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Laser-based additive manufacturing (LAM) in all its variations is now being estab-
lished as a technique for manufacturing components from various material types and
alloys. However, the materials regularly used in these processes were developed for con-
ventional manufacturing processes (e.g., casting, injection molding, thermal spraying).
They are therefore not optimized for the characteristic process environments in laser ad-
ditive manufacturing, so some of the great potentials of this manufacturing technology
remain untapped. The urgent need for new materials throughout the industry is reflected
in current trends and market studies, e.g., [1], as well as intensified research activities on
material development for (L)AM.

The task of designing new materials is very challenging and, to be truly successful,
requires interdisciplinary collaboration between experts from a wide range of disciplines
(cf. Figure 1). Promising approaches to research include additivation and modification of
existing commercial base materials, typically powders, but also creating completely new
alloys starting with phase modeling and basic chemical reactions. Special properties to be
taken into account are, for example, powder material properties, flowability properties,
melt pool and flow characteristics, as well as solidification conditions. The consideration
of industrial requirements such as high efficiency, reproducibility, and precision is highly
essential for a holistic, sustainable approach.
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Laser-based additive manufacturing (LAM) in all its variations is now being estab-
lished as a technique for manufacturing components from various material types and al-
loys. However, the materials regularly used in these processes were developed for con-
ventional manufacturing processes (e.g., casting, injection molding, thermal spraying). 
They are therefore not optimized for the characteristic process environments in laser ad-
ditive manufacturing, so some of the great potentials of this manufacturing technology 
remain untapped. The urgent need for new materials throughout the industry is reflected 
in current trends and market studies, e.g., [1], as well as intensified research activities on 
material development for (L)AM. 

The task of designing new materials is very challenging and, to be truly successful, 
requires interdisciplinary collaboration between experts from a wide range of disciplines 
(cf. Figure 1). Promising approaches to research include additivation and modification of 
existing commercial base materials, typically powders, but also creating completely new 
alloys starting with phase modeling and basic chemical reactions. Special properties to be 
taken into account are, for example, powder material properties, flowability properties, 
melt pool and flow characteristics, as well as solidification conditions. The consideration 
of industrial requirements such as high efficiency, reproducibility, and precision is highly 
essential for a holistic, sustainable approach. 

 
Figure 1. (a) Schematic of interactive physical phenomena during a stable LPBF process [2]. (b) 
scanning electron microscopy (SEM) picture of 1.2709 at 10,000× g magnification coated with 1 vol.% 
SiC [3]. (c) Illustration of the surface coverage by micro powders with increasing nanoparticle load-
ing (vol%) [4]. 

With regard to metallic materials, one long-lasting challenge is to modify previously 
un- or hardly processable materials in such a way that their defect-free consolidation be-
comes possible, e.g., by adding zirconia or boride nanoparticles to highly crack-suscepti-
ble alloys such as Al7075 and Al606, as it is successfully being pursued by [5], and thus to 
expand the application range of LAM. This goes hand in hand with research and devel-
opment on the processes themselves, as, e.g., proposed by [6], accepting the challenge of 
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Figure 1. (a) Schematic of interactive physical phenomena during a stable LPBF process [2]. (b) scan-
ning electron microscopy (SEM) picture of 1.2709 at 10,000× g magnification coated with 1 vol.%
SiC [3]. (c) Illustration of the surface coverage by micro powders with increasing nanoparticle loading
(vol%) [4].

