explains the origin of the 32 D8-branes: the type I
gauge group SO(32) can be seen to come from 32 unoriented (spacetime filling) D9-branes
and performing T-duality yields the 32 D8-branes [29].

In general, these D8-branes can move between the O8-planes. However, we will only
place them at the fixed points. At the point x9 = 0, we have an O8-plane which contributes
−16 to 2k in (46) and we have a stack of 2n D8-branes there also; thus, 2k = 2(n − 8).
At the second fixed point of the orientifold we have −16 from the O8-plane and 2(16 − n)

from the stack of D8-branes so that −2k = −2[8 − (16 − n)] = −2(n − 8). This means
that, at x9 = 0 for n > 8, there will be an effective action of the positive-tension branes.
At πR, for n > 8 there will be an effective action of the negative-tension branes. The total
action is

S2 = Sbulk + (SO8 + 2nSD8)x9=0 + (SO8 + 2(16 − n)SD8)x9=πR. (47)

The two actions are equal for the special choice k = n − 8:

S1 = S2 = Sbulk + O8 + D8: k = n − 8. (48)

It also follows that if, at x9 = 0, we want to have the total tension from branes and planes
positive, i.e. k > 0, there is a restriction n � 8, so that

8 � n � 16. (49)

5. Eight-brane solution and Killing spinors

The total effective action (47) is given by the bulk action and an O8-plane and 2n D8-branes
at x9 = 0 and an O8-plane and 32 − 2n D8-branes at πR. To analyse its equations of motion,
we will only keep the fields participating in D8–O8 dynamics: the metric, the dilaton, and
the zero-form field strength and the nine-form potential. Thus, our starting point will be the
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following bulk, brane and plane supersymmetric action:

Sbulk+O8+D8 = 2π

(2π#s)8

[∫
d10x −

√
|g|

{
e−2φ

[
R − 4 (∂φ)2

]
+

1

2

(
G(0)

)2 − G(0) + (dC(9))

}

−2(n − 8)

(2π#s)

{
e−φ

√|g(9)| + α
1

9!
ε(9)C(9)

} (
δ(x9) − δ(x9 − πR)

)]
. (50)

The D8-brane solution is given by

ds2
s = H

−1/2
D8 [−dt2 + (dxµ)2] + H

1/2
D8 (dx

9)2,

eφ = eφ0H
−5/4
D8 ,

G(0) = αe−φ0∂9̇HD8 = α
n − 8

2π#s
ε(x9)

C
(9)
0̇···8̇ = αe−φ0

(
H−1

D8 − 1
)
, with HD8 = 1 − hD8|x9|, hD8 = (n − 8)gs

2π#s
,

(51)

where the first term of HD8 is fixed by requiring eφ = eφ0 at x9 = 0. This constant can
be identified with the string coupling constant gs. This is a natural identification in the non-
asymptotically flat spacetimes associated with the higher branes and is also consistent, via
T-duality, with the standard identification of gs = eφ0 where this is now the value of the
dilaton at infinity in the asymptotically flat spacetimes associated with lower-dimensional
branes.

For the non-vanishing fields of the D8-brane solution, the Killing spinor equations take
the form (

∂µ + 1
4 
ωµ + 1

8 eφG(0)�µ

)
ε = 0,

(
∂φ + 5
4 eφG(0)

)
ε = 0. (52)

The ingredients of these equations are the non-vanishing zehnbeins and spin connection
components, the dilaton and G(0) . These can be read off from (51) while the spin connection
takes the form


ωµ = 2�9�µ∂9̇H
−1/4
D8 , 
ω9̇ = 0. (53)

For these fields the Killing spinor equations are solved by

ε = H−1/8ε0, with (1 + α�9)ε0 = 0, (54)

where ε0 is a constant spinor that satisfies the above linear constraint. Thus, it has half of the
unbroken supersymmetry of type IIA theory, i.e. 16 unbroken supersymmetries.

6. Critical distances and quantization of mass

From the eight-brane solution (51), one can read off that HD8 is zero for |x9| = 1/hD8,
implying singularities. Thus, the distance between the branes must be less than 1/hD8 so that
the harmonic function does not vanish. The radius of the circle and the distance between the
O-planes is therefore restricted to

R <
2π#s

(n − 8)gs
. (55)

The quantity 1/hD8 is called the critical distance. Thus, it seems that type I′ supergravity
is consistent only on M9 × (S1/Z2) with a circle of restricted radius. Of course, we have
considered only a special case of the type I′ theory with all D-branes on one of the fixed points.
However, with D-branes in between the O-planes also we expect the vacuum solution to imply
a critical distance. The same phenomenon of type I′ was found in [4] in the context of the
duality between the Heterotic and type I theories. Note that the maximal distance depends on
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the distribution of the D-branes. In the most asymmetric case (n = 16) it is smallest, while in
the most symmetric case (n = 8) there is no restriction on R.

The eight-brane solution (71) has other consequences as well. The equation of motion of
the nine-form is modified by the brane and plane actions and leads to

G(0) = α
n − 8

2π#s
ε(x9). (56)

Thus, we may identify the mass parameter of type IIA supergravity as follows:

m =



α
n − 8

2π#s
, x9 > 0 ,

−α
n − 8

2π#s
, x9 < 0.

(57)

The mass is quantized in string units and it is proportional to n − 8, where there are 2n and
2(16−n)D8-branes at each O8-plane. The mass vanishes only in the special case n = 8 when
the contribution from the D8-branes cancels exactly the contribution from the O8-planes. In
general, due to restriction (49) the mass takes only the restricted values

2π#s|m| = 0, 1, 2, . . . , 8. (58)

This is a quantization of our mass parameter, and for the cosmological constant it follows that

m2 = (G(0))2 =
(
n − 8

2π#s

)2

. (59)

Thus, the mass parameter and the cosmological constant are quantized in the units of the string
length in terms of the integers n − 8.

The quantization of the mass and of the cosmological constant in D = 10 was discussed
earlier in [2,4,26] as well as in [5,12]. In the latter two references, two independent derivations
of the quantization condition were given. In [5], the T-duality between a seven- and an eight-
brane solution was investigated. Here it was pointed out that, in the presence of a cosmological
constant, the relation between the D = 10 IIB R–R scalar C(0) and the one reduced to D = 9,
c(0), is given via a generalized Scherk–Schwarz prescription:

C(0) = c(0)(x9) + mx8. (60)

Here (x8, x9) parametrize the two-dimensional space transverse to the seven-brane. Further,
x9 is a radial coordinate, whereas x8 is periodically identified (it corresponds to a U(1) Killing
vector field):

x8 ∼ x8 + 1. (61)

Furthermore, due to the SL(2,Z) U-duality, the R–R scalar C(0) is also periodically identified:

C(0) ∼ C(0) + 1. (62)

Combining the two identifications with the reduction rule for C(0) leads to a quantization
condition for m of the form

m ∼ n

#s
, n integer. (63)

The same result was obtained by a different method in [12].
We are able to give a new, and independent, derivation of the quantization condition for the

mass and cosmological constant. The conditions given in (57), (59) follow straightforwardly
from our construction of the bulk, brane and plane action (50).

Note that the Scherk–Schwarz reduction in (60) and the quantization of SL(2,R) were
essential in deriving the quantization of m. In the new dual formulation we can derive a
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similar T-duality relation between the seven- and the eight-brane, including the source terms.
However, in this case the T-duality relation does not imply a quantization condition for m
since we do not know how to realize the SL(2,R) symmetry in the dual formulation. Another
noteworthy feature is that the derivation of the T-duality rules in the dual formulation does not
require a Scherk–Schwarz reduction. This is possible due to the fact that the R–R scalar only
appears after solving the equations of motion.

7. BPS action and supersymmetric flow equations

Following our work in D = 5, we consider the supersymmetric flow equations corresponding
to a domain wall solution. Originally, supersymmetric flow equations were introduced in the
context of black holes in [30]. They follow from the BPS-type energy functional, which has
a form of a sum of perfect squares, up to total derivatives. Supersymmetric flow equations
represent simply the requirement that each expression in the perfect square vanishes. Typically,
it is the same condition that may be derived from the Killing spinor equations or from the field
equations.