With regard to metallic materials, one long-lasting challenge is to modify previously
un- or hardly processable materials in such a way that their defect-free consolidation be-
comes possible, e.g., by adding zirconia or boride nanoparticles to highly crack-susceptible
alloys such as Al7075 and Al606, as it is successfully being pursued by [5], and thus to ex-
pand the application range of LAM. This goes hand in hand with research and development
on the processes themselves, as, e.g., proposed by [6], accepting the challenge of manufac-
turing Mg-alloys with laser-based powder bed fusion (LPBF). Further developments and
innovations in the fields of systems engineering and photonics support these efforts, such as
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the use of ultrasound [7] or green laser radiation [8]. Similarly, many studies are currently in
progress to determine how the special temperature conditions in the process (cyclic heating,
rapid cooling) can be used in a targeted manner to produce special microstructures, for
example, precipitates or extremely fine structures, like in Al-Ni eutectic alloys investigated
by [9] or even to adjust properties locally in the component, as can be derived from results
of [10] on Al-Fe. Intrinsic heat effects can be used to trigger material transformations if
they are cleverly controlled [11] and thus enable new component designs. Likewise, a
targeted scan strategy and process parameter control allows us to locally promote and
select crystallographic orientations and phase compositions (e.g., [12–14]).

Due to the increasing computational capacity and performance, numerical methods are
increasingly used to represent and predict material behavior. Modeling of non-equilibrium
states, such as those encountered in LAM, is a valuable complement to classical phase
diagrams and paves the way for digital material development. Additivation, primarily
with nano-sized additional particles that are not dissolved in the melt pool and act as nuclei
and/or reinforcement in the resulting microstructure, is another growing field of research
for LAM of metals. Oxide dispersion strengthening (ODS) is an evolving example of how
material development benefits from AM by providing a method to produce these types of
composites more economically or at all. These advances also benefit from sophisticated
modeling, e.g., [2] propose a model to predict the nanoparticle’s exact location in solidified
LAM material. Another promising approach to modify powders at the nano level is to
systematically coat them to improve process behavior, like, e.g., investigated by [3] on
maraging tool steel.

Nanoparticles are also quite exciting for the AM of polymer materials [15]. A lot of
research focuses on semi-crystalline polyamide 12 (PA12). The authors of [16] were able
to prove in their investigations that even small amounts of added carbon nanoparticles
can significantly influence the mechanical properties without adversely changing the crys-
tallization behavior. Metallic or ceramic additives in micro- or nanoscale embedded in a
polymer matrix can be used to produce highly specialized parts even with new functionali-
ties, like, e.g., magnetic characteristics [17]. Achieving the desired distribution, however,
is still challenging in many applications. Polylactide acid (PLA) is another polymer with
increasing popularity in AM. Known to be both biocompatible and biodegradable, the
scope in [18] to also make the manufacturing route more environmentally friendly is both
obvious and ambitious.

In both metal and plastic AM, sustainability is playing an increasingly important role
in material selection and development. Efforts in the metals sector often include attempts to
substitute elements that are environmentally and ethically critical or that have an insecure
supply chain, such as rare earths, and to improve recycling routes for materials along the
entire process chain and components. With regard to polymers, research into the more
ecological production of raw materials is coming to the fore, as well as investigations into
materials that are biodegradable or easier to recycle or reuse.

Another material class-independent trend is the increasing use of modeling to map
process-dependent material behavior, thus reducing experimental effort and shortening
development cycles. For this, many correlations remain to be fully understood, making
fundamental work like, e.g., [19], which focuses on capillary phenomena, essential. This is
also accompanied by ever-increasing demands on measurement technology, which moti-
vates work like, e.g., those of [20], which contributes to learning about fast phase transition
kinetics by using advanced measurement techniques. In general, in situ techniques for
observing microstructure development during the process to gain a deeper knowledge of
process–property correlations are on the rise and quite successful [21].

As in any field of research, a collaboration between different researchers is the key to
innovation. Increasing digitization has advanced the rapid availability of data worldwide
and is accelerating developments on a massive scale. To assure consistency and validate
developed methods, interlaboratory studies like the one proposed by [4] are useful eval-
uation tools that benefit from a high number of researchers and laboratories involved.
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Additionally, it becomes increasingly crucial to keep track of the growing volumes of data
and make the best possible use of them, research data management is also gaining more
and more importance.

Conflicts of Interest: The authors declare no conflict of interest.
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