For the domain walls, the corresponding BPS-type energy functional was derived
in [31–33]. It consists usually of two perfect squares, one with a positive and one with a
negative sign and some total derivative terms. The requirement that each expression in the
perfect square vanishes leads to the supersymmetric flow equations. However, for the domain
walls the presence of kinks requires a more careful treatment of the jump conditions at the
wall, as shown in [10] for the three-branes in D = 5. As we next show, with supersymmetric
bulk, brane and plane actions this will be taken care of automatically.

We start with the action (50) and look for configuration which depends only on x9. We
choose the metric in the form suitable for Dp-branes in general.

ds2 = f 2(x9)(−dt2 + (dxµ)2) + f −2(x9)(dx9)2. (64)

The scalar curvature is (with prime indicating a derivative with respect to x9)

R = 18
[
5(f ′)2 + ff

′′]
. (65)

The expression for the energy functional consists of the contribution from the bulk, and from
the planes and branes. The branes are at the positions of the O-planes.

For our ansatz for the time-independent configuration, the energy is minus the Lagrangian,
E = −L. We find the following expression for the energy functional of the bulk, brane and
plane actions with k = n − 8 > 0:

(2π#s)
8

2π
Etotal = 1

2
f 8e−2φ

(
f φ′ − 5

4
αG(0)eφ

)2

− 18f 8e−2φ

(
2f ′ − 1

2
f φ′ +

1

8
αG(0)eφ

)2

+18(f 9f ′e−2φ)′ + (αG(0)f 9e−φ)′

+

(
2k

2π#s
(δ(x9) − δ(x9 − πR) − αG(0)′

)(
f 9e−φ + α

1

9!
ε(9)C(9)

)
. (66)

The last product term in this expression can be removed by solving equations of motion for
the nine-form field, which leads to

2k

2π#s

(
(δ(x9) − δ(x9 − πR)

) − αG(0)′ = 0 �⇒ G(0) = α
k

2π#s
ε(x9), (67)

which is the same result as before. The primed-bracket terms (66) consist of total derivatives,
which vanish in our space with fields satisfying (38). Thus, the final expression for the total



3376 E Bergshoeff et al

energy is given by

(2π#s)
8

2π

∮
Etotal =

∮
1

2
f 8e−2φ

[(
f φ′− 5

4
αG(0)eφ

)2

−36

(
2f ′− 1

2
f φ′+

1

8
αG(0)eφ

)2]
.(68)

The difference with the structure of the BPS action in previous cases [31–33] is due to the
presence of the mixed f ′φ′ terms, which originate from the second derivative of the metric
converted into the first derivative of the metric and the dilaton. In the Einstein frame, the
procedure of getting rid of the second derivative of the metric does not involve the dilaton
derivative.

The supersymmetric flow equations are

f φ′ = 5
4αG

(0)eφ, 2f ′ − 1
2f φ

′ = − 1
8αG

(0)eφ. (69)

We may eliminate αG(0) from these equations, so that φ′ = 5f ′/f . If we choose cf = e(1/5)φ ,
where c is an arbitrary positive9 constant, we get(

e(−4/5)φ
)′ = −cαG(0),(

e(−4/5)φ
)′′ = −cα(G(0))′ = −c

2k

2π#s

(
δ(x9) − δ(x9 − πR)

)
.

(70)

We may choose two constants in our solution to be defined by the initial values at x9 = 0 of
the metric and of the dilaton so that f (0) = 1 and eφ(0) = gs = c5. For such a choice, the
solution is given in terms of a harmonic function HD8,

HD8 ≡ f −4 = c4e(−4/5)φ = 1 − gs
k

2π#s
|x9| = 1 − gs|m||x9|, (71)

where k = n − 8 > 0. Note that the first term in the harmonic function has to be positive. At
small |x|, the exponent has to be positive, and also we should be able to take a square root of
it to have f 2 = H−1/2. The second term turns out to be negative: this means that there is a
singularity at H = 0. The string coupling eφ blows up at |x9| = |x9|critical = 1/(gs|m|) and
the metric is singular. Thus, we have to place the second wall at πR < |x|critical.

In the solutions of the second-order equations, we have also found that the two constants
in the harmonic function are of opposite sign. This supports the present picture that one
needs two O-planes with branes on them at a finite distance from each other, to describe a
physically meaningful configuration for supersymmetric domain walls (eight-branes). It is
plausible that by adding some more non-vanishing fluxes in our configurations that break
more supersymmetries, one can find a solution where the runaway behaviour of the dilaton
is replaced by the critical point with the fixed value of the dilaton. In such a solution, one
may expect that an infinite distance between orientifold planes will be possible. One natural
candidate for such solution is the embedding of the FGPW type solution [34] into our D = 10
bulk and brane construction.

8. Summary of results and discussion

The main new results of this paper of general nature are the new formulations of type IID = 10
supergravity (section 2). For both type IIA and IIB theories, we constructed democratic bulk
theories with a unified treatment of all R–R potentials. Due to the doubling of R–R degrees of
freedom, one had to impose extra duality constraints and thus a proper action was not possible.
A so-called pseudo-action, containing kinetic terms for all R–R potentials but without the
9 We focus here on the special case when the energy of the brane at x = 0 is positive. Note that the energy is given
by (2k/2π#s)f

9e−φ , thus f > 0.
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Chern–Simons terms, was discussed. Furthermore, we have broken the self-duality explicitly
in the IIA case, allowing for a proper action. Instead of all R–R potentials, only half of the
C(p)’s occur in these theories. Both the standard (p = 1, 3) as well as the dual (p = 5, 7, 9)
formulations were discussed. Using these actions, all bulk and brane systems can be described.

In section 3 we studied brane actions at the fixed points of orientifolds. It turned out that, on
the appropriate orientifolds, all brane actions preserve half of theN = 2 supersymmetry. Either
the branes or the anti-branes fulfilled this condition but not both. This can also be understood
from the point of view of supersymmetric equilibrium of forces. Thus, in a compact space,
to have vanishing charge, both positive- and negative-tension (anti-)branes must be used. The
latter can be interpreted as orientifold planes while the first correspond to Dirichlet branes.
One particular case of this was studied in detail: the eight-brane. Our supersymmetric bulk and
brane action gave us a description of the D8–O8 system. These are the fundamental objects in
type I′ string theory. By studying this explicit construction, we have found several interesting
features.

We have carefully studied the issue of the supersymmetric D8–O8 sources and have found
that the jump conditions on the walls are satisfied for our BPS solutions in presence of sources.
This is a highly non-trivial issue in view of the recent studies of the difficulties to include the
brane sources in the uplifted RS scenario in [35]. Our BPS eight-brane solution implied a
maximal distance between the two walls in order to avoid singularities. At

|x9|critical = 2π#s

(n − 8)gs
, n 
= 8, (72)

the harmonic function vanishes and thus the second wall has to be placed before this. Note
that the maximal distance depends on the positions of the D-branes. The n = 8 case is special,
since the D8-branes are symmetrically distributed and hence are cancelled by the O-planes
contributions. Also the mass parameter is found to be quantized in string units:

|m| = n − 8

2π#s
, (73)

(again for n 
= 8). Note that it is proportional to the D-brane distribution factor n − 8
while inversely proportional to the maximal distance. In fact, we have the simple relation
|x9|critical = 1/(gs|m|). This clearly shows the twofold effect of introducing source terms: they
induce a non-zero value of the mass parameter but also imply a maximal distance between
the walls. Of course, this is all special to the exotic eight-brane since its corresponding field
strength G(10) does not fall off at infinity.

The D8-brane configuration presented in this paper requires two domain walls at a finite
distance from each other. This is necessary to cut off the singularity of the metric and to keep
the dilaton from blowing up. On the other hand, this solution also has too many unbroken
supersymmetries, (half of all supersymmetries of type II string theories). However, solutions
with more non-vanishing form fields might exist with a dilaton that does not blow up but tends
to a fixed value and with a metric given by the product of the AdS5 space and some Euclidean
five-dimensional manifold. Our D8-branes can be wrapped around this five-dimensional
manifold and produce the three-branes in the five-dimensional space with Minkowski signature.
Such three-branes have been used in bulk and brane construction [10]. The distance between
orientifold planes would not be limited in such a situation and, in particular, the second wall
at πR may be pushed to infinity. The number of unbroken supersymmetries in the bulk would
be equal to 1

4 or 1
8 of original 32 and on the wall we would have the desirable D = 4, N = 1

supersymmetry. We expect the relevant bulk solution to be the uplifted FGPW solution [34]
which has one IR fixed point at |x̃9| → ∞. The UV fixed point would be cut off by our O8–D8
plane at x9 = 0. Due to the presence of the D8 branes and O8 planes, such a solution would



3378 E Bergshoeff et al

realize the five-dimensional RSII scenario in the framework of fundamental objects of string
theory.

A notable difference between our scenario and the HW [36, 37] scenario is that the walls
are the O8 and D8 objects which exist in string theory. They may be wrapped around some
D = 5 manifold. The main goal of the HW theory was to present a scenario for the appearance
of chiral fermions starting with D = 11 supersymmetric theory with non-chiral fermions. Our
O8–D8 construction may reach this precise goal in an interesting and controllable way due to
the stringy nature of this construction and due to the complete control over supersymmetries
in the bulk and on the walls. We remark that the strong-coupling limit of type I′ string theory
is equal to the HW theory. Using the results of this paper, it would be interesting to investigate
whether and how in this limit the O8–D8 objects can be related to the HW branes.

It is clear that the D8–O8 system can be generalized much further. To start with, placing
D-branes in any compact transverse space requires the presence of oppositely charged branes
that must have opposite tensions in order to be in supersymmetric equilibrium. If all the
negative-tension branes are identified with orientifold planes, as suggested here, then the
compact transverse spaces must be orbifolds with the orientifold planes placed in the orbifold
points. The Z2 reflection symmetries associated to the orientifold planes can be part of more
general orbifold groups (e.g. Zn). It would be interesting to realize these bulk and brane
configurations explicitly.
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Appendix A. Conventions

Appendix A.1. General

We generally use the plus signature (− + · · · +). Greek indices µ, ν, ρ, . . . denote world
coordinates and Latin indices a, b, c, . . . represent tangent spacetime. They are related by
the vielbeins eaµ and inverse vielbeins eµa . Explicit indices 0, . . . , 9 are dotted for world
coordinates and undotted in the tangent spacetime case. The covariant derivative (with respect
to general coordinate and local Lorentz transformations) is denoted by ∇µ. Its action tensors
ξ and spinors χ is given by

∇µξ = ∂µξ, ∇µξ
ν = ∂µξ

ν + � ν
µρ ξρ, ∇µχ = ∂µχ + 1

4ω
ab

µ �abχ,

∇µχ
ν = ∂µχ

ν + � ν
µρ χρ + 1

4ω
ab

µ �abχ. (A.1)

Here � ν
µρ and ω ab

µ are the affine and spin connection, respectively. Indices with an additional
underlining indicate lower-dimensional brane indices. We symmetrize and antisymmetrize
with weight one. Slashes are also used in the following sense: 
H = Hµνρ�µνρ , and

Hµ = Hµνρ�

νρ .
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Our conventions in form notation are as follows:

P (p) ≡ 1

p!
P (p)
µ1···µp

dxµ1 ∧ · · · ∧ dxµp

P (p) · Q(p) ≡ 1

p!
P (p)
µ1···µp

Q(p)µ1···µp ,

P (p)∧Q(q) ≡ 1

p!q!
P (p)
µ1···µp

Q(q)
µp+1···µp+q

dxµ1 ∧ · · · ∧ dxµp+q ,

+P (p) ≡ 1

(10 − p)!p!

√−gε(10)
µ1···µ10

P (p)µ11−p ···µ10 dxµ1 ∧ · · · ∧ dxµ10−p ,

with ε
(10)
0123···9 = −ε0123...9 = 1,

+ + P (p) = (−)p+1P (p),

d ≡ ∂µ dxµ, (A.2)

where d is the exterior derivative, acting from the left. Also, we will use the following
abbreviation:

e±B ≡ ±B + 1
2B∧B ± 1

3!B∧B∧B + · · · . (A.3)

Appendix A.2. Spinors in 10 dimensions

The ten-dimensional �-matrices are defined to satisfy the anticommutation relations{
�a, �b

} = +2ηab. (A.4)

We can choose a Majorana representation where they are purely real, with the choice C = �0

for the charge conjugation matrix. Their hermiticity properties are

�0 † = �0 T = −�0, �i † = �i T = �i, i = 1, . . . , 9. (A.5)

Furthermore, we have the useful �-matrices identity:

�11�
(n)
a1···an = (−1)Int[(10−n)/2]+1

(10 − n)!
ε
(10)
a1···anb1···b10−n

�(10−n) b1···b10−n ,

with �(n)
a1···an ≡ �[a1 · · ·�an] and �11 ≡ �0 · · ·�9, (A.6)

which combines with the star operation to

�11�
(n) = (−)Int[(n+1)/2] +�(10−n). (A.7)

The Majorana condition is equivalent to requiring all components of a Majorana spinor to
be real. We do not change the order of fermions in performing complex conjugation. Using
the above properties and the definition of Majorana spinors, one finds

χ̄�a1···anψ = (−1)n+Int[n/2]ψ̄�a1···anχ. (A.8)

Appendix B. World-sheet T-duality

Although the discussion on bulk and brane supersymmetry has been in the context of
supergravity, it is also useful to consider the string origin. Here we will derive a number of
Z2-symmetries of type IIA and IIB string theories that are relevant for the orbifold10 procedure.
10 An orbifold corresponds to modding out a spacetime Z2-symmetry. From the supergravity point of view this is the
correct terminology for section 2. Here we will discuss the string theory origin; a world-sheet operation is involved
and the corresponding construction is called an orientifold. See [28] for a general introduction.
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Since these are symmetries of the world-sheet, not only the effective supergravity actions but
also the full string theories must be invariant under the corresponding spacetime operations. It
will turn out that they are related via simple world-sheet T-duality relations. We will discuss
this in the Neveu–Schwarz–Ramond formalism. On the world-sheet, one has the following
field content: {

XL
µ,XR

µ, ψL
µ, ψR

µ
}

(B.1)

with left- and right-moving bosons and fermions. To construct symmetries of the two theories,
the following operations on these fields will be used:

Tq : XL
q → −XL

q, ψL
q → −ψL

q,

Iq : XL
q → −XL

q, ψL
q → −ψL

q,

XR
q → −XR

q, ψR
q → −ψR

q,

. : XL
µ ↔ XR

µ, ψL
µ ↔ ψR

µ, (σ → −σ),

(−)F
c
L : ψL

µ → −ψL
µ,

with the other fields invariant. Note that all these operations square to one. Although the
world-sheet action may be invariant under the above operations, in string theory boundary
conditions are involved as well. Different choices of boundary conditions lead to different
types of string theories. Therefore, for an operation to be a symmetry of a certain theory, it
should also leave the boundary conditions invariant. Bearing this in mind, it is easy to see that
. is a symmetry of type IIB theory only. Using T-duality between type IIA and IIB theories
we can derive other symmetries. This chain of symmetries, connected via T-duality, reads:

Sp ≡ ((−)F
c
L)Int[p/2] · I9 · · · Ip+1. = TpSp+1Tp, (B.2)

with S10 ≡ .. It is explicitly given in table 1. Thus, by applying T-duality to a (p + 1)-
dimensionally extended parity operation, we get a parity operation with one more direction
involved. The Sp with p odd are symmetries of type IIA theory; the Sp with p even those
of type IIB theory. Using these Z2-symmetries, it is possible to construct orientifolds of
any dimension that are charged under the corresponding R–R potential. Furthermore, under
T-duality, the actions of orientifold planes of all dimensions are related. This should not come
as a surprise; an orientifold plane can be seen as a truncation of a D-brane and the latter are
also related under T-duality.
